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Abstract

Agricultural application of sewage sludge (SS) after carbonization is a plausible way for dis-

posal. Despite its benefits of improving soil fertility and C sequestration, heavy metals con-

tained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy

metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as

the main component). The two stabilizers were incorporated into SS prior to 350˚C carboni-

zation for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fou-

rier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS).

Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the

SSBs were determined. In addition, a series of pot soil culture experiments was conducted

to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability

and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB

(no stabilizers) as controls. The results showed that incorporation of both FA and CS

increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups

in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual

state of SSBs were significantly increased after carbonization, and hence the mobility of the

heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) sig-

nificantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction

in available heavy metal concentration increased with incorporation rate of the stabilizers

from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were

taken up by plants and more plant biomass yields were obtained. The mitigating effects

were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way

to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

peat substitute.
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Introduction

With increasing population and urbanization, huge amounts of sewage sludge (SS) are pro-

duced every day. In China, approximately 12.53 million tons of SS is produced each year [1].

Disposal and/or beneficial utilization of the ever increasing SS have become a challenge world-

wide. Recently, SS carbonization has been considered as an environmentally friendly way of SS

treatment. The resulting product, SS biochar (SSB), can be used as soil amendment to increase

soil organic matter, improve soil fertility, and remediate polluted soils by heavy metals or

organic contaminants [2,3]. Recently, it was found that SSB can been explored on as a peat

substitute for growing media components, which can increase the N, P and K content of grow-

ing media [3]. However, SS itself contains heavy metals and therefore, SSB usually contains

more heavy metals than biochars made from plant residues [4]. As metals are non-biodegrad-

able; they may be released from SSB, taken up by plants, and amplify along the food chains,

and eventually pose a threat to ecosystem functions and/or human health. Therefore, the

heavy metals in SSB need to be stabilized to minimize their environmental risk.

Common metal stabilizers include zeolite [5], red mud, apatite [6], sepiolite [7], fly ash [8],

iron/manganese oxides [1], phosphates, limestone and Ca-rich materials [9]. The mechanisms

of stabilization include surface adsorption, precipitation, formation of stable complexes, and

ligands or ion exchange [10]. For example, phosphate rock immobilizes Pb from aqueous solu-

tions and soils through the formation of solid pyromorphite-like minerals [11].

Studies have shown positive effects of stabilizer application on lowering heavy metal avail-

ability in contaminated soils. But little research has been conducted to investigate the effects of

stabilizers on heavy metal availability in SSB. In this study, two types of stabilizers (fulvic acid,

FA, and calcium sulfate, CS), incorporated at different rates, were investigated for their effects

on the available concentrations of four heavy metals (i.e., Zn, Pb, Cd, and Ni) in SSB. In addi-

tion, a soil pot experiment was conducted to investigate effect of SSB with stabilizer incorpo-

ration on heavy metal uptake by plants and plant biomass yield.

Materials and methods

Materials and apparatus

The sewage sludge (SS) is secondary sludge (excess activated sludge out of system) obtained

aerobic treatment of sludge from the secondary sedimentation tank of the activated sludge sys-

tem in Guangzhou Liede domestic sewage treatment plant (using improved A2/O process) in

Guangzhou, Guangdong Province, China. We have got the permission from the managers of

domestic sewage treatment plant. After transported to the laboratory, the SS was air-dried for

2 d, oven-dried at 60 oC to constant weight, ground and passed through a 40-mesh sieve prior

to use. The organic stabilizer used in this study was weathered coal. Since FA is the main com-

ponent of the weathered coal [12], hereafter. FA is used to stand for this stabilizer. The inor-

ganic stabilizer was phosphogypsum with CaSO4 (CS) as the main component. Hereafter, CS

is used to stand for this stabilizer. Phosphogypsum (also named ardealite) is a by-product of

the phosphate fertilizer industry. It is formed by the chemical attack of the phosphate rock

withesulphuric acid to produce phosphoric acid. This waste is generally stored in piles near the

fertilizer factory, whose main ingredient is gypsum (chemical component is CaSO4) [13]. The

radioactive activity (176 Bq�kg-1) of the phosphogypsum we used is safe for using as building

materials in China (GB 6566–2010). The quantity of the phosphogypsum added to the soil is

very low, and also safe in the application of soil amendment. The soil used in the pot experi-

ment was collected from the campus of South China Agricultural University. It is uduits, with

a pH of 6.2, a CEC of 8.35 C mol�Kg-1, an EC of 156 uS/cm (s/w = 1:5), an organic matter
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content of 0.5%,and available N, P, and K of 33 mg N/kg, 6 mg P/kg, and 50 mg K/kg, respec-

tively. The organic matter content and EC of SS were 53.02% and 1030 uS/cm (s/w = 1:5),

respectively. The heavy metal concentrations of the soil, SS and FA are shown in Table 1.

Fourier transform infrared (FTIR) spectra were recorded between 4000 cm-1 and 400 cm-1

using a Hitachi EPI-G2 infrared spectrophotometer with DTGS KBr detector. The number of

scans is 32, the resolution is 4 cm-1 and scan rate is 1.928 cm-1 step-1. The samples were mixed

with KBr at the ratio of 1:180 and pelletized. The X-ray photoelectron spectra (XPS) were mea-

sured with an ANELVA AES-430S X-ray photoelectron spectrometer and the binding energy

of C 1s was shifted to 284.6 eV as an internal reference.

SSB preparation

The two stabilizers were added to the oven dried and sieved SS at the rates of 1%, 2%, and 4%

on a dry weight basis. After thoroughly mixed, the mixtures were carbonized at 350 oC for 1 h.

The carbonization temperature of 350 oC was selected because our previous study [1] showed

that the stabilizers were most effective in reducing availabilities of the heavy metals at this tem-

perature. The loss of thermal conversion for SS samples are shown in S1 Fig (Supporting

Information), and at 350 oC for 1 h, the weight loss is approximately 20%. The obtained bio-

chars were labeled as SSBFA1, SSBFA2, and SSBFA4 for FA incorporation at 1%, 2%, and 4%,

respectively and as SSBCS1, SSBCS2, and SSBCS4 for CS incorporation at 1%, 2%, and 4%,

respectively.

Heavy metal uptake by plants

The soil culture experiment was conducted in the SCAU greenhouse in Guangzhou

(113.368926E, 23.16368N) with the natural daylight (the light intensity 20–300 lx during the

daytime). The temperatures during the pot study are between 25–36˚C, and moisture was

adjusted to 65% of field holding capacity. In pot experiments, a total of 7 treatments were set

up in four replicates: CK, SS, SSB, SSBFA2, SSBFA4, SSBCS2, and SSBCS4. For CK, no SS or

SSB was applied. For treatment SS, SS but not SSB was applied. For the other five treatments,

the corresponding SSB was applied. For each pot, 4 kg air dried soil was used (The size of pot:

the upper diameter is 20 cm, the lower diameter is 15 cm, the height is 18 cm, and 18 kg soil/

pot); sewage sludge or biochars were applied at 0.5% on a dry weight basis; basic fertilizers of

1.13 g urea, 0.65 g ammonium dihydrogen phosphate and 0.8 g potassium chloride were

applied. Soil, sewage sludge/biochar, and fertilizers were mixed thoroughly before being put

into each pot, and moisture was adjusted to 65% of field holding capacity. The design of this

study can be intuitively displayed in Fig 1.

On August 30th, 2013, 3 seeds of waxy corn (Zea mays L. ceratina Kulesh) were sown in

each pot. At the 3rd day after germination, the seedlings were thinned with only 2 seedlings left

in each pot. During the whole experiment, the plants were watered once per day with 200 ml

water/pot for the first 20 days and twice per day with 300 ml water each time at the later stage.

Table 1. Heavy metal concentrations (mg/kg) of the soil, sewage sludge (SS), fulvic acid (FA) and phosphogypsum (CS).

Zn Pb Cd Ni

Total Available Total Available Total Available Total Available

Soil 70.11 7.24 32.78 1.30 0.45 0.09 16.90 0.26

SS 764.20 354.54 119.70 28.71 3.00 1.42 49.90 22.65

FA 29.72 10.23 11.88 2.55 0.21 0.03 4.64 0.92

CS 31.21 13.72 29.07 3.36 0.28 0.06 1.39 0.05

https://doi.org/10.1371/journal.pone.0183617.t001
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The aboveground parts of the corn plants were harvested at the 45th day after germination.

Both fresh and oven dried weights of the harvested corn plants were recorded. To determine

the heavy metal contents of the plants, subsamples of the dried plants were ashed in a muffle

furnace at 550 oC for 6 h, and after cooled, the ashed samples were extracted with 1:1 hydro-

chloric acid solution and filtrated. The filtrates were measured for the concentrations of Zn,

Pb, Cd, and Ni using an atomic absorption spectrophotometer (Z-2300, HITACHI).

Chemical analysis and data analysis

For total heavy metal concentration determination, the samples of SS, SSB, stabilizers and soil

were digested with HF-HNO3-HClO4, and concentrations of Zn, Pb, Cd, and Ni in the

digested solution were determined using the AAS.

Available heavy metals in the samples were estimated by the DTPA-CaCl2-TEA extraction

method [14]. Briefly, metals were extracted with a solution containing 0.005 M DTPA, 0.1 M

triethanolamine (TEA) and 0.01 M CaCl2 at the soil: solution ratio of 1:5; pH of the resulting

solution was adjusted to 7.30 with diluted HCl solution; concentrations of heavy metals in the

extracts were determined using the AAS.

The chemical speciation (acid extractable fraction, reducible fraction, oxidizable fraction

and residual fraction) for heavy metals from SS and SSBs were measure using the optimized

BCR sequential extraction procedure [15].

Data were analyzed by ANOVA and differences between treatments were tested by Dun-

can’s multi-range test (P = 0.05) using SAS software (version 8.2, SAS Institute, 2004).

Fig 1. Schematic representation of the experiment design.

https://doi.org/10.1371/journal.pone.0183617.g001
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Results and discussion

Total heavy metal concentration in SBBs

Carbonization raised total heavy metal concentrations in the SS due to loss of volatile

components (Table 1 and Fig 2). The contents of Zn and Ni increased by 16.6 and 29.5%,

respectively; while those of Pb and Cd increased by 1.6% and 6.3%, respectively after SS car-

bonization. None of the heavy metal concentrations of the SSB exceeded the critical levels for

Fig 2. Total heavy metal concentrations in raw SSB (0% stabilizer) and SSB with FA or CS incorporated at 1%, 2% or 4%.

https://doi.org/10.1371/journal.pone.0183617.g002
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sludge application in agriculture in China (GB4284-84). Similar results were reported by Kop-

polu et al. [16] that concentrations of Cu, Zn, Ni, Cr, and Co increased by four to six times in

biochar relative to its feedstock.

Incorporation of stabilizers significantly decreased total heavy metal concentrations in the

SSB (P<0.05), mainly due to dilution effect. However, the decrease varied between the two sta-

bilizers, with CS being more effective than FA, likely because of partial loss of the FA stabilizer

during the carbonization process.

Available concentration and speciation of heavy metal in SBBs

The environmental risk of a heavy metal is more related to its bioavailability or available con-

centration [17]. The major goal of stabilizer addition is to reduce availability of heavy metals in

the SSB. As can be seen from Fig 3, available concentrations of Zn, Pb, Cd and Ni in the SSB,

as estimated by the DTPA-CaCl2-TEA extraction method, were significantly decreased by sta-

bilizer incorporation (P<0.05). The only exception was when CS was incorporated at 1%, the

SSB had a higher available Cd concentration, as compared to control (SSB without stabilizer).

Similar to total concentration, CS was more effective in decreasing available heavy metals than

FA. The decreasing effect increased with increasing incorporation rate for both stabilizers (Fig

3). At 4% application rate, FA and CS decreased available heavy metal in SSB by 54–68% and

68–92%, respectively. To further investigate the stable states of heavy metals, the chemical spe-

ciation for heavy metals from SS and SSBs were analyzed using the optimized BCR sequential

extraction procedure [15]. Sequential extraction methods may provide useful information on

the potential mobility and association of heavy metals with different SBBs. It is confirmed that

heavy metals in sulfuric and oxidizable state and residual state are stable states with lower

envrionmental risk [18]. The relative distribution of heavy metals estimated by BCR extraction

procedure in the SSB represented as percent of total concentrations are shown in S2 Fig. Com-

pared with SS, the residual fraction for heavy metals in SSBs were significantly increased. With

adding FA or CS, the sulfuric and oxidizable state and residual fraction for heavy metals in

SSBs were increased at different extent, indicating the adding of FA or CS can promote form-

ing stable state.

Therefore, incorporation of stabilizers prior to carbonization is a promising way to reduce

availability of heavy metals in the SSB. In this study, available concentrations of Zn, Pb, Cd, and

Ni were significantly lowered (P<0.05) with FA or CS incorporation. The reduction effect was

more striking when the stabilizers were incorporated at a higher rate (Fig 3). The more striking

reduction in available concentrations than in total concentration indicated that other mecha-

nisms played a major role in lowering heavy metal bioavailability, in addition to dilution effect.

Heavy metals uptake by plant

Amendment of SS alone generally increased concentrations of Zn, Pb, Ni, and Cd in plant, as

compared to CK where only fertilizers were applied, indicating that heavy metals in the SS

were available to plants (Fig 4). When SS was applied after carbonization as SSB (treatment

SSB), less heavy metals were taken up by the plants, implying that carbonization reduced bio-

availability of heavy metals in the SS. Based on the values of heavy metal available concentra-

tion in SSBFA1 and SSBCS1, the inhibition effects are still unsatisfied duo to the low dosage of

stabilizer. Therefore, we decide not to study SSBFA1 and SSBCS1 treatments in the pot experi-

ments. When the stabilizer incorporated SSB (SSBFA2, SSBFA4, SSBCS2, and SSBCS4) were

applied, even less heavy metals were absorbed by the plants, indicated that incorporation of

stabilizers further decreased bioavailability of heavy metals (Zn, Cd, Pb, and Ni) in SS and thus

reduced environmental risk of SS for agricultural application.
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In treatment SS, plant dry weight was lower, as compared to CK (Fig 5), which may be

attributed to negative influence of heavy metals in the SS applied. However, higher plant dry

weights were achieved in the other five treatments with SSB applied than that in CK. This dem-

onstrated that the stress of heavy metals from SS was mitigated by carbonization and incorpo-

ration of stabilizers [5,19]. In addition, higher plant dry biomass was obtained when FA or CS

Fig 3. Available heavy metal concentrations (DTPA-CaCl2-TEA-available) in raw SSB (0% stabilizer) and SSB with FA or CS incorporated

at 1%, 2% or 4%.

https://doi.org/10.1371/journal.pone.0183617.g003
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was incorporated at 4%, as compared to 2%, further demonstrating that effective mitigation of

heavy metal toxicity could be accomplished by FA or CS incorporation at higher rates. SSBs

can be used as a valuable soil amendment as it increases the organic matter content, the N, P

and K content and can hinder the leaching of heavy metals present in raw sewage sludge [2, 3].

Therefore, SSB is a nutrient-rich material can be explored as a soil amendment and as a peat

substitute for growing media formulation in biological agriculture and horticulture.

Fig 4. Heavy metal concentrations in plant received in different pot treatments with adding SS, SSB (0% stabilizer) and SSB with FA or

CS incorporated at 2% or 4% (CK is no SS or SSB applied).

https://doi.org/10.1371/journal.pone.0183617.g004
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Although corn plants in this pot experiment were not grown to the harvest of corn cobs,

which are the consumable part of corn, but many studies have demonstrate that there is a posi-

tive relationship between heavy metal concentration in crop straw and in grains, and between

crop dry weight and grain heavy metal concentration [19]. That is, lower heavy metal contents

can be expected in the corn grains harvested from the treatments of SBFA2, SBFA4, SBCS2,

and SBCS4.

Inhibition mechanism analyzed by FTIR and XPS

FTIR spectroscopy is a useful technique for the detection of functional groups in SS and SSBs.

As can be seen in Fig 6, the peaks present in the FTIR spectra of SS were also observable in the

FTIR spectra of SSB (0% stabilizer), but the intensity of the SSB peaks at 3600–3700 cm-1 and

1600–1700 cm-1 decreased dramatically after pyrolyzation at 350˚C, owning to the dehydra-

tion reaction and dehydroxyl reaction. Compared to SSB, the spectra of SSBFA1, SSBFA2, and

SSBFA4 showed prominent peaks between 3500–3700 cm-1, 2800–3000 cm-1, 1300–1500 cm-1,

and 600–900 cm-1 (Fig 6A). These peaks are attributed to the stretching of OH, aliphatic or ali-

cyclic C-H stretching, C = C and anti-symmetric COO- stretching, and aromatic compounds,

Fig 5. Plants biomass yields in different pot treatments with adding SS, SSB (0% stabilizer) and SSB with FA or CS incorporated at 2% or

4% (CK is no SS or SSB applied).

https://doi.org/10.1371/journal.pone.0183617.g005
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respectively [20]. This result indicated that the incorporation of FA into the SS prior to carbon-

ization introduced additional functional groups of carboxyl, phenol, hydroxyl, amine and qui-

nine groups. A new band appeared near the position at 1880 cm-1, which is assigned to the

bending vibration of = C-H. Besides, with the increase of the amount of FA adding, the peak

intensity at 1633 cm-1 that arises from the conjugated double bond C = C-C = C become stron-

ger. These phenomena indicated that the adding of FA increase the aromatic hydrocarbons

and unsaturated groups, which could enhance the chelate ability with heavy metals.

Besides the same prominent peaks between 3500–3700 cm-1, 2800–3000 cm-1, 1300–1500

cm-1, and 600–900 cm-1 as those in the spectra of SSBFAs, the spectra of SSBCSs showed other

striking peaks between 1000–1150 cm-1 and 400–600 cm-1 (Fig 6B). The peaks between 1000–

1150 cm-1 are assigned to the Si-O-Si asymmetric stretching mode [21,22] and S = O stretching

vibration, and those between 400–600 cm-1 are attributed to inorganic matter, such as carbon-

ate and silicate [23]. Carbonates and silicates are impurities of phosphogypsum. The difference

FTIR spectra of SSB incorporated with stabilizers and SSB (spectral subtractions SSBFA4-SSB

and SSBCS4-SSB) were compared with that of the respective stabilizers (FA and CS) are shown

in S3 Fig. It is shown that the difference spectra of SSBCS4 and SSB displayed the typical peaks

of CS at 3614 cm-1, 3546 cm-1, 1619 cm-1, 1152 cm-1, demonstrating the existence of CS in the

SSBCS4 sample. On the contrary, the difference spectra of SSBFA4 and SSB differed dramati-

cally with that of FA, which could be explained by the thermal instability of FA.

To further decipher the inhibition mechanism of the heavy metals in SSBs, the HR-XPS of

SSB samples were investigated. The details of C 1s, N 1s, O 1s and S 1s record for the samples

are shown in Fig 7.

Fig 6. FTIR spectra of raw SS, SSB (0% stabilizer) and SSBs with FA (a) or CS (b) incorporated at 1%, 2% or 4%.

https://doi.org/10.1371/journal.pone.0183617.g006
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Fig 7. HR-XPS patterns of the samples: raw SSB (a), (d), (g), (j); SSBFA4 (b), (e), (h), (k); SSBCS4 (c), (f), (j), (l). (SSBFA4 and SSBCS4 are SSB

incorporated with 4% FA and 4% CS, respectively).

https://doi.org/10.1371/journal.pone.0183617.g007
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The C 1s XPS lines of the three samples were separated into four binding energy peaks. The

positions of C 1s for the raw SSB sample (Fig 7A) are recorded at 284.6 eV (for–C-C or–CH),

285.1 eV (for–CH), 285.7 eV (for–CH or–C-N) and 286.5 eV (for–C-OH or–C-O), respec-

tively. The C 1s peak shifted from 285.5 eV in the raw SSB to 287.0 eV in SBBFA4 sample (Fig

7B). The peak at 287.0 eV, which is assigned to the–C = O or–C = N groups, suggested some

multifunctional organic ligands were formed in the process of the pyrolysis of sewage sludge

with the addition of FA. These multifunctional organic ligands are beneficial to form heavy

metal complexes, which will reduce the bioavailability of the heavy metals in SSB. The C 1s

peaks in SSBCS4 sample (Fig 7C) got into a simplification with addition plenty of inorganic

phosphogypsum. The N 1s peaks in the raw SSB (Fig 7D) and SSBCS4 sample (Fig 7E) showed

a similar position (401 eV, for -C-N), suggesting that the N 1s chemical state were not changed

in the process of addition phosphogypsum. However, the N 1s peaks in SSBFA4 sample shifted

to 400.6 eV, which is assigned to–C-N or–C-N-Metal bonds, strongly confirming that more

heavy metal complexes were formed [24]. The O 1s XPS lines of the raw SBB sample (Fig 7G)

were separated into three binding energy peaks. The positions of O 1s for the raw SSB sample

are recorded at 531.9.6 eV (for–C-O or–C-OH or Metal-OH), 532.9.1 eV (for–C = O) and

534.0 eV (for–C-O or–Metal-O), respectively. The peaks of O 1s got complicated after the FA

treatment, and five peaks were observed in Fig 7H. The peaks presented some groups: Metal-

OH at 531.4 eV, -C-O at 532.1 eV, -C = O at 532.7 eV, O = C-O at 533.3 eV, Metal-O or -C-O

at 534.2. Some of the oxygen-containing groups constituted multifunctional organic ligands,

which are beneficial to form heavy metal complexes. For SBBCS4 sample, some inorganic and

organic oxygen-containing groups were observed: 531.7 eV for M-OH or N-C-O, 532.4 eV for

SO4
2-, 533.0 eV for P-O-P or -C = O, and 533.9 eV for PO3

- or P-O-P or C-O-C. The P element

in SSBCS4 is mainly come from phosphogypsum.

Finally, as can be seen from Fig 7J and Fig 7K, no S 1s signal was observe in XPS lines for

the raw SSB sample and SSBFA4 sample due to the low content of S element. For the sample of

SSBCS4 (Fig 7L), some important chemical states of S were found: 169.1 eV for SO4
2-, 169.8

eV for S2- or R-SO2-O-R, 170.7 eV for C-O-S, and 171.8 eV for FeS. This finding indicate con-

vincingly that the adding of phosphogypsum into sewage sludge could reduce the bioavailabil-

ity of heavy metals by forming metal sulfide after pyrolysis treatment.

In general, it is well known that FA has plenty of functional groups, including carboxyl,

phenol, hydroxyl, amine and quinine groups, and its incorporation increased such functional

groups in the SSBs as evident from the FTIR spectra (Fig 6). These groups may have chelated

with heavy metals [25], thus reducing bio-availabilities of the heavy metals in the SSB. The

incorporation of CS substantially increased Ca2+ and SO4
2- concentrations in SSB; SO4

2- can

replace HPO4
2-/H2PO4

- from surface of SSB. Both sulfate and phosphate can react with Pb,

Cd, Zn, and Ni to form water insoluble compounds such as PbSO4 (anglesite), Pb3(PO4)2/

Zn3(PO4)2/Cd3(PO4)2 during the carbonization. As a result, the availability of heavy metals

in the SSB was lowered [17]. FA or CS addition may provide a new applicable method for

enhancing the heavy metals immobilization in sludge by carbonization at 350˚C, providing a

safe and sustainable treatment method for heavy metals-contaminated sludge before land use.

Conclusions

It has been controversial to use SS as soil amendment in agriculture even though it is rich in

organic C and nutrients. Potential impact of heavy metals in SS on soil quality and food safety

has been a public concern worldwide. Carbonization appears to be effective in increasing the

percentage of heavy metals in sulfuric and oxidizable state and residual state, and reducing

mobility and plant-availability of heavy metals in SSB. Incorporation of selected stabilizers
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such as FA and CS during the sludge carbonization can further enhance the heavy metals

immobilization and lower plant-availability of heavy metals in the SSB. This finding is conduc-

tive to a safe and beneficial method for land application or horticulture as a peat substitute of

sewage sludge. However, long-term experiments are still needed to monitor the fate of heavy

metals in SSB.
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13. Macı́as F, Pérez-López R, Cánovas CR, Carrero S, Cruz-Hernandez P (2017) Environmental Assess-

ment and Management of Phosphogypsum According to European and United States of America Regu-

lations. Procedia Earth and Planetary Science 17: 666–669.

14. Walter I, Martinez F, Cala V (2006) Heavy metal speciation and phytotoxic effects of three representa-

tive sewage sludges for agricultural uses. Environmental Pollution 139: 507–514. https://doi.org/10.

1016/j.envpol.2005.05.020 PMID: 16112313

15. Umoren IU, Udoh AP, Udousoro II (2007) Concentration and chemical speciation for the determination

of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction proce-

dure. Environmentalist 27: 241–252.

16. Koppolu L, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccu-

mulators. Part I: Preparation of synthetic hyperaccumulator biomass☆. Biomass & Bioenergy 24: 69–

79.

17. Ivanova R (2004) Effect of Chemical Forms of Lead, Cadmium, and Zinc in Polluted Soils on Their

Uptake by Tobacco. Journal of Plant Nutrition 27: 757–773.

18. Szolnoki Z, Farsang A (2013) Evaluation of Metal Mobility and Bioaccessibility in Soils of Urban Vegeta-

ble Gardens Using Sequential Extraction. Water Air & Soil Pollution 224: 1737–1752.

19. Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge bio-

char and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemo-

sphere 78: 1167–1171. https://doi.org/10.1016/j.chemosphere.2010.01.009 PMID: 20110103

20. Xu DB, Wang QJ, Wu YC, Yu GH, Shen QR, Huang QW (2012) Humic-Like Substances from Different

Compost Extracts Could Significantly Promote Cucumber Growth. Pedosphere 22: 815–824.

21. Huang Z, Wu P, Gong B, Dai Y, Chiang P-C, Lai X, et al. (2016) Efficient Removal of Co2+ from Aqueous

Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption

Capacity. PLoS ONE 11: e0159802. https://doi.org/10.1371/journal.pone.0159802 PMID: 27448094

22. Zanini S, Riccardi C, Orlandi M, Esena P, Tontini M, Milani M, et al. (2005) Surface properties of

HMDSO plasma treated polyethylene terephthalate. Surface & Coatings Technology 200: 953–957.

23. Xue T, Wang RQ, Zhang MM, Dai JL (2013) Adsorption and Desorption of Mercury(II) in Three Forest

Soils in Shandong Province, China. Pedosphere 23: 265–272.

Inhibition of heavy metals in sewage sludge biochar

PLOS ONE | https://doi.org/10.1371/journal.pone.0183617 August 23, 2017 14 / 15

https://doi.org/10.1016/j.chemosphere.2012.05.092
https://doi.org/10.1016/j.chemosphere.2012.05.092
http://www.ncbi.nlm.nih.gov/pubmed/22732302
https://doi.org/10.1007/s11356-014-2797-8
http://www.ncbi.nlm.nih.gov/pubmed/24687793
https://doi.org/10.1080/15226514.2013.798617
https://doi.org/10.1080/15226514.2013.798617
http://www.ncbi.nlm.nih.gov/pubmed/24912231
https://doi.org/10.1016/j.scitotenv.2009.11.053
http://www.ncbi.nlm.nih.gov/pubmed/20006898
https://doi.org/10.1016/j.chemosphere.2016.09.095
https://doi.org/10.1016/j.chemosphere.2016.09.095
http://www.ncbi.nlm.nih.gov/pubmed/27700997
https://doi.org/10.1016/j.envpol.2005.05.020
https://doi.org/10.1016/j.envpol.2005.05.020
http://www.ncbi.nlm.nih.gov/pubmed/16112313
https://doi.org/10.1016/j.chemosphere.2010.01.009
http://www.ncbi.nlm.nih.gov/pubmed/20110103
https://doi.org/10.1371/journal.pone.0159802
http://www.ncbi.nlm.nih.gov/pubmed/27448094
https://doi.org/10.1371/journal.pone.0183617


24. Huang Z, Wu P, Gong B, Yang S, Li H, Zhu Z, et al. (2016) Preservation of glutamic acid-iron chelate

into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation

at neutral pH. Applied Surface Science 370: 209–217.

25. Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, et al. (2014) Impact of humic/fulvic acid on the

removal of heavy metals from aqueous solutions using nanomaterials: a review. Science of the Total

Environment 468– 469: 1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044 PMID: 24095965

Inhibition of heavy metals in sewage sludge biochar

PLOS ONE | https://doi.org/10.1371/journal.pone.0183617 August 23, 2017 15 / 15

https://doi.org/10.1016/j.scitotenv.2013.09.044
http://www.ncbi.nlm.nih.gov/pubmed/24095965
https://doi.org/10.1371/journal.pone.0183617

