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Bromophenolic flame retardants (BFRs) are a large group of synthetic substances used in
the industry in order to reduce the flammability of synthetic materials used in electrical and
electronic devices, textiles, furniture and other everyday products. The presence of BFRs
has been documented in the environment, food, drinking water, inhaled dust and the
human body. Due to the widespread exposure of the general population to BFRs and
insufficient knowledge on their toxic action, including genotoxic potential, we have
compared the effect of tetrabromobisphenol A (TBBPA), tetrabromobisphenol S
(TBBPS), 2,4,6,-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) on DNA
damage in human peripheral blood mononuclear cells (PBMCs) (playing a crucial role in
the immune system) as well as examined underlying mechanism of action of these
substances. The cells were incubated for 24 h with studied compounds in the
concentrations ranging from 0.01 to 10 µg/mL. The study has shown that examined
BFRs induced single and, to a lesser extent, double strand-breaks formation and caused
oxidative damage to pyrimidines, and particularly to purines in the incubated cells. PBMCs
efficiently repaired the DNA strand-breaks induced by BFRs, but they were unable to
remove completely damaged DNA (except cells treated with TBBPS). The greatest
changes in the above-mentioned parameters were observed in cells incubated with
TBBPA, while the smallest in PBMCs treated with TBBPS. The results have also revealed
that tested compounds do not form adducts with DNA in PBMCs, while the observed
changes were the most probably induced by indirect DNA-damaging agents, such as
ROS and other reactive species.

Keywords: tetrabromobisphenol A, tetrabromobisphenol S, pentabromophenol, Tribromophenol, DNA strand-
breaks, DNA base oxidation, DNA adducts, peripheral blood mononuclear cells
1 INTRODUCTION

Bromophenolic flame retardants (BFRs) are ubiquitous chemicals widely used in the industry in the
production of polymers, electrical and electronic equipment, textiles, furniture and other everyday
products (1–3). Tetrabromobisphenol A (TBBPA) is the most widely used BFR. In 2004, it was
estimated that the annual production of TBBPA in the United States, Japan and Israel reached
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approx. 170 thousand tones, which accounted for approx. 60% of
the production of all brominated FRs worldwide (2). Due to
massive production of TBBPA, this substance has been detected
in the air, inhaled dust as well as in terrestrial and aquatic
ecosystems (2, 4, 5). Tetrabromobisphenol S (TBBPS) was
introduced into the market as TBBPA substitute. There is very
limited data on the presence of TBBPS in the environment and
its effect on living organisms. In the study of Wang et al. (6),
TBBPS was detected in significant concentrations (up to 12.1 µg/
L) in wastewater, while Ding et al. (7) observed that TBBPS
altered the circadian rhythm network in the early life stages of
zebrafish and potentially caused developmental delays in
zebrafish embryos. Some studies have suggested that TBBPS
may not be less toxic than TBBPA in humans. For instance,
Liang et al. (8) observed that TBBPA and TBBPS had similar
toxicity towards human embryonic stem cells. Both compounds
disturbed neural ectoderm development, influenced axon growth
and neuron transmission as well as dysregulated the WNT and
AHR signaling pathways.

Brominated phenols like pentabromophenol (PBP), and
particularly 2,4,6-tribromophenol (2,4,6-TBP) are widely
represented in the environment and human surrounding.
These substances have been repeatedly determined in the air,
surface water, soil as well as home dust, food and drinking water
(9). 2,4,6-TBP and PBP have also been shown to provoke various
adverse effects in animals and human (3, 9, 10).

BFRs have been found in human plasma, placental tissue,
adipose tissue, and breast milk samples (11, 12). TBBPA was
detected in samples of human milk in the concentrations of 0.06
to 37.34 ng/g of fat and serum samples from both mothers and
fetuses in similar range of concentrations (13). TBBPA was also
found in plasma of Japanese men in a mean concentration of 950
pg/g fresh weight (14), while TBBPS was determined in a mean
concentration of 0.593 mg/L of serum samples from pregnant
women in China (15). Dufour et al. (16) determined 2,4,6-TBP in
the concentrations from trace to 1.28 mg/L of blood of the general
population of Belgium. In other studies, Feng et al. (17) detected
2,4,6-TBP in the concentrations of 5.57 ± 4.05 mg/L in the urine
of the general population of China, while Gutierrez et al. (18)
found very high mean concentration of 2,4,6-TBP in the urine of
Chilean sawmills workers, which was 6.9 mg/g creatinine
(approx. 6.9 mg per 1 L of urine).

The mechanism of bromophenolic FRs genotoxicity has not
been elucidated. Moreover, literature data often offers conflicting
information about the effects of these compounds on DNA. For
instance, earlier studies have shown no genotoxic effects of
TBBPA that could have been associated with the use of very
low doses of this compound (19–21). However, more recent
studies have indicated genotoxic potential of TBBPA in
spermatozoa of mice (22), blood cells of spotted snake
(Channa punctatus) (23) and mouse testicular cell co-culture
model (24). 2,4,6-TBP was not genotoxic in in vitro bacterial tests
(25, 26); however, it caused chromosomal aberrations (with and
without metabolic activation) in in vitro tests on Chinese
hamster cells (27). In case of other studied BFRs, data on their
genotoxic effects is negligible. It was shown that PBP was not
Frontiers in Immunology | www.frontiersin.org 2
mutagenic in Salmonella typhimurium with or without metabolic
activation (28), while genotoxic potential of TBBPS has not
been studied.

Each cell under normal conditions is subjected to thousands
attacks on its DNA each day (29), which may lead to genetic
instability contributing to an increase in the rate of spontaneous
mutations (30). Reactive oxygen species (ROS), and mostly
hydroxyl radical (•OH) have been recognized as critical factors
to the DNA damage, and our previous study showed that BFRs
increased ROS, including •OH levels in human PBMCs (31).

PBMCs play a key role in the body immune system. They are
responsible for producing antibodies, killing virus-infected and
cancerous cells, but also for regulating the immune system
response (32). It has been proven that damage to PBMCs, and
lymphocytes in particular (e.g. by xenobiotics) may contribute to
the immune system dysfunction, which may result in
autoimmune diseases (asthma, allergy) or cancer development
(33, 34). Some studies have shown that BFRs may alter the
immune system function. For instance, TBBPA has been shown
to change tumor killing function of NK lymphocytes and alter
secretion of various cytokines, including interferon gamma
(IFNɣ), interleukin-1b (IL-1b) and tumor necrosis factor
(TNF) (35). In another study, microarray analysis of uterine
tissue of female Wistar Han rats showed that TBBPA
downregulated genes in pathways of the immune response,
which could lead to estrogen-mediated immunosuppression in
tested animals (36).

Taking the above into consideration, we have decided to
compare genotoxic effect of TBBPA, TBBPS, 2,4,6-TBP and PBP
in human PBMCs, and examine underlying mechanism of action
of these substances by evaluating single and double strand-breaks
formation, purines and pyrimidines oxidation and DNA adducts
creation in the tested cells.
2 MATERIAL AND METHODS

2.1 Chemicals
Tetrabromobisphenol A (99%, 2,2-bis(3,5-dibromo-4-
hydroxyphenyl)propane) and pentabromophenol (98%, 2,3,4,5,6-
pentabromophenol) were obtained from LGC Standards
(Germany). Tribromophenol (pure ≤100%, 2,4,6-tribromophenol)
was bought from Sigma-Aldrich (USA). Tetrabromobisphenol S
(98.8%) was synthetized in the Institute of Industrial Organic
Chemistry in Warsaw (Poland). Low melting point (LMP),
normal melting point (NMP) agarose, fetal bovine serum (FBS)
and DAPI (98%) were bought in Sigma-Aldrich (USA).
Lymphocyte separation medium (LSM) (1.077 g/cm3) and RPMI
1640 with L-glutamine were purchased from Cytogen (Germany).
Endonuclease III and human 8-oxoguanine DNA glycosylase were
bought in New England BioLabs (USA). Potassium chloride
(99.5%), sodium chloride (99.5%), sodium hydrogen carbonate
(99%), ammonium chloride (99.5%), sodium wersenite (99.5%)
and other chemicals were bought from POCH (Poland) and
Roth (Germany).
April 2022 | Volume 13 | Article 869741
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2.2 Methods
2.2.1 PBMCs Isolation and Treatment
PBMCs were isolated from the buffy coat (concentrated
suspension of leucocytes and platelets) separated from whole
blood in the Blood Bank in Lodz, Poland. Blood was collected
from healthy, non-smoking volunteers (aged 18-40) showing no
signs of infection disease symptoms. The method of PBMCs
isolation was described in detail by Włuka et al. (31). The use of
human blood in the study of the effect of tested BFRs on
leucocytes was approved by the Bioethical Commission of
Scientific Research at the University of Lodz (contract no.
KBBN-UŁ/I/7/2011).

The cells were treated with tested compounds in the
concentrations range from 0.01 to 10 µg/mL for 24 h at 37°C
in 5% CO2 atmosphere in total darkness. The concentrations of
examined BFRs corresponded to their levels determined in
humans environmentally and occupationally exposed. Our
previous study (31) proved that TBBPA, TBBPS, 2,4,6-TBP
and PBP up to the concentration of 10 µg/mL did not decrease
PBMCs viability below 80%. Cell viability (expressed in %) after
treatment with TBBPA, TBBPS, 2,4,6-TBP and PBP at 10 µg/mL
was 86.3 ± 3.55, 85.4 ± 1.98, 83.4 ± 2.47 and 81.2 ± 2.27,
respectively (31). The analysis of cell viability was conducted
using calcein-AM and propidium iodide stains. The samples
were analyzed by means of flow cytometry.

The examined compounds were dissolved in DMSO. Final
concentration of DMSO in untreated samples (negative control)
and samples treated with TBBPA, TBBPS, 2,4,6-TBP or PBP was
0.2%. The above DMSO concentration was not toxic for PBMCs
as assessed by all studied parameters.

All analyses of DNA damage included positive controls. The
positive controls for alkaline and neutral comet assay were done
based on previous experiments performed in our laboratory
(37, 38).

Hydrogen peroxide at 20 µM was used in a positive control
during analysis of single strand breaks (SSBs) formation and
DNA bases oxidation (the cells were incubated with H2O2 for 15
min on ice). In order to induce double strand breaks (DSBs)
formation, the samples were irradiated with 1.8 Gy/min for 5
min at room temperature.

2.2.2 Comet Assay – Alkaline Version
A comet assay has been accepted as a simple, rapid and sensitive
visual technique for assessing DNA damage. Alkaline version of
comet assay can determine chemically or physically induced
SSBs/DSBs and alkali labile sites, while neutral version of comet
assay enables to determine selectively DSBs in the DNA of
individual cells. In the comet assay, the cells are embedded in
agarose on a microscope slide, and then are lysed with detergent
and high salt to form nucleoids containing supercoiled loops of
DNA linked to the nuclear matrix. After DNA staining, the
release of DNA from a highly supercoiled DNA–protein complex
is visually determined, which correlates with DNA damage
detection (39, 40).

Alkaline version of the comet assay was carried out according
to Singh et al. (40) with modifications (41), as described by
Frontiers in Immunology | www.frontiersin.org 3
Błasiak and Kowalik (42). A freshly prepared cells suspension in
0.75% LMP agarose dissolved in PBS was layered onto
microscope slides, which was pre-coated with 0.5% NMP
agarose. Then, the cells were lysed for 1 h at 4°C in a buffer
containing 2.5 M NaCl, 0.1 M Na2EDTA, 10 mM Tris, 1% Triton
X-100, pH 10. After cells lysis, the slides were placed in an
electrophoresis unit. DNA was allowed to unwind for 20 min in
the solution containing 300 mM NaOH and 1 mM Na2EDTA,
pH > 13.

Electrophoretic separation was performed in the solution
containing 30 mM NaOH and 1 mM EDTA, pH > 13 at
ambient temperature of 4°C (the temperature of the running
buffer did not exceed 12°C) for 20 min at an electric field strength
of 0.73 V/cm (28 mA).

2.2.3 Comet Assay - Neutral Version
A neutral version of the comet assay was used to assess DSBs
formation (43). The electrophoresis was run in a buffer
containing 100 mM Tris and 300 mM sodium acetate at pH
9.0 adjusted by glacial acetic acid. Electrophoresis was conducted
for 60 min, after a 20 min equilibrium period, at electric field
strength of 0.41 V/cm (50 mA) at 4°C.

2.2.4 Oxidized Purines and Pyrimidines Detection
(DNA Repair Enzyme Treatment)
Detection of oxidative DNA damage was conducted with the
comet assay using endonuclease III (Endo III) and human 8-
oxoguanine DNA glycosylase (hOGG1). The slides after cell lysis
were washed three times (5 min, 4°C) in an enzyme buffer
containing 40 mM HEPES–KOH, 0.1 M KCl, 0.5 mM EDTA,
and 0.2 mg/mL bovine serum albumin, pH 8.0. Then, agarose on
slides was covered with a volume of 50 mL of buffer containing
1 U of Endo III or hOGG1 or without the enzyme. Then, the
slides were covered with cover glasses and incubated for 30 min
at 37°C in a moist chamber. The cover glasses were removed and
the slides were placed in an electrophoresis unit (44). DNA was
allowed to unwind for 20 min in a solution containing 300 mM
NaOH and 1 mM EDTA (pH > 13). The procedure was then
conducted according to alkaline version of the comet assay.

We did not decide to calibrate the enzymes. According to
New England BioLabs protocol, on which our experiment based
on, dilution of hOGG1 and endoIII enzyme should be from 1:
102 to 1: 103 and from 1: 104 to 1: 105, respectively. It means that
50 mL of enzyme buffer with proper enzyme is equivalent of 0.08–
0.8 U for hOOG1 and 0.05–0.5 U for endo III. Based on literature
data (45) we decided to use 1 U of each enzyme per gel, which
guaranteed their use in excess.

2.2.5 DNA Repair
After 24 h of incubation, untreated cells (negative controls) and
cells treated with TBBPA, TBBPS, 2,4,6-TBP or PBP at 10 µg/mL
were washed and resuspended in RPMI 1640 medium with L-
glutamine pre-heated to 37°C. Aliquots of the suspension were
taken immediately (“time zero”) and 120 min later. In order to
stop DNA repair, the samples were placed in an ice bath. DNA
repair was assessed by the extent of residual DNA damage
April 2022 | Volume 13 | Article 869741
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Barańska et al. Genotoxic Potential of Bromophenolic Flame Retardants
detection at time-point ‘0 min’ and ‘120 min’ using alkaline
version of the comet assay.

2.2.6 Comets Analysis
After electrophoresis, the slides were washed with deionized
water, dried, stained with DAPI at 2 µg/mL and covered with
cover slides. In order to prevent additional DNA damage, this
procedure was carried out in limited light or darkness.

From each sample, 50 comets were randomly selected and the
mean DNA value in the comet tail was taken as an indicator of
DNA damage (expressed as a percentage). For one blood donor,
two parallel tests with aliquots of the sample of the cells were
performed for a total number of 100 comets. A total number of
300 comets (3 blood donors, n=3) was recorded to calculate
mean ± SD.

The comets were observed at 200× magnification in an
Eclipse fluorescence microscope AXIO SCOPE.A1 (Carl Zeiss,
Germany) attached to Axiocam 305 color camera (Carl Zeiss,
Germany) equipped with UV-1 filter block (an excitation filter of
359 nm and a barrier filter of 461 nm) and connected to a
personal computer-based image analysis system Lucia-Comet v.
7.3 (Laboratory Imaging, Praha, Czech Republic).

2.2.7 Plasmid Relaxation Assay
The plasmid relaxation assay was conducted to evaluate the effect
of studied compounds on changes in DNA structure and their
ability to form adducts with DNA. For this purpose, DNA
plasmid from E. coli (pUC19) was used. Plasmid may be
represented via various structural forms: super coiled (SC,
completely intact DNA strands), linear (L, both DNA strands
damaged) and open coiled (OC, damaged one of the DNA
strands). During electrophoretic separation, the highest rate of
migration is represented by super coiled form. Slower migration
is shown by open coiled form, whereas the slowest rate is
represented by linear form.

Plasmid pUC19 was incubated with tested compounds at 0.1
µg/mL, 1 µg/mL and 10 µg/mL. Negative control referred to a
plasmid treated with DMSO (0.2%). A positive control was
obtained by the exposure of the plasmid to a hydroxyl radicals
(•OH) formed as a result of the Fenton reaction; •OH induce
DNA strand breaks formation, which lead to relaxation of
supercoiled plasmid (observed as a DNA linear form – L). To
initiate the Fenton reaction, a mixture of H2O2 at 200 µM and
Fe2+ at 20 µM were added to the plasmid, which was incubated
for 20 min at 37°C. After incubation, DNA gel loading buffer and
Tris-EDTA buffer were added to the samples. Then, the samples
were loaded onto 1% agarose gel and stained with ethidium
bromide (0.5 µg/mL). Electrophoresis was performed in
TrisAcetate-EDTA buffer for 60 min, at electric field strength
of 5 V/cm (115 mA).

Gel was imaged in a Syngene Imagine Gels Documentation
System under UV light and via Gel Documentation System
Software Phoretix 1D. Image was saved as a TIFF file with a
size of 16-bit. Then, image was evaluated using the Gel Analyzer
tool of ImageJ, a public domain program from the National
Institute of Health (NIH). Images were cropped from 1,280 x
1,020 pixels to 865 × 365 pixels to zoom into the gel. Before
Frontiers in Immunology | www.frontiersin.org 4
density analysis was done, background subtraction had been
arranged. The profiles plot represents the average density value
across a set of horizontal slices of each lane.

2.2.8 Statistical Analysis
The tests by comet assay were carried out on blood from 3
donors. For each individual experiment (one blood donor), an
experimental point was a mean value from 2 replications.
Moreover, 3 experiments were conducted to assess DNA
adducts formation. Data was expressed as mean value with
standard deviation. The first step was to check data normality
using the Shapiro-Wilk test. Statistical significance was examined
on the basis of a comparison of averages using a one-way analysis
of variance - ANOVA. In order to evaluate statistically significant
differences between the tested samples, a multiple comparison
test - the Tukey test (post-hoc) was used (46). The differences
were considered to be statistically significant when p < 0.05.
Analysis was performed using the STATISTICA 13 software
(StatSoft, Inc, Tulusa, USA).
3 RESULTS

3.1 DNA SSBs and DSBs Formation
The tested compounds induced SSBs/DSBs in DNA (Figures 1A,
B). After 24-h of incubation the greatest changes were noted in
cells treated with PBP, which even at 0.01 µg/mL caused DNA
lesions. Much stronger DNA damage were noted in PBMCs
incubated with PBP in the concentrations from 0.1 to 10 µg/mL.
TBBPA at 0.1 µg/mL and 1 µg/mL also caused substantial
damage to DNA, while at 10 µg/mL it caused greater DNA
lesions than other tested BFRs. 2,4,6-TBP exhibited moderate
genotoxic potential at 1 µg/mL and 10 µg/mL, while TBBPS only
at 10 µg/mL induced relatively small DNA lesions (Figure 1A).

Selected photographs of damaged DNA (comets) of human
PBMCs incubated with DMSO at 0.2% (negative control) and
BFRs at 1 µg/mL were presented in Figure 1B.

After 24 h of incubation, all tested BFRs at their highest
concentration of 10 µg/mL slightly increased DSBs levels in
PBMCs. Among studied compounds, only TBBPA at lower
concentration of 1 µg/mL was capable of inducing DNA DSBs
formation in the incubated cells (Figure 2).

3.2 Oxidative Damage to DNA Bases
Tested compounds after 24 h of incubation induced oxidative
damage to pyrimidines and purines in PBMCs (Figures 3, 4).
Among studied BFRs, only TBBPA at 0.1 µg/mL caused slight
increase in oxidized pyrimidines level, while all tested substances,
and particularly TBBPA and PBP at highest concentration of 1
µg/mL induced oxidative damage to pyrimidines in the
incubated cells (Figure 3).

It was observed that examined compounds caused greater
damage to purines than pyrimidines in the PBMCs (Figures 3,
4). TBBPA induced the greatest changes in the parameter
examined increasing oxidized purines level even at 0.01 µg/mL,
and more strongly at 0.1 µg/mL and 1 µg/mL. Similarly, 2,4,6-
April 2022 | Volume 13 | Article 869741
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TBP in the concentrations range from 0.01 to 1 µg/mL was
capable of provoking purines lesions, while PBP at 0.1 µg/mL
and 1 µg/mL caused purines oxidation (Figure 4). The smallest
changes were noted in cells treated with TBBPS, which only at 1
µg/mL caused small oxidative purine and pyrimidine oxidation
in the studied cells (Figures 3, 4).
3.3 DNA Repair
Tested compounds at the concentration of 10 µg/mL caused
substantial SSBs/DSBs formation in PBMCs after 24 h of
incubation (Figures 1, 5). It was observed that PBMCs
Frontiers in Immunology | www.frontiersin.org 5
efficiently repaired DNA lesions, but they were unable to
remove completely damaged DNA (except cells treated with
TBBPS) after 120 min. post-incubation period (Figure 5).
3.4 Plasmid Relaxation Assay
The results achieved during electrophoretic separation of pUC19
plasmid DNA revealed that neither brominated bisphenols nor
bromophenols bound directly to DNA (Figure 6A). Similarly,
densitometric analysis showed no changes in the amount of
various plasmid forms after BFRs exposure, when compared to
the negative control. That is why, it was concluded that tested
B

A

FIGURE 1 | Total DNA strand breaks formation. (A) SSBs and DSBs formation in human PBMCs treated with TBBPA, TBBPS, 2,4,6-TBP and PBP at the concentrations of
0.01 µg/mL, 0.1 µg/mL, 1 µg/mL and 10 µg/mL for 24 h DNA damage was measured as the percentage of DNA in the comet tail using the alkaline version of the comet assay.
Mean ± SD was calculated from 3 individual experiments (3 blood donors). Statistically different from negative control at *P<0.05. Statistical analysis was conducted using one-way
ANOVA and a posteriori Tukey test. (B) Selected photographs of damaged DNA (comets) of human BPMCs incubated with DMSO at 0.2% (negative control) and tested BFRs at
1 µg/mL (comet assay, alkaline version). The photos were obtained using fluorescent microscope with 200x magnification.
April 2022 | Volume 13 | Article 869741
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compounds were incapable of creating adducts with
DNA (Figure 6B).
4 DISCUSSION

There are limited and inconsistent results concerning genotoxic
potential of bromophenolic FRs (20, 23, 25, 27). Moreover,
according to our best knowledge, no study has been conducted
Frontiers in Immunology | www.frontiersin.org 6
to describe genotoxic mechanism of action of these substances in
any cell type or organism.

In this study, we have decided to assess genotoxic potential of
TBBPA, TBBPS, 2,4,6-TBP and PBP in human PBMCs, which
play a key role in protecting the body from pathogens and cancer
cells as well as are involved inmaintaining of body homeostasis (47).

The results have shown that some of examined compounds at
relatively low concentrations (from 0.01 mg/mL) caused SSBs
formation in PBMCs, while DSBs were detected in cells
incubated with much higher concentrations (from 1 mg/mL) of
FIGURE 3 | Oxidative damage to pyrimidines in DNA. Oxidative damage to DNA pyrimidines in human PBMCs treated with TBBPA, TBBPS, 2,4,6-TBP and PBP at
the concentrations of 0.01 µg/mL, 0.1 µg/mL and 1 µg/mL for 24 h. DNA damage was measured as the percentage of DNA in the comet tail using the enzyme endo
III and the alkaline version of the comet assay. The mean ± SD was calculated for 3 experiments (3 blood donors). Statistically different from negative control at
*P<0.05. Statistical analysis was conducted using one-way ANOVA and a posteriori Tukey test.
FIGURE 2 | Double DNA strand breaks formation. DSBs formation in human PBMCs treated with TBBPA, TBBPS, 2,4,6-TBP and PBP at the concentrations of
0.01 µg/mL, 0.1 µg/mL, 1 µg/mL and 10 µg/mL for 24 h. DNA damage was measured as the percentage of DNA in the comet tail using the neutral version of the
comet assay. Mean ± SD was calculated from 3 individual experiments (3 blood donors). Statistically different from negative control at *P<0.05. Statistical analysis
was conducted using one-way ANOVA and a posteriori Tukey test.
April 2022 | Volume 13 | Article 869741
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tested substances (Figures 1, 2). Among studied BFRs, TBBPA
and PBP caused the greatest DNA damage.

Inconsistent literature results on TBBPA genotoxicity may be
associated with usage of different research models, concentrations/
doses or methods in evaluation of genotoxic potential of this
substance. Earlier studies have shown no genotoxic potential of
TBBPA (19–21), while more recent research works revealed DNA
damaging potential of this substance. Yin et al. (24) determined an
early DNA damage response marker g-H2AX to assess the
genotoxicity of TBBPA in mouse testicular cell co-culture
model. They observed that after 24 h of incubation, TBBPA at
15 µM (8.1 µg/mL) caused significant increase of the number of g-
H2AX positive cells. Similarly, Liang et al. (48) observed that
Frontiers in Immunology | www.frontiersin.org 7
TBBPA at 25 µM (13.5 µg/mL) after 72 h of incubation increased
the number of g-H2AX positive mouse C18-4 spermatogonial
cells. In another study, TBBPA at 20 µM (16.2 µg/mL) after 24 h of
incubation caused DNA SSBs/DSBs formation in the IAR20 cell
line (epithelial cells isolated from liver) (49). In in vivo study,
Zatecka et al. (22) assessed DNA damage in spermatozoa of
C57Bl/6J inbred mouse administrated with TBBPA at 200 µg/L
dissolved in drinking water. Using terminal deoxynucleotidyl
transferase-mediated dUTP nick end labelling (TUNEL), they
detected significantly higher number of TUNEL-positive cells
from TBBPA-treated animals. Similarly, Linhartova et al. (50)
using comet assay showed that TBBPA in the concentrations
range from 1.75 to 10 mg/L induced DNA fragmentation in
FIGURE 5 | DNA repair capacity. Repair of damaged DNA in human PBMCs after 24 h of incubation with TBBPA, TBBPS, 2,4,6-TBP and PBP at 10 µg/mL. The
repair was assessed after 120 min. of post incubation of the cells in medium deprived of these substances as a decrease in the extent of DNA damage (measured
as the percentage of the DNA in comet tail) using the alkaline version of the comet assay. Mean ± SD was calculated from 3 individual experiments (3 blood donors).
Statistically different from negative control at *P<0.05. Statistical analysis was conducted using one-way ANOVA and a posteriori Tukey test.
FIGURE 4 | Oxidative damage to purines in DNA. Oxidative damage to DNA purines in human PBMCs treated with TBBPA, TBBPS, 2,4,6-TBP and PBP at the
concentration of 0.01 µg/mL, 0.1 µg/mL and 1 µg/mL for 24 h. DNA damage was measured as the percentage of DNA in the comet tail using the enzyme hOGG1
and the alkaline version of the comet assay. The mean ± SD was calculated for 3 experiments (3 blood donors). Statistically different from negative control at
*P<0.05. Statistical analysis was conducted using one-way ANOVA and a posteriori Tukey test.
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Barańska et al. Genotoxic Potential of Bromophenolic Flame Retardants
spermatozoa nuclei of sterlet (Acipenser ruthenus), while Sharma
et al. (23) observed that TBBPA at 5.09 µg/mL caused DNA
damage in blood cells of snake head (Channa punctatus). Finally,
TBBPA (0.2-0.8 µg/mL) has been shown to induce DNA SBs
formation in gill and digestive gland cells of bivalve Farrer’s scallop
(Chlamys farreri) (51).

There is almost no research on genotoxic potential of PBP.
One study showed that PBP was not mutagenic in Salmonella
typhimurium with or without metabolic activation (28). It is also
worth noting that pentachlorophenol (PCP), which is a
Frontiers in Immunology | www.frontiersin.org 8
chlorinated analogue of PBP was capable of inducing
significant increase in SBs formation in human peripheral
blood lymphocytes (52).

This study showed that 2,4,6-TBP and particularly TBBPS
induced lower level of SSBs/DSBs formation in comparison to
other tested bromophenolic FRs (Figures 1, 2).

Literature data does not provide any information on TBBPS
genotoxicity; however Mokra et al. (53) revealed that its
debrominated analogue bisphenol S (BPS) induced DNA SBs
formation in human PBMCs.
B

A

FIGURE 6 | DNA adducts formation. Plasmid relaxation assay. (A) Plasmid DNA pUC19 was resolved on a 1% agarose gel, stained with ethidium bromide and
visualized in UV light; line 1 - positive control (PC) (the plasmid was exposed to hydroxyl radicals generated in Fenton reaction), line 2 - negative control (NC) (pUC19
plasmid), lines 3-14 - pUC19 plasmid incubated with TBBPA, TBBPS, 2,4,6-TBP and PBP at 0.1 µg/mL, 1 µg/mL and 10 µg/mL. Structural differences between
supercoiled (SC), open circular (OC) and linear (L) forms of the plasmid accounted for their different electrophoretic mobility. (B) Densitometric analysis of agarose gel
was presented below the gel image. Open circular (OC) (as a consequence of DNA single strand breaks), linear (L) (as a consequence of DNA double strand-breaks)
and supercoiled (SC) (undamaged DNA) forms of DNA plasmid are presented as peaks. Densitometric analysis was performed with the Gel Analyzer tool of ImageJ.
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Several studies have been conducted in order to assess 2,4,6-
TBP genotoxicity, but no research work aimed to describe
genotoxic mechanism of action of this substance. Analysis of
2,4,6-TBP mutagenicity in Salmonella typhimurium and
Escherichia coli provided negative results (25, 54). Similarly,
2,4,6-TBP given intraperitoneally (75-300 mg/kg b.w.) to mice
did not increase micronuclei formation in their bone marrow (54).
Nevertheless, in most of eukaryotic models, 2,4,6-TBP has been
shown to exhibit genotoxic potential. In vitro, in Chinese hamster
lung cells (CHL/IU) 2,4,6-TPB in very high concentrations up to
1.6 mg/mL, induced chromosomal aberrations with and without
metabolic activation (27, 54). Similarly, 2,4,6-TBP in high
concentrations from 400 to 500 mg/mL was able to induce
chromosomal aberrations in human peripheral blood
lymphocytes both in the absence and the presence of metabolic
activation (S9-mix) (20). More recently, in vivo, Lebaron et al. (55)
using comet assay observed that 2,4,6-TBP mixed with
bromoform and tribromoacetic acid induced DNA SBs in larvae
of sea urchin (Paracentrotus lividus), while Heberle et al. (56)
showed that 2,4,6-TBP significantly increased frequency of
chromosomal aberrations in root cells of onion (Allium cepa). It
was also reported that trichlorophenol, a chlorinated analog of
TBP, caused DNA SSBs/DSBs formation in human
lymphocytes (57).

The tested compounds caused oxidative damage to
pyrimidines, and more strongly to purines (Figures 3, 4).
Generally, most of examined BFRs at lower concentrations
(from 0.01 mg/mL) caused oxidative damage to DNA bases
when compared with SSBs, and particularly DSBs induction. It
was also observed that TBBPA caused the greatest oxidative
damage to purines and pyrimidines, while TBBPS induced the
lowest DNA bases lesions.

There is scarce data concerning oxidative DNA damage
caused by BFRs. Choi et al. (58) observed that TBBPA given
orally to Sprague-Dawley male rats strongly induced the
production of oxidative DNA biomarker 8-hydroxy-2’-
deoxyguanosine (8-OHdG) in the testis and kidney of the
tested animals. In another study, 2,6-dibromohydroquinone,
which is metabolite of TBBPA and 2,4,6-TBP at presence of
Cu(II) caused 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG)
formation (59). Moreover, Michałowicz and Majsterek (60)
observed that PCP and TCP were capable of inducing of
oxidative DNA bases lesions in human peripheral blood
lymphocytes, while Mokra et al. (37) showed that BPA and
BPS induced pyrimidines and purines oxidation in human PBMCs.

DNA repair, including mismatch repair, the nucleotide
excision repair or the base excision repair is responsible for the
removal of DNA lesions (61, 62). Unrepaired DNA damage leads
to a loss of genome integrity, and in the consequence increased
risk of errors in the synthesis of both RNA and protein products.
It has been shown that such increase of unrepaired lesions in
DNA might be responsible for ageing process, cancer,
atherosclerosis and degenerative diseases (63–66). For instance,
inefficient oxidative DNA bases modifications by base excision
repair (BER) may contribute to expansion of DNA trinucleotide
Frontiers in Immunology | www.frontiersin.org 9
repeat (TNR), which results in various neurodegenerative
diseases development (67).

Our study has revealed that PBMCs efficiently repaired DNA
lesions induced by tested BFRs, but they were not able to remove
completely damaged DNA (except cells treated with TBBPS)
(Figure 5). Similarly, Mokra et al. (50) assessed genotoxic
potential of bisphenols in human PBMCs, and observed that
tested cells completely removed DNA damage induced by BPS,
but not by bisphenol A (BPA).

In order to elucidate the mechanism of the observed DNA
damage, we explored the ability of tested BFRs to form DNA
adducts. DNA adducts are created during interaction of physical
factors and electrophilic chemical compounds with DNA (68).
Using the conformation test, we evaluated the impact of
examined compounds on the structure of DNA plasmid to find
out whether DNA damage resulted from direct interaction
between DNA and studied compounds.

The results have shown that none of tested compounds bound
directly to DNA (created adducts) as no formation of linear
structure of DNA plasmid was observed in any case (Figures 6A,
B); therefore we suggested that DNA was damaged indirectly by
ROS or/and other reactive species generated by tested BFRs.

ROS have been shown to be implicated in DNA damage,
while hydroxyl radical (•OH) has the strongest ability to provoke
oxidative DNA lesions (69). For instance, the creation of 8-
hydroxylated purine in DNA is connected with addition of •OH
to the C8 of the purine base (70).

DNA-damaging effect of ROS in PBMCs treated with tested
compounds is all the more likely because our previous study
(31) showed that TBBPA, TBBPS, 2,4,6-TBP and PBP at very
low (non-cytotoxic) concentrations (from 0.001 mg/L) were
capable of generating total ROS and hydroxyl radical (at higher
concentrations) in human PBMCs. Moreover the above study
showed that PBP, and particularly TBBPA at 0.001 mg/L and
0.01 mg/L most strongly increased ROS level, which correlates
with the results of this study showing that these substances
exhibited the strongest genotoxic potential in the incubated
cell. Similarly, Gao et al. (71) observed a correlation between
SSBs/DSBs and 8-OHdG formation and an increase in ROS
level in the SH-SY5Y cell line treated with brominated flame
retardant PBDE-47 at non-cytotoxic concentration of 2.5 mg/L
and 5 mg/L.

It must also be noted that TBBPA exhibited much stronger
genotoxic potential than TBBPS in tested cells. Similar
differences were observed by Mokra et al. (51) who showed
that BPA caused stronger oxidative damage to DNA than BPS in
human PBMCs. Taking the above findings into consideration, it
may be suggested that sulphonyl group/methyl group(s) (but not
bromine atoms) are mostly responsible for substantially different
genotoxic effects provoked by TBBPA and TBBPS in tested cells.

It is worth noting that in physiological state, lymphocytes
generate numerous DNA DSBs, which activate cellular DNA
damage response (DDR). Interestingly, DDR capacity is different
in various lymphocyte subsets being the strongest in NK cells,
and the weakest in B lymphocytes, which correlates inversely
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Barańska et al. Genotoxic Potential of Bromophenolic Flame Retardants
with DNA damage-related survival (72). Recent studies have
revealed that physiologic DNA SBs formation and DDR can
initiate a genetic program that is unique and important for
developing and maturation of lymphocytes. Nevertheless,
elevated DNA DSBs formation that occur as a result of the
exposure of lymphocytes to genotoxic agents may lead to
improper activation of cell type-specific genetic programs, and
thus disturb normal functions of lymphocytes (73). For instance,
Innes and co-workers (74) observed that an increased DSBs
formation in lymphocytes accelerated normal B cell maturation
as well as induced a unique cancer-prone phenotype and the
process that activated B cell response to antigen agent.
CONCLUSIONS

(1) The results of this study have shown that bromophenolic FRs,
such as TBBPA, TBBPS, 2,4,6-TBP and PBP caused SSBs, and to
a much lesser extent DSBs formation in DNA of human PBMCs.
(2) Tested compounds at low concentrations caused oxidative
damage to purines, and to a lesser extent to pyrimidines. (3) The
greatest changes in the above-mentioned parameters were
observed in cells incubated with TBBPA, while the smallest in
PBMCs treated with its commercial substitute TBBPS (4)
PBMCs efficiently repaired DNA SBs induced by BFRs, but
they were unable to remove completely damaged DNA (except
cells treated with TBBPS). (5) It was revealed that tested
compounds did not form adducts with DNA in PBMCs, while
detected DNA lesions were the most probably induced by
indirect DNA-damaging agents, such as ROS and other
reactive species (6) Purines oxidation was induced by TBBPA
and 2,4,6-TBP in the concentrations that were found in humans
environmentally exposed to these substances, while all DNA
damage types (excluding DSBs) occurred in PBMCs exposed to
Frontiers in Immunology | www.frontiersin.org 10
2,4,6-TBP in the concentrations found in humans occupationally
exposed to this compound.
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Mechanism of DNA Damage Induced by Roundup 360 PLUS, Glyphosate and
AMPA in Human Peripheral Blood Mononuclear Cells - Genotoxic Risk
Assessement. Food Chem Toxicol (2018) 120:510–22. doi: 10.1016/j.fct.2018.07.035

39. Singh NP, McCoy T, Tice RR, Schneider EL. A Simple Technique for
Quantitation of Low Levels of DNA Damage in Individual Cells. Exp Cell
Res (1988) 175:184–92. doi: 10.1016/0014-4827(88)90265-0

40. Fairbairn DW, Olive PL, O’Neill KL. The Comet Assay: A Comprehensive
Review. Mutat Res Rev Genet Toxicol (1995) 229:37–59. doi: 10.1016/0165-
1110(94)00013-3

41. Klaude M, Eriksson S, Nygren J, Ahnstrom G. Polyribose Polymerase-
Deficient V79 Chinese Hamster. The Comet Assay: Mechanisms and
Technical Cell Line. Int J Oncol (1996) 17:955–62.

42. Błasiak J, Kowalik J. A Comparison of the DNA Damage Recognition After
UV-Irradiation by In Vitro Genotoxicity of Tri- and Hexavalent Chromium.
Mutat Res (2000) 469:135–45. doi: 10.1016/S1383-5718(00)00065-6

43. Singh NP, Stephens RP. Microgel Electrophoresis: Sensitivity, Mechanism and
DNA Electrostretching. Mutat Res (1997) 383:167–75. doi: 10.1016/S0921-
8777(96)00056-0

44. Drozdz K, Wysokinski D, Krupa R, Wozniak K. Bisphenol A-Glycidyl
Methacrylate Induces a Broad Spectrum of DNA Damage in Human
Lymphocytes. Arch Toxicol (2011) 85:1453–61. doi: 10.1007/s00204-010-0593-x

45. Czarny P, Kwiatkowski D, Kacperska D, Kawczyński D, Talarowska M,
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