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ABSTRACT

Pediatric patients with coronavirus disease 2019 (COVID-19) are increasing, and severe cases 
such as multisystem inflammatory syndrome are being reported. Nafamostat, a repurposing 
drug, is currently being explored for the treatment of COVID-19 in adults. However, the data 
supporting its exposure in pediatrics remains scarce. Physiologically-based pharmacokinetic 
(PBPK) modeling enables the prediction of drug exposure in pediatrics based on ontogeny 
of metabolic enzymes and age dependent anatomical and physiological changes. The study 
aimed to establish a PBPK model of nafamostat in adults, then scale the adult PBPK model 
to children for predicting pediatric exposures of nafamostat and an optimal weight-based 
nafamostat dose in pediatric population. The developed model adequately described adult 
exposure data in healthy volunteers following i.v. administration with three doses (10, 
20, and 40 mg). Scaling adult PBPK models to five pediatric groups predicted that as age 
advances from neonate to adult, the exposure of nafamostat slightly increased from neonate 
to infant, steadily decreased from infant to child, and then increased from child to adult 
after the administration of 0.2 mg/kg/h for 14 days, a dosing regimen being conducted in a 
clinical trial for COVID-19. Based on the fold change of predicted area under the curve for 
the respective pediatric group over those of adults, weight-based dosages for each pediatric 
group may be suggested. The novel PBPK model described in this study may be useful to 
investigate nafamostat pharmacokinetics in a pediatric subgroup further.
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INTRODUCTION

The current coronavirus disease 2019 (COVID-19) pandemic has emerged as a critical global 
health crisis. This disease is caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). As of November 2021, there have been over 250 million cases and greater than 
5 million deaths worldwide (https://coronavirus.jhu.edu/map.html). Although the percentage 
of COVID-19 diagnosis in children is likely to be lower than that of adults, the incidence of 
COVID-19 in a pediatric population is not well-known. In South Korea, around 15% of the 
reported COVID-19 cases occurs in individuals less than 19 years of age (http://ncov.mohw.
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go.kr/). The disease severity generally appears to be milder and the hospitalization rate is 
also prone to be lower in pediatric patients in comparison with adults [1]. However, the 
Center for Disease Control and Prevention (CDC) of the United States reported multisystem 
inflammation syndrome in children (MIS-C) associated with COVID-19 from a minor group 
of pediatric patients, which arose from the recent report investigating clusters of children 
manifesting with multi-organ involved severe inflammation and recent SARS-CoV-2 
infection [2-9]. Therefore, a preliminary case definition for MIS-C has been developed by 
WHO reflecting the clinical and laboratory characteristics and identifying suspected or 
confirmed cases [10]. Treatment for MIS-C consists of immune modulating drugs such as 
corticosteroids and immunoglobulin and supportive care for pneumonia, respiratory failure, 
and sepsis [7,8,9,11].

Medication to treat COVID-19 has not met a demand yet and repurposing drugs with well-
established safety are an appealing option. However, several repurposing drugs in particular 
chloroquine, hydroxychloroquine and lopinavir-ritonavir were investigated for the treatment of 
COVID-19, and only remdesivir obtained approval from the US Food and Drug Administration 
for inpatients including children ≥ 12 years old and weighing ≥ 40 kg as well as adults [12-19].

Nafamostat, a potent inhibitor of various serine proteases, was initially authorized as a 
short-acting anticoagulant and used for the treatment of pancreatitis in Japan and Korea 
for more than 20 years with a well-established safety profile [20]. Previous studies have 
established that serine protease inhibitors targeting TMPRSS2, such as nafamostat, can block 
SARS-CoV-2 entry and has been demonstrated in vitro and using animal models [21-23]. It is 
currently in the clinical trials for the treatment of COVID-19, including a phase 3 clinical trial. 
In particular, the result of an open-label, randomized phase 2 clinical trial exhibited that in 
high-risk patients requiring oxygen treatment, nafamostat had a considerably higher recovery 
and a lower mortality rates in comparison to standard care alone. However, there was no 
significant discrepancy in time to clinical improvement between nafamostat and standard 
care [24]. A main route of elimination of nafamostat represents the hydrolytic metabolism 
to the inactive metabolites such as 6-amino-2-nphthol (AN) and p-guanidinobenzoic acid 
(pGBA), mainly through arylesterases and carboxylesterase 2, and thus, the unaltered form of 
nafamostat is less detectable in urine and feces in in vitro or in vivo assessment [25-28].

Generally, since pediatric clinical researches are difficult to perform and occur with various 
ethical issues, pharmacokinetic (PK) modeling and simulation are useful tools to define the 
risk- benefit ratio of a new drug in pediatric drug development and to allow investigators 
to determine the personalized precision dosing schemes [29]. Furthermore, the models 
maximize the utilization of available data and simultaneously minimize the need for 
unnecessary clinical trials by crossing gaps from adults and supporting efficient clinical trial 
design [30-33]. Especially as the physiologically-based pharmacokinetic (PBPK) modeling 
approach in pediatrics takes into account ontogeny of metabolic enzymes and age dependent 
anatomical and physiological changes, it provides more reliable predictions of plasma drug 
concentrations for the optimization of the clinical trial design for the recommendation of 
initial doses in children than traditional allometric scaling [30,34].

This study aims to establish a whole body intravenous PBPK model of nafamostat in adults 
and to scale down the adult PBPK model to children and provide pediatric exposures of 
nafamostat for different age groups and suggest an optimal weight-based nafamostat dose in 
pediatric populations.
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METHODS

Software used
PK-Sim software of the Open Systems Pharmacology Suite, version 8.0 was used to develop 
the PBPK models. Model parameter optimization was achieved using the Monte Carlo 
algorithm executed in PK-Sim. Clinical data from the publication were extracted and digitized 
by means of WebPlotDigitizer web-based tool (version 4.5; Ankit Rohatgi, Oakland, CA, 
USA). Data analysis and graphics were performed with the R programming language version 
3.6.2 (R Foundation for Statistical Computing, Seoul, Korea) and R Studio version 1.2.5033 
(R Studio, Inc, CA, USA).

Data collection
Owing to the limited availability of relevant clinical data for nafamostat, the PK data was 
from Chinese healthy volunteers that had been administered three doses (10, 20, and 40 mg) 
of nafamostat intravenously (i.v.) over 2hr and was only used for model development [35]. 
There was a specific consideration in the corresponding PBPK model in terms of the PK 
collection of data, anatomical and physiological features of the subject and the study design 
as well, i.e., dose and administration intervals. For population simulations, mean patient 
PBPK models were utilized. By altering anatomical and physiological parameters for 1,000 
individuals, a simulated population of a mean PBPK model was generated [36].

PBPK model development in adults
The dose, physicochemical properties, and in vitro metabolic elimination that were utilized 
for the final nafamostat PBPK model in adults are listed in Table 1. For the development 
of adult PBPK model of nafamostat, the information about a) physicochemical properties, 
b) distribution, metabolism and excretion processes, and c) clinical design for the above 
mentioned i.v. infusion of nafamostat was obtained and used not only to implement relevant 
metabolic enzymes but also to inform drug-specific input parameters. Since collected data 
could not be adequately obtained from the literature, parameter estimation was conducted 
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Table 1. Nafamostat key parameters for adult PBPK development
Parameters Initial estimate, unit Final estimate, unit Reference/Comment
Basic Physico-chemistry

Molecular weight 378.38 g/mol 378.38 g/mol Drug Bank
Lipophilicity (logP) 2.75 2.59 Drug Bank and fitted
Fraction unbound 0.73 0.50 Drug Bank and fitted
pKa 11.32 11.32 Drug Bank
Solubility 0.03 mg/mL 0.03 mg/mL Drug Bank and fitted

Distribution
Specific organ permeability 0.004 cm/min 0.004 cm/min PK-Sim standard
Partition coefficient (blood cells/plasma) 3.85 4.45 Calculated and fitted by PK-Sim
Permeability from blood cell to plasma 0.0047 cm/min 0.0068 cm/min Calculated and fitted by PK-Sim
Partition coefficient (interstitial/plasma) in muscle 9.03 110.94 Calculated and fitted by PK-Sim
Permeability between plasma and interstitial in 
muscle

0.02 cm/min 9.97 cm/min Calculated and fitted by PK-Sim

Metabolism
Carboxylesterase 2, Km 1,790 μM 1,790 μM [28]
Carboxylesterase 2, Vmax 26.9 nmol/min/mg protein 26.9 nmol/min/mg protein [28]
Arylesterase, Km 628 μM 628 μM [28]
Arylesterase, Vmax 140 nmol/ml/min specific enzyme 140 nmol/ml/min specific enzyme [28]

Excretion
Renal clearance: GFR fraction 0.01 0.01 Arbitrary low value
Biliary clearance 0.01 1/min 0.01 1/min Arbitrary low value

GFR, glomerular filtration.
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by fitting the model to observed PK data to acquire valuable input parameters for model. 
Observed, computed, or assumed parameters were integrated as follows. 1) physicochemical 
properties of nafamostat such as molecular weight, cLogP, fraction unbound, and blood/
plasma ratio values were calculated based on chemical structure (DrugBank, https://
go.drugbank.com/). 2) distribution estimation of tissue partition ratio was needed 
for accurate reproduction of disposition PK profile. Nafamostat typically exhibits two 
compartment distribution profile. However, The PK profile implemented by the initial 
estimated parameter showed one compartment distribution. To fit to the observed PK 
profile, we modified and optimized the partition coefficient and permeability of the muscle, 
one of the major large organs which can affect distribution of PK but is not the infection site 
to influence to efficacy of the drug. In addition, the parameters for distribution between 
blood cell and plasma, i.e., partition coefficient (blood cells/plasma) and permeability from 
blood cell to plasma, were also modulated to finetune to the PK profile, which the final 
estimates of them were not considerably deviated. 3) in vitro kinetic data for metabolism 
of nafamostat via carboxylesterase2 and arylesterase was inputed to recover observed 
nafamostat area under the concentration-time curve (AUC). The PK Sim expression data was 
used to inform tissue expression distribution of the implemented metabolic enzymes [37]. 
Since PK-Sim does not provide information about tissue specific expression for subtype of 
carboxylesterase, we incorporate the kinetic parameters into the integrated carboxylesterase 
process. The literature did not report the subtype of arylesterase, i.e., paraoxonase 1 and 
2 (PON1 and 2), involved in metabolism of nafamostat. With this limitation, the kinetic 
parameters were evenly incorporated into two subtypes of arylesterase. 4) nafamostat is 
transported by organic cation transporters (OCTs) in the basolateral membrane of proximal 
tube. However, it harbors a short plasma half-life owing to high hydrolytic metabolism 
and activities of OCTs for nafamostat in kidney are not expected to result in significant 
changes in nafamostat plasma exposure. Because of this, OCTs transport for nafamostat 
was not incorporated into the model and the exclusion of this disposition mechanism are 
not anticipated to considerably affect predicted pediatric nafamostat exposure. 5) As only 
negligible levels of the parent nafamostat can be detected in urine and feces, arbitrary low 
values of renal or biliary excretion parameters were incorporated into the model.

Pediatric scaling and model application
The model was scaled to adolescent, child, young child, infant, and neonate for prediction 
of PK in the respective populations after the establishment of the adult PBPK model. Each 
age group was defined as follows: Neonate (–4 weeks postnatal age), Infant (4 weeks–2 years 
postnatal age), Young child (2–6 years), Child (6–12 years), Adolescent (12–18 years), Adult 
(18–45 years). To build the pediatric PBPK model, both anthropometric and physiologic 
parameters, as well as tissue concentration of metabolic enzymes, were scaled to values of 
the corresponding key population explaining age-dependent changes. In particular, the 
composition and size of tissue compartments, maturation and protein binding of elimination 
process are all factors to consider. Since there is no ontogeny function currently presenting 
for arylesterases and carboxylesterase 2 in PK-Sim, the ontogeny patterns for activities of 
the enzymes was found in published literature and applied to the PK-Sim platform [38,39]. 
Plasma concentration-time profiles in pediatric populations was simulated subsequently by 
using the extrapolated PBPK model. To compare the effect of the PK prediction using the 
pediatric PBPK models, a typical allometric scaling approach was used. Here, the clearance 
was scaled by allometry from adults to the pediatric populations with exponent of 0.75 and 
normalized to the body weight of 56.4 kg, the mean body weight in simulation data used for 
the adult PBPK model development, as follows.

https://doi.org/10.12793/tcp.2022.30.e4
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PBPK model evaluation
Due to the scarcity of PK data from pediatric population, only adult PBPK models were 
evaluated using the following approaches. In goodness-of-fit plots, the predicted plasma 
concentrations and their corresponding observed values were compared. Furthermore, 
the observed plasma concentration-time profiles from adult were visually compared to 
the predicted plasma PK profile from PBPK models. To predict the variability of plasma 
PK profile, virtual populations of 100 individuals representing the respective clinical trial 
population were created. The predictions of population were plotted as median with 95% 
prediction interval. The geometric mean fold errors (GMFE) of AUC and maximum plasma 
concentration (Cmax) ratios were calculated. As a reference, a two-fold error range from the 
observed values for model predictions was taken. Such a range is considered appropriate for 
a predicted model and also commonly reported by other investigators [40-42].

RESULTS

Adult PBPK model development and evaluation
Following a thorough review of the literature, two PK studies in healthy adults with i.v. 
administration of the same dosages were identified [43,44]. However, their exposures were 
different, up to around two-fold, due to a different quantitative method. We selected the 
more recently published PK study, which was performed in 30 Chinese healthy subjects and 
quantified by liquid chromatography-mass spectrometry (LCMS). A Japanese population 
model of PK-Sim was used for simulating adult PK profiles and exposure as the Japanese 
were considered a more closely related ethnic group for the respective real population, i.e., 
Chinese, in the population model provided by PK-Sim. To match the observed clinical study, 
100 virtual subjects with ages ranging from 20 to 26 years and an equal portion of males and 
females were simulated. The whole-body adult PBPK model adequately predicted plasma 
concentration-time profiles of nafamostat following i.v. administration. Visual comparisons 
of the predicted to observed plasma PK profiles are depicted in Fig. 1. The goodness-of-fit of 
predicted versus observed plasma concentrations is illustrated in Fig. 2. The GMFE values 
for the adult PBPK model were 1.65 and 1.21 for AUC and Cmax, respectively. Furthermore, 
100% of all predicted plasma concentrations fall within two-fold of the respective observed 
concentrations. The PBPK model predictions for the fraction of nafamostat metabolism 
was ~99% and the unchanged fraction excreted in urine or feces was negligible, which is in 
concordance with the literature [25-28]. Two factors for tissue distribution of nafamostat 
were estimated in order to more accurately describe observed disposition profile of it.

Pediatric PBPK model development by scaling the adult model
The adult PBPK model was scaled to predict pediatric exposure of nafamostat after i.v. 
administration of the highest weight-based dosing regimen being used in an adult phase II 
and III study, 0.2 mg/kg/h during 14 days. This is because 0.2 mg/kg/h is the approved dose 
of nafamostat for disseminated intravascular coagulation (DIC) and acute pancreatitis and 
has been broadly well tolerated in clinical trials [20,24]. The model predicted the exposure 
of nafamostat according to six different age groups as depicted in Fig. 3. As age advances 
from neonate to adult, AUC and Cmax of nafamostat slightly increased from neonate to infant, 
continuously decreased to child with nadir, and then increased from child to adult. The 
fold change of predicted AUC for the respective pediatric groups over those of adults after 
the administration of the same weight based dosing regimen were 0.88, 0.92, 0.85, 0.78, 
and 0.92 for neonate, infant, young child, child, and adolescent subjects, respectively. The 
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fold change of predicted Cmax for the respective pediatric group over those of adults after the 
administration of the same weight-based dosing regimen were 0.87, 0.92, 0.84, 0.78, and 
0.92 for neonate, infant, young child, child, and adolescent subjects, respectively
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Comparison of pediatric exposures predicted by PBPK and allometry
A classical allometric scaling approach was used (body weight exponent = 0.75) to predict 
pediatric AUC and Cmax of nafamostat and directly compare with those predicted by the PBPK 
model. As shown in Fig. 4, we found that both methodologies predicted similarly for adult, 
adolescent, and child subjects, whereas there is a remarkable deviation between PBPK and 
allometry prediction in neonate, infant, and young child subjects.

DISCUSSION

As the COVID-19 pandemic is rapidly outspreading and the number of pediatric patients 
is gradually growing, severe cases for children such as MIS-C are being reported [2-9,45]. 
However, studies that have investigated pharmacotherapy for the COVID-19 treatment 
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have been performed mostly in adults [46]. Nafamostat is currently being explored for the 
treatment of COVID-19 in adults and the data that support its exposure in children remain 
limited. The unmet medical need for providing nafamostat as a therapeutic option in 
pediatrics demand the use of PBPK modeling and simulation to optimize pharmacotherapies.

In this study, PBPK models of nafamostat for an adult population have been successfully 
developed. The model provides a consistent representation of dose-exposure relationship 
following i.v. administration of a dose range and adequately describes plasma concentration-
time profiles of nafamostat. More importantly, by scaling the adult PBPK model to pediatrics, we 
delineate the potential of PBPK modeling approach to more reasonably predict PK in children.

Nafamostat is unstable in plasma and a highly polar drug with few practical methods for its 
in vivo quantification and only an insufficient number of PK studies with valid nafamostat 
concentration measurements available [43,44,47]. In the same context, the recent 
randomized controlled study exploring safety and PK/pharmacodynamics reported that the 
majority of patients exhibited undetectable levels of nafamostat [unpublished data]. We 
selected a PK study quantified using LCMS rather than a radioisotope-labeling method which 
often overestimates the parent drug because the metabolites also consist of radioisotope, 
particularly for unstable compounds. The adult PBPK model was first established using a 
PK study of i.v. administration of three doses (10, 20, and 40 mg). The kinetic parameters 
for nafamostat metabolism were input using in vitro experimental data from the literature 
and several parameters were fitted utilizing population means of the PK study. The resulting 
adult PBPK model was able to predict nafamostat exposure reliably over a dose range, 
indicating that the crucial processes driving nafamostat PK were adequately captured. The 
initial establishment of the model in adults offered a modeling strategy that served as a solid 
foundation for age extrapolation to improve accuracy of the pediatric model predictions.

Based on the concept of defining absorption, distribution, metabolism and excretion 
as a function of anatomy, physiology, and biochemical reaction, PBPK modeling and 
simulation provides the chance of reasonable scaling between adults and pediatrics. Such 
a strategy is prevalent in the establishment of models in children and is already utilized by 
other investigators [41-42, 48]. This study defined six different age groups for predictions 
of pediatric clearance. Based on the information, including size change and ontogeny of 
metabolic enzyme of nafamostat, i.e., arylesterases and carboxylesterase 2, the exposures 
foreach pediatric group was predicted using a virtual population of 100 individuals from 
that age category. As PK-Sim does not currently equip an ontogeny function for arylesterases 
and carboxylesterase 2, it was user-provided from the literature and integrated into PK-Sim 
[38,39]. In the case of microsomal carboxylesterase 2, its expression increases across the 
three consecutive age groups, which are children from birth to 3 weeks, between 3 weeks 
and 6 years, and over 6 years [38]. In the case of arylesterases, its activity continuously 
increases from birth to 7 years [39]. As age increases, the predicted nafamostat exposures 
are slightly raised from neonate to infant followed by a steady decrease from infant to child, 
and then increased from child to adult, as shown in Fig. 3. Whereas the predicted exposures 
of child subjects were 0.78 fold lower than those of adults, the predicted exposures of all 
other pediatric groups fell within 0.85 fold when compared to those of adults, indicating 
the pediatric exposures predicted by PBPK model are not substantially different from those 
of adults. Based on these finding, we cautiously may recommend a weight based initial 
dosing regimen for each age group. Assuming 0.2 mg/kg/h currently approved for DIC and 
acute pancreatitis and being conducted in a clinical trial for COVID-19 is suitable for adults, 
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for neonate, infant, young child, child, and adolescent subjects, the adult dosage regimen 
is likely to be increased with 0.23 mg/kg/h, 0.22 mg/kg/h, 0.24 mg/kg/h, 0.25 mg/kg/h, 
and 0.22 mg/kg/h, respectively. For child subjects, the largest dose changes relative to the 
adult dosage regimen may be considered. Considering nafamostat is primarily eliminated 
by metabolism, pediatric clearance can be determined by size as well as maturation of the 
metabolic enzyme, i.e., arylesterases and carboxylesterase 2. In pediatric PBPK models, most 
efforts have been contributed to the incorporation of age-dependent changes in metabolic 
clearance. Especially for the enzyme cytochrome P450s (CYP) developmental patterns and 
clearance of drugs mainly metabolized by these enzymes are relatively well documented 
[49]. Generally, because of differences in enzyme levels, drugs highly metabolized are 
administered at a higher mg/kg dose in young child compared with newborns, which was 
consistent in the case of nafamostat [50]. The hepatic clearance of the drugs can be higher 
in infants and child as liver blood flow is increased in comparison with adults due to the 
increased ratio of liver to total body mass in the preceding group [51]. Thus, drugs primarily 
metabolized in the liver are likely to exhibit a lower exposure rate compared to adults. 
Similarly, in nafamostat, the predicted exposure of infants, young child, and child were lower 
than that of adults.

The selection of dose in pediatric populations is generally obtained from adult PK data 
through two common approaches, PBPK and allometric scaling [52-54]. In this study, we 
delineated nafamostat AUC in pediatric patients based on a PBPK model and compared the 
results from allometric scaling. The comparison analysis indicated that there was a notable 
separation in predicted pediatric exposure between the methods in neonate, infant, and 
young child populations, while those of adult, adolescent, and child subjects coincided 
between them. Generally, PBPK models explain enzyme ontogeny and age dependent 
alteration in organ development and function. Therefore, they can provide more reliable 
prediction of plasma drug concentrations [30,52]. Allometric scaling does not account for 
drug specific disposition mechanisms, instead extrapolating exposure based on body size 
and fixed exponent (usually 0.75), which can result in large overestimations of metabolic 
clearance in very young children due to their immature enzymes, which is in line with 
our finding [30,34]. When compared to simple allometry, PBPK models tend to predict 
higher exposures in younger children. Therefore, PBPK models present more conventional 
predictions with respect to safety.

This study had several limitations. First, since available PK studies with valid nafamostat 
concentrations were limited, we utilized only one study using three dosages for establishing 
the PBPK model and did not validate the model. Second, our recommended pediatric dosing 
regimen assumes that the exposure-response relationship in pediatric populations will be 
similar to that of adults and can be rationally extrapolated from adults. Third, owing to the 
scarcity of available observed pediatric PK data of nafamostat, the predictive performance of 
the PBPK model could not be verified.

Our study provides reasonable evidence to recommend a nafamostat weight-based dosing 
regimen with efficacious exposure in pediatric COVID-19 patients. A PBPK model has been 
established that adequately captures the observed PK profile of nafamostat in adult healthy 
volunteers. By scaling this model to pediatric populations, the pediatric exposures of 
nafamostat were predicted and reasonable pediatric doses were cautiously recommended, 
aiding future investigations of nafamostat PKs in pediatric populations, including the design 
of clinical trials and precision dosing.
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