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Simple Summary: Molecular target therapy, i.e., antiangiogenesis with bevacizumab, was found to
be effective in some patients of epithelial ovarian cancer. Considering the cost, potential adverse
effects, including hypertension, proteinuria, bleeding, thromboembolic events, poor wound healing and
gastrointestinal perforation, and no confirmed and accessible biomarkers for routine clinical use to direct
patient selection for bevacizumab treatment, the identification of new predictive methods remains an
urgent unmet medical need. This study identifies an effective biomarker and presents an automatic
weakly supervised deep learning framework for patient selection and guiding ovarian cancer treatment.

Abstract: Ovarian cancer is a common malignant gynecological disease. Molecular target therapy, i.e.,
antiangiogenesis with bevacizumab, was found to be effective in some patients of epithelial ovarian
cancer (EOC). Although careful patient selection is essential, there are currently no biomarkers
available for routine therapeutic usage. To the authors’ best knowledge, this is the first automated
precision oncology framework to effectively identify and select EOC and peritoneal serous papillary
carcinoma (PSPC) patients with positive therapeutic effect. From March 2013 to January 2021, we have
a database, containing four kinds of immunohistochemical tissue samples, including AIM2, c3, C5
and NLRP3, from patients diagnosed with EOC and PSPC and treated with bevacizumab in a hospital-
based retrospective study. We developed a hybrid deep learning framework and weakly supervised
deep learning models for each potential biomarker, and the experimental results show that the
proposed model in combination with AIM2 achieves high accuracy 0.92, recall 0.97, F-measure 0.93
and AUC 0.97 for the first experiment (66% training and 34%testing) and high accuracy 0.86 ± 0.07,
precision 0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05 for the second
experiment using five-fold cross validation, respectively. Both Kaplan-Meier PFS analysis and Cox
proportional hazards model analysis further confirmed that the proposed AIM2-DL model is able to
distinguish patients gaining positive therapeutic effects with low cancer recurrence from patients
with disease progression after treatment (p < 0.005).
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1. Introduction

Globally, ovarian cancer is the most common cancer-related cause of death from gyne-
cological tumors in women [1] but lacks methods recommended for screening and early
diagnostics of this disease [2]. Around 90% of primary ovarian cancers are of epithelial
origin. Epithelial ovarian cancer (EOC) is classified into serous, mucinous, endometrioid,
clear cell, transitional cell, mixed epithelial, undifferentiated and unclassified subtype [3].
Peritoneal serous papillary carcinoma (PSPC), though managed according to EOC ther-
apeutic principles, has been variably considered as an EOC counterpart [4]. The current
standardized treatment for EOC is optimal cytoreductive surgery plus platinum-based
chemotherapy. However, with the development of chemotherapy-resistant and refractory
diseases, the sensitivity of chemotherapy has decreased [5]. There are many new drugs
under development, and they are undergoing clinical trials aimed to evaluate their efficacy
in the treatment of EOC, such as antiangiogenesis, inhibitors of growth factor signaling,
poly-ADP-ribose polymerase inhibitors (PARP) inhibitors, or folate receptor inhibitors [2].

Tumor cells and tumor stroma both produce a variety of proangiogenic factors, such
as vascular endothelial growth factor (VEGF), bFGF, interleukin 8 (IL-8), G-CSF and GM-
CSF, which are designed to promote angiogenesis [6]. Angiogenesis promotes several
pathophysiological conditions which are important for tumor cell growth, metastasis and
also associated with chronic inflammation [7]. The key factor in the development of a tumor
pathological vascular network is VEGF and its signal transduction pathway [8]. VEGF is also
related to the formation of ascites in patients with EOC. Therefore, inhibiting pathological
angiogenesis has become one of the new treatment options that has been widely tested in
the treatment of EOC with promising therapeutic effects [2]. Bevacizumab is an anti-VEGF
antibody, and its use in the first and second-line therapy of EOC is well established [9].

Considering the cost, potential side effects such as hypertension, proteinuria, bleeding,
thromboembolic events, poor wound healing, and gastrointestinal perforation [10] and
no confirmed and accessible biomarkers for routine clinical use to direct patient selection
for bevacizumab treatment, the identification of new predictive method remains an ur-
gent unmet medical need. Artificial intelligence (AI) has been demonstrating remarkable
success in medical image analysis owing to the rapid progress of “deep learning (DL)”
algorithms [11], which have shown increasing ability in solving complex and real-world
problems in computer vision and image analysis. The possibility of digitizing gigapixel
whole-slide images (WSIs) of tissues has led to AI and machine learning tools in digital
pathology, which enable mining of subvisual morphometric phenotypes and may ulti-
mately improve the patient therapeutic effect [12]. The combination of AI and the WSIs
from tissue microarrays (TMAs) enables high throughput screening of a large number of
patients. In this study, we have built a new DL-based precision oncology frameworkfrom
immunostained TMA WSIs to accurately predict bevacizumab therapeutic effect in patients
with EOC and PSPC . Importantly, the results show that therapeutic prediction is achievable
without guidance or the use of prior knowledge of EOC or PSPC pathology in training AI
models. Instead of directing the focus toward traditional pathological evaluation for tumor
subclassification (e.g., papillary or clear cells formation, presence of mucin) or immunos-
taining features (e.g., percentage, intensity, score), the AI learning process is simply guided
with the patient therapeutic effect data. In evaluation, the proposed model in combination
with AIM2 achieves high accuracy 0.92, recall 0.97, F-measure 0.93 and AUC 0.97 for the
first experiment (66% training and 34%testing) and high accuracy 0.86 ± 0.07, precision
0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05 for the second
experiment using five-fold cross validation, respectively. Both Kaplan–Meier PFS analysis
and Cox proportional hazards model analysis further confirm that the proposed AIM2-DL
model is able to distinguish patients gaining positive therapeutic effects with low cancer
recurrence from patients with disease progression after treatment (p < 0.005).
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2. Related Works
2.1. Selection of Antibodies

Rather than directly targeting cancer cells, bevacizumab targets the tumor microenvi-
ronment, the effects of VEGF-inhibition are likely tumor-type and microenvironment-specific
including the modulation of cancer immunity [13]. Cancer cells affect their microenviron-
ment by releasing extracellular signals, thereby inducing tumor angiogenesis, and improving
immune tolerance, thereby avoiding being recognized by the immune system. VEGF signal-
ing supports immune suppression, and targeting VEGF/VEGFR has been recognized as
an approach to enhance antitumor immunity in cancer patients [13]. Chronic inflammation
perpetuated by inflammasome activation may play a central role in immunosuppression,
angiogenesis, tumor proliferation, and metastasis. Conversely, inflammasome signaling also
contributes to tumor suppression, which indicates the diverse roles of inflammasomes in
tumorigenesis [14]. Inflammasomes are activated upon cellular infection that triggers the
maturation of proinflammatory cytokines to engage innate immune defenses [15]. Once
innate immune system related NOD-like receptors (NLRs) or AIM2-like receptors (ALRs)
are activated, inflammation via the recruitment of immune cells such as macrophages pro-
motes the proteolytic cleavage and secretion of proinflammatory cytokines (IL-1β and IL-18)
through the activation of caspase-1, leading to cell senescence, apoptosis and the prevention
of cancer progression [16–18]. In a previous study, the high expression level of AIM2 and
NLRP3 was significantly correlated with poor PFS and disease progression of EOC which
demonstrated a key role of the dysregulated inflammasome in modulating the malignant
transformation of endometriosis-associated ovarian cancer [19]. In ascites of EOC patients,
local complement activation has been observed to induce high complement anaphylatoxins
level [20]. The immune genes involved in the complement system have dual influences
on the survival of patients. Immunohistochemical analysis showed that the expression of
the C3a receptor (C3aR) and the C5a receptor (C5aR) is higher in ovarian clear cell carci-
noma [21]. Complement-activated factors have been related, either directly or indirectly,
to neovascularization in several diseases [22]. The antiangiogenic factor was upregulated
in monocytes by complement activation [23]. In contrast, a role for complement in the
activation of angiogenesis has been demonstrated in age-related macular degeneration [24].
As the resistance to anti-VEGF treatment is related to immunity, in this study we explore the
utility of four antibodies, including AIM2, NLPR3, C3 and C5, to differentiate patients with
good treatment responses from patients with disease progression on EOC and PSPC.

2.2. Deep Learning in Application to Gynecologic Oncology

With an increase in computing power and advances in imaging technologies, DL is
being implemented for the diagnosis and classification of medical images. Wang et al. [25]
proposed a DL-based noninvasive recurrence prediction model in high-grade serous ovar-
ian cancer (HGSOC) that extracts prognostic biomarkers from preoperative computed
tomography (CT) images. Sato et al. [26] successfully applied DL to the classification of
images from colposcopy. Matsuo et al. [27] compared the performance of DL models in
survival analysis for women with newly diagnosed cervical cancer with conventional Cox
proportional hazard regression (CPH) models. Ke et al. [28] proposed a DL diagnostic
system that can distinguish high grade squamous intraepithelial lesion (HSIL), squamous
cell carcinoma, atypical squamous cells of undetermined significance (ASCUS) and low
grade squamous intraepithelial lesion. Wu et al. [29] introduced automatic classification of
ovarian cancer types from cytological images using deep convolutional neural networks.
Ghoniem et al. [30] built a multimodal evolutionary DL model for ovarian cancer diagnosis.
Hong et al. [31] built multiresolution deep learning models for predicting endometrial
cancer subtypes and molecular features from histopathology images. These studies demon-
strate that gynecologists are able to utilize DL in clinical practice, increasingly.
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2.3. Weakly Supervised Learning

The development of decision support systems for medical applications with deploy-
ment in clinical practice has been hindered by the need for large manually annotated
datasets. To overcome problems of limited amount of data supervision, recent studies have
investigated weakly supervised learning technologies. Campanella et al. [32] built a weakly
supervised multiple instance deep learning system that uses only the reported diagnoses
as labels for training accurate classification models in pathology and avoids expensive
and time-consuming pixelwise manual annotations. Li et al. [33] presented an ensemble
learning scheme to derive a safe prediction by integrating multiple weakly supervised
learners to deal with inaccurate supervision, such as label noise learning, where the given
labels are not always ground-truth. Kim et al. [34] develoep a weakly-supervised DL algo-
rithm that diagnoses breast cancer at ultrasound without image annotation. Liu et al. [35]
evaluated a weakly supervised deep learning approach to breast magnetic resonance imag-
ing (MRI) assessment and showed that it is feasible to assess breast MRI images without
the need for pixel-by-pixel segmentation using the weakly supervised learning method
to yield a high degree of specificity in lesion classification. Lu et al. [36] built a weakly
supervised clustering-constrained-attention multiple-instance learning (CLAM) model
for data-efficient WSI processing and learning that only requires slide-level labels. These
studies demonstrate that weakly supervised learning assists development and deployment
of decision support systems for medical applications.

3. Materials and Methods
3.1. Study Population and Experimental Setup

A total of 720 sample tissue cores of 12 TMAs with four immune-related proteins,
including inflammasome absent in melanoma (AIM2), nucleotide-binding domain leucine-
rich repeat and pyrin domain containing receptor 3 (NLRP3), the complement of C3 and
C5, were constructed with clinical information collected from March 2013 to January
2021 from the tissue bank of the department of pathology, Tri-Service General Hospital,
National Defense Medical Center, Taipei, Taiwan,. Ethical approvals were obtained from the
research ethics committee of the Tri-Service General Hospital (TSGHIRB No.1-107-05-171
and No.B202005070). The medical data were de-identified and used for a retrospective
study without impacting patient care.

Patients in this study were divided into the bevacizumab-resistant or the bevacizumab
sensitive group. Patients with persistently high levels of CA-125 during bevacizumab
therapy or who experienced tumor progression or recurrence (assessed by CT/PET imag-
ing) within six months posttreatment were classified as the bevacizumab-resistant group.
Patients with low levels of CA-125 and no tumor progression or recurrence (based on
imaging) during or within six months of bevacizumab treatment were classified as the
bevacizumab sensitive group.

In data preparation, tissues from bevacizumab-treated EOC and PSPC patients were
embedded in Paraffin wax. Two pathologists screened histological sections and selected
areas of representative tumor cells, and one tissue core (2 mm in diameter) was then taken
from each of the representative tumor samples and placed in a new recipient paraffin
block for immunohistochemistry staining. The TMA sections were dewaxed in xylene,
rehydrated in alcohol, and immersed in 3% hydrogen peroxide for 10 min to suppress
the activity of endogenous peroxidase. Antigen retrieval was carried out by heating each
section to 100 ◦C for 30 min in 0.01 M sodium citrate buffer (pH 6.0). The sections were
rinsed three times (5 min each wash) in phosphate-buffered saline (PBS) and then incubated
for one hour at room temperature with antibodies of AIM2 (1:500) (Abcam, cat#ab93015,
Cambridge, UK), NLRP3 (1:300) (Millipore, cat#ABF23, Burlington, VT, USA), C3 (1:1000)
(Abcam, cat#ab200999, Cambridge, UK) and C5 (1:300) (Abcam, cat#ab217027, UK) in PBS.
The sections were washed three times (5 min each wash) in PBS, followed by incubation
with horseradish peroxidase-labeled immunoglobulin (Dako, Carpinteria, CA, USA) for
1 h at room temperature. The sections were washed three times again, and the peroxidase
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activity was visualized using a solution of diaminobenzidine (DAB) at room temperature.
Slides were stained with AIM2, NLRP3, C3 and C5 antibody. The WSIs were then acquired
with a digital slide scanner (Leica AT Turbo) with a 20× objective lens.

In total, four datasets were built with four immune-related proteins. With regard to
the class distribution, well-balanced data sets were ensured, and 57.2% of tissue cores were
associated with effective Bevacizumab treatment outcomes, whereas 42.8% of tissue cores
were associated with invalid treatment outcomes. The characteristics of the data are shown
in Table 1. In evaluation, two experiments were conducted. For the first experiment, each
dataset was split into two separate subsets for training and testing; 66% for training and 34%
for testing, which ensured models were never trained and tested on the same sample (see
Table 2). For the second experiment, a five fold cross validation was performed. In evaluation,
models were evaluated independently on the testing set. In training, the batch size was set as
six cores per batch with the learning rate as 0.003, and AI models were built independently
for each stains. In evaluation, all models were independently evaluated on the test set.

Table 1. Baseline characteristics of data.

Characteristics N

Tissue Core 720
Patient age (mean, range) (59.1, 23–79)

Diagnosis (%)
Papillary serous carcinoma 444 (61.6)
Peritoneal serous papillary carcinoma 89 (12.3)
Clear cell carcinoma 69 (9.6)
Unclassified carcinoma 69 (9.6)
Endometrioid carcinoma 39 (5.5)
MC 10 (1.4)

FIGO stage (%)
I 69 (9.6)
II 39 (5.4)
III 454 (63)
IV 158 (22)

Surgery (%)
Optimal debulking 306 (42.5)
CRS+HIPEC 217 (30.1)
Suboptimal debulking 197 (27.4)

Treatment effectiveness (%)
Effective 412 (57.2)
Invalid 308 (42.8)

Table 2. Data distribution of the collected four datasets w.r.t. immune-related proteins for training
and testing for the first experiment.

Treatment Outcome AIM2 C3 C5 NLRP3

Training (66%) Effective 68 68 68 68
Invalid 50 50 50 50

Testing (34%) Effective 35 35 35 35
Invalid 27 27 27 27

Total 180 180 180 180

3.2. Weakly Supervised Learning Framework

One of the obstacles for developing a deep neural network for medical image analysis
application are data insufficiency. Small data may lead to under training, reducing the
performance of the network, but large data cost enormous efforts in data collection and
labeling. One of the contributions of this study is to develop an effective and efficient precision



Cancers 2022, 14, 1651 6 of 19

oncology system for prediction of therapeutic effect on ovarian cancer patients while utilizing
as few manual annotations as possible. In this study, only the patient-based labels w.r.t.
therapeutic effect on ovarian cancer patients and annotations on eight tissue cores, which
account for less than 1% of the training image data, were utilized for building the system. We
developed an efficient learning framework to produce AI models based on limited data with
boosting learning, soft focusing sampling, boosted data augmentation and transfer learning.
We built a single and robust weakly supervised model in selecting tumorlike tissues for all four
kinds of immunohistochemical (IHC) stained data, which appear quite differently due to large
variations on tissue morphology, staining magnitude, individual responses to antibodies and
highlighting structures as shown in the high magnification views of Figure 1. The proposed
weakly supervised tumorlike tissue selection model was built as follows.

Figure 1. Sample tumor-like tissue selection results with high magnification views at 100 µm of the
four kinds of IHC stained data by the proposed weakly supervised tissue selection model.

Boosting Learning, Focusing Sampling, Boosted Data Augmentation and Transfer Learning

Transfer learning has been successfully applied to eliminate the problem of data
scarcity in different biomedical image analysis applications. In transfer learning, a network
captures knowledge from one problem and applies it to a different problem that contains a
relatively small number of data samples for training the network properly. For producing
the backbone network, only five H&E stained WSIs from IEEE automatic cancer detec-
tion and classification in whole slide lung histopathology challenge [37] were used. We
hypothesized that this pretrain network may have the knowledge to identify the tissue
morphology of tumors. Hence, this pretrained model was used as the backbone architecture
for transferring knowledge to locate ovarian tumor tissues, and the model was retrained
with our IHC images of the eight annotated tissue cores, which accounted for less than 1%
of the training image data. However, to train a model with such a small dataset, a boosting
learning approach was devised as follows.

Given a training set S:{(xi, yi)}where xi represents the instance data, and yi ∈ Y:{0, 1}
represents the label, a learner ζ and the number of base models to build U, the proposed
boosting learning produces the final AI model φ∗(x) by the following steps. First, create
a new set S1:{(tj, w1

j )} with instance weight wj where tj:{xk}k=1...M×M represents a tile;

M = 512. Each instance weight w1
j is initialized with an IoU based attention weighting

function v for further training.

w1
j =

{
1, v ≥ α
0, otherwise

(1)

where v =
∑xi∈tj

yi

card(tj)
; α = 0.05.
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Then, iteratively for u = 1 . . . U, build a base model φu = ζ(Su). The sample weights
{wu+1

j } are continuously modified and formulated by increasing the attention weights of
false positives and false negatives of φu.

wu+1
j =

wu
j + χ,

∑xk∈tj
1|φu(xk) 6=yk

M×M ≥ α

wu
j , otherwise

(2)

Next, we devised a boosted data augmentation based on the sample attention weights
{wu+1

j } and produced new data Su+1. Data augmentation was applied to enlarge the training
set with additional synthetically modified databy manipulating the rotation per 5° and 5 times
and increment of 90°, the mirror-flipped along the horizontal and vertical axes, the contrast
adjusted (random contrast, range 0% ± 20%), the saturation adjusted(random saturation,
range 0% ± 20%), and the brightness adjusted(random brightness, range 0% ± 12.5%).

When the training data is partially labeled, many unlabeled tissues of interest are
wrongly defined as background or contents of no interest. This severely confuses AI learners
during supervised learning and deteriorates the performance output of AI models. To deal
with this issue, we added an IoU-based focusing sampling mechanism for computing the
gradients effectively. A number of unlabeled cells will now not be used as negative samples
for training to confuse learning but arranged as ignored samples. This not only helps learning
be more focused but also speeds up learning time. Moreover, we increased learning efforts
on false positive and false negative predictions and further added variations of the FPs and
FNs to assist AI learn better, deal with its weakness and produce improved AI models. An
illustration of the proposed weakly supervised learning framework is given in Figure 2b.

Figure 2. (a) System workflow: (i) multiresolution pyramid data structure of WSIs; (ii) a TMA core
detection model conducts fast localization of tissue cores in low-resolution level; (iii) a forward-
mapping function is applied to fetch the high resolution core data to be processed by (iv) a robust
tumorlike tissue selection model to locate tumorlike tissues of each core; (v) a backward-mapping
function is applied to fetch the medium resolution tumorlike tissue data of each core to be processed
by; (vi) a treatment effectiveness classification model to predict; (vii) treatment outcomes; (b) Weakly
supervised learning with focusing sampling, boosting learning and boosted data augmentation.
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For the learner ζ, the segmentation network is an extended version of our previous
efforts in fast screening of cervical cancer [38] and thyroid cancer diagnosis [39] . The modified
model is improved from its previous edition after including focusing sampling, boosted data
augmentation and SoftMax, which is added to improve the prediction score for each class.

3.3. A Hybrid Deep Learning Model

In this study, a hybrid DL precision oncology framework was built, consisting of three
DL models and two mapping models to rapidly process a gigapixel WSI of a TMA in
seconds. Figure 2a presents the system workflow. First, a TMA core detector located tissue
cores on a single patch in low resolution level (Section 3.3.1). Second, a forward-mapping
function was applied to fetch the high resolution core data to be processed by a robust
weakly supervised tumo-like tissue selection model (Section 3.3.2). Third, a backward-
mapping function was applied to fetch the medium resolution tumorlike data of each
core to be processed by a treatment effectiveness classification model (Section 3.3.3). The
network architectures of the proposed hybrid DL framework are shown in Figure 3.

Figure 3. The proposed hybrid deep learning precision oncology framework contains three deep
learning networks. (a) In the tissue core detection model, ResNet-101 backbone where RPN proposes
a set of low quality candidate bounding boxes (B0) from an image to determine the occurrence of an
object, and therefore the subsequent detectors are developed to be more selective for lower quality
candidates. The modules (H) produced samples for training the z-th classifier and detector. Ref. [40]
is used as the RPN (b) The proposed weakly supervised tumorlike tissue selection model composed
of 16 convolution layers (each convolution layer is followed by a RELU layer), five pooling layers for
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downsampling, and an upsampling layer. The class map of the core is generated by a deconvolution
layer and a SoftMax layer. (c) The proposed treatment effectiveness prediction model uses dimen-
sional reduction and parallel structures of the inception modules and contains three different sizes of
convolution and one maximum pooling. For the network output of the previous layer, the channel is
aggregated after the convolution operation, and then the nonlinear fusion is performed.

3.3.1. Tissue Core Detection Model

The tissue core detection model rapidly locates tissue cores in low resolution. In our
preliminary study, we compared the performance of cascade region-based convolutional
neural networks (Cascade R-CNN) [41] and Faster R-CNN [42] for object detection, and
it was found that Faster R-CNN often fails detecting objects that are close to each other,
while Cascade R-CNN performs well in detection of those objects. Therefore, the TMA
cores detection model was built with Cascade R-CNN. We formulated the two dimensional
input data I into a multiresolution pyramid data structure with multiple levels M from
high to low magnification {Im}M

m=0. The detector model Θcores aims to rapidly locate TMA
cores on the low-magnification level Iξ , generating a set of cores L using Equation (3).

L = Θcores(Iξ) = {bd
ξ}N

d=1 (3)

where N denotes the number of detected cores, and bd
ξ = (xd

ξ , yd
ξ , wd

ξ , hd
ξ) represents the

bounding box of a detected cores in level ξ.
Next, forward mapping was conducted to acquire each core data bd

0 in the high magnifi-
cation level I0 for further tumor segmentation, generating a set of cores
H = {bd

0}N
d=1 ∈ I0.

bd
0 = (xd

0 , yd
0, wd

0, hd
0) = 2ξ(xd

ξ , yd
ξ , wd

ξ , hd
ξ) (4)

where bd
0 represents the bounding box of a detected cores in level 0 after forward mapping.

The tissue core detection model Θcores is a multistage object detection DL architec-
ture [41] that consists of one region proposal network (RPN) and three Faster R-CNN [42]
detectors. RPN proposes a set of low quality candidate bounding boxes from an image
to determine the occurrence of an object, and therefore the subsequent detectors were
developed to be more selective for lower quality candidates. The detector at stage ϑ con-
sists of a bounding box-regressor Ψϑ and a classifier Υϑ. The bounding box-regressor
Ψϑ(ad, bd) aims to regress a candidate bounding box bd of an object proposal image ad into
a referenced bounding box gd and is learned from a training set (bd, gd) by minimizing the
risk formulated as follows:

Rloc(Ψϑ) = ∑
d

Lloc(Ψϑ(ad, bd), gd) (5)

The TMA cores detection model was developed based on a cascaded bounding box-
regressor Ψ formulated as follows:

Ψ(a, b) = Ψη ◦Ψη−1 ◦ ... ◦Ψ1(a, b) (6)

where η indicates the total number of stages. For multitask learning, each detector at stage
ϑ is learned with the loss formulated as follows:

L(aϑ, g) = Lcls(Υϑ(aϑ), cϑ) + λ[cϑ ≥ 1]Lloc(Ψϑ(aϑ, bϑ), g) (7)

where bϑ = Ψϑ−1(aϑ−1, bϑ−1), λ is the trade-off coefficient, cϑ the label of aϑ under
the intersection-over-union (IoU) threshold ϕϑ with ϕϑ > ϕϑ−1 and [·] the Iversion
bracket indicator function. In this study, three detectors η = 3 with the IoU threshold
ϕ = {0.5, 0.6, 0.7} and λ = 1.
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3.3.2. Weakly Supervised Tumorlike Tissue Selection Model

The tissue selection model aims to sample information of critical tissues for further
analysis; information about how the weakly supervised tumorlike tissue selection model is
built is described in Section 3.2. The tumorlike tissue selection model Θtumor was performed
on each core in the patch-based data structure, producing tumor selection results for each
tile t′j ∈ bd

0 .
(p(x, y))c = Θtumor(t′j) (8)

where c = {0, ..., C} denotes the number of types of tissue to be identified, and 0, 1 and
2 represent the background, others and tumorlike tissue, respectively.

A two dimensional pixel-based class map for each tile was produced as the index of
the tissue type that has the maximum probability of the pixel using Equation (9).

κ(x, y) = arg max
c

((p(x, y))c) (9)

Next, the non-tumorlike tissues were suppressed using Equation (10), and tiles with
the qualified number of tumorlike tissues were selected for further training or testing
the treatment effectiveness prediction model described in the subsequent section using
Equation (11).

t∗j (x, y) =

{
t′j(x, y), κ(x, y) > 1

∅, otherwise
(10)

πj(x, y) =

t∗j (x, y), ∑x,y κ(x,y)
card(x,y) > α

∅, otherwise
(11)

3.3.3. Treatment Effectiveness Prediction Model

The treatment effectiveness prediction model of the proposed hybrid DL framework
utilizes information of selected tumorlike tissues instead of nonmalignant cells such as
stroma or background, and generates treatment effectiveness prediction (Figure 2(vii)). The
treatment effectiveness prediction model was built based on Inception V3 [43], and modifi-
cations were made in the Inception Module 2 and 3. The network architecture is illustrated
in Figure 3c where the blue highlighted convolution layers are the modified layers, for
which the bias filter and scale filter are removed to avoid data distortion. Obtaining the
selected tiles and tissues {πj} at level 0, backward mapping was performed to fetch the
tumor features {π∗j } of each core from the middle-magnification level l, which is defined
in Equation (12).

l =

⌊
log2(w0 × h0 × 10−2ρ)

2

⌋
(12)

where ρ was set to 3 in the study.
The treatment effective decision model Θclassi f ier applied onto the probability βd

using the Equation (13). The task is to predict the treatment effectiveness outcomes
D = {D1, ..., DN} for individual cores, where d is the number of the cores; Dd ∈ D =
{Invalid, E f f ective} is the prediction of treatment effectiveness on the d-th core using
Equation (14). In this study, δ was set to 0.5.

βd = Θclassi f ier(π
∗
j ) (13)

Dd =

{
E f f ective, βd ≥ δ

Invalid, βd < δ
(14)
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3.3.4. Model Selection Method with Early Stop Mechanism

A model selection method was developed in this study, and an illustration of the
proposed model selection approach is given in Figure 4. Through training iteration k, the
proposed model selection method computed the loss values ωk and F-measure scores ιk of
trained models Mk on the training set and further calculated associated first and second
derivatives, including (ω′k, ω′′k ) and (ι′k, ι′′k ).

ω′k =
∂ωk
∂k

(15)

ω′′k =
∂2ωk
∂k2 (16)

ι′k =
∂ιk
∂k

(17)

ι′′k =
∂2ιk
∂k2 (18)
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Figure 4. Illustration of the proposed model selection method with three examples: (a) loss values of
models through iterations during training; (b) F-measure scores of individual models with different
iterations on the training set; (c) F-measure scores of individual models with different iterations
on the testing set. The blue lines indicate the measurement values, and the red and yellow lines
represent the associated first and second derivatives, respectively. During training, the proposed
model selection method computes the loss values and F-measure scores of trained models on the
training set and further calculates associated first and second derivatives. If a stable loss is found
in (a) where the first and second derivatives of the training loss converge for a continuous period,
the starting point of the stable loss window is used as the starting point in model selection searching.
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Figure 4. Illustration of the proposed model selection method with three examples: (a) loss values of
models through iterations during training; (b) F-measure scores of individual models with different
iterations on the training set; (c) F-measure scores of individual models with different iterations
on the testing set. The blue lines indicate the measurement values, and the red and yellow lines
represent the associated first and second derivatives, respectively. During training, the proposed
model selection method computes the loss values and F-measure scores of trained models on the
training set and further calculates associated first and second derivatives. If a stable loss is found
in (a) where the first and second derivatives of the training loss converge for a continuous period,
the starting point of the stable loss window is used as the starting point in model selection searching.
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Afterwards, if a stable F-measure is found in (b) where the associated first and second derivatives
converge for a continuous period, an early stop mechanism is activated to stop training and end the
search window of model selection. Then, a model is selected in the model selection search window
by finding a model with the highest F-measure score on the training set. If there are multiple models
with the highest score, the one with the largest training iteration time is selected. Green circles
highlight model selection results using the F-measure on the training set in (b) and demonstrates that
overall the selected models obtain relatively high F-measure scores on the testing set in (c).

Next, (ω′k, ω′′k ) are continuously evaluated for every δ iterations to find models with
stable loss where (ω′k, ω′′k ) converges to [−ε, ε] for a continuous period, the starting time ks

of the stable loss window is used as the starting point in the model selection search window
as shown in Figure 4a,b. Afterwards, the model searches for a stable F-measure where
(ι′k, ι′′k ) converges to [−τ, τ] for a continuous period, an early stop mechanism is activated to
stop training and set the end of the search window of model selection as ke; otherwise, ke is
set as the maximum number of training times given as an input parameter. Then, a model
Mi∗ is selected in the model selection search window by finding a model with the highest
F-measure score on the training set. If there are multiple models with the highest score,
the one with the largest training iteration time is selected. (δ, ε, τ are input parameters and
empirically defined as 1000, 0.003 and 0.1, respectively).

{i} = arg max
ks≤j≤ke

ιj (19)

i∗ = arg max
i
{i} (20)

4. Results
4.1. Quantitative Evaluation

For the first experiment (see Table 3), the Proposed-AIM2 model achieved the highest
recall 0.97, AUC 0.97, F-measure 0.93 and accuracy 0.92, respectively, and Coudray-AIM2
obtained the highest precision 0.97 and AUC 0.97, respectively. It was also found that
Coudray-AIM2 and Coudray-C3 obtained good performance with F-measure equal to 0.91.
Figure 5a further compares the ROC curves on the testing set for all models, showing that
the Proposed-AIM2 model consistently performed well, regardless of the value of the se-
lected threshold. Moreover, Figure 5b compares the performance of AUC through iterations
of AI models without model selection on the testing set, showing that the Proposed-AIM2
model generally outperformed other models with the same training time.

Figure 5. (a) Receiver operating characteristic (ROC) curves on the testing set for the models of
the proposed method and the benchmark approach [44]; (b) Graphs of AUC on the testing set with
respect to the iteration times in training among the DL models, showing that the Proposed-AIM2
model generally outperforms other models with the same training time.
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Table 3. First experiment:Quantitative evaluation in classification of therapeutic outcomes.

Method in Combination with Potential Biomarker Accuracy Precision Recall F-Measure AUC

Proposed Weakly Supervised DL Method—AIM2 0.92 0.89 0.97 0.93 0.97
Coudray et al. [44]—AIM2 0.90 0.97 0.86 0.91 0.97
Proposed Weakly Supervised DL Method - C3 0.69 0.69 0.83 0.75 0.75
Coudray et al. [44]—C3 0.90 0.91 0.91 0.91 0.94
Proposed Weakly Supervised DL Method - C5 0.63 0.67 0.69 0.68 0.65
Coudray et al. [44]—C5 0.69 0.68 0.86 0.76 0.78
Proposed Weakly Supervised DL Method - NLRP3 0.52 0.56 0.71 0.63 0.50
Coudray et al. [44]—NLRP3 0.71 0.76 0.71 0.74 0.73

For the second experiment using five-fold cross validation (see Table 4), the proposed-
AIM2 model was demonstrated to achieve the highest accuracy 0.86 ± 0.07, precision
0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05. Overall, the
proposed method obtained better results using AIM2 than C3, C5 and NLRP3. The results
of the two experiments indicate that AIM2 could be an effective biomarker for guiding
ovarian cancer treatment.

4.2. Statistical Analysis

Studies of how patients respond to treatment over time are critical to investigating
how therapies influence disease progression during survivorship, and generally two closely
related statistical analyses, i.e., Kaplan–Meier (K-M) analysis and Cox proportional haz-
ards model analysis, are performed [45] where K-M is a univariate approach, while Cox
analysis is a multivariable approach. In this study, the results of the K-M analysis and Cox
proportional hazards model analysis are provided as follows.

4.2.1. Kaplan–Meier Progression Free Survival and Overall Survival Analysis

To further examine the performance of the proposed precision oncology models, we
conducted Kaplan–Meier analysis in PFS and overall survival (OS) time using the log-rank
test. The binary prediction outcomes (0: invalid, 1: effective) of each model were used
to categorize patients into two groups, and then a Kaplan–Meier curve was generated to
visualize the probability of a patient having disease progression as time increases. Figure 6a
compares the Kaplan–Meier PFS curves of the top two models in Table 3, showing the
proposed-AIM2 as highly effective (p = 0.004) and Coudray-AIM2 as effective(p = 0.038)
to distinguish patients gaining positive therapeutic effects with low cancer recurrence from
patients with disease progression after treatment with statistical significance. On the other
hand, Figure 6b compares the Kaplan–Meier OS curves of the two top models, showing
that both models are not effective to distinguish treatment effectiveness with respect to the
overall survival time.

Table 4. Second experiment: 5-fold cross-validation.

Method in Combination with Potential Biomarker Accuracy Precision Recall F-Measure AUC

ProposedWeakly Supervised DL Method—AIM2 0.86 ± 0.07 0.9± 0.07 0.85 ± 0.06 0.87 ± 0.06 0.91 ± 0.05
Coudray et al. [44]—AIM2 0.73 ± 0.17 0.76 ± 0.19 0.71 ± 0.39 0.68 ± 0.33 0.9 ± 0.07
Proposed Weakly Supervised DL Method—C3 0.75 ± 0.1 0.77 ± 0.1 0.79 ± 0.1 0.78 ± 0.09 0.78 ± 0.12
Coudray et al. [44]—C3 0.73 ± 0.08 0.77 ± 0.06 0.74 ± 0.21 0.74 ± 0.1 0.84 ± 0.09
Proposed Weakly Supervised DL Method—C5 0.65 ± 0.03 0.66 ± 0.03 0.8 ± 0.04 0.72 ± 0.02 0.66 ± 0.07
Coudray et al. [44]—C5 0.56 ± 0.13 0.69 ± 0.22 0.51 ± 0.3 0.54 ± 0.22 0.52 ± 0.23
Proposed Weakly Supervised DL Method—NLRP3 0.56 ± 0.08 0.59 ± 0.05 0.77 ± 0.08 0.67 ± 0.06 0.55 ± 0.08
Coudray et al. [44]—NLRP3 0.63 ± 0.18 0.68 ± 0.19 0.66 ± 0.32 0.63 ± 0.28 0.73 ± 0.24

4.2.2. Cox Proportional Hazards Model Analysis

We further investigated DL model prediction and clinical factors, including age, BMI,
number of treatments, cancer stage (FIGO), histology and surgery type, in association
with disease progression using multivariate analysis. However, as shown in Table 5,
only the proposed DL model prediction is useful as an indicator for patient selection
with statistical significance (p < 0.01); patients who were predicted to be effective by the
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proposed-AIM2 DL model had a lower risk of recurrence than patients predicted to be
invalid (HR = 0.18, p = 0.003).

Figure 6. (a) Kaplan–Meier PFS and; (b) OS analysis for EOC and PSPC patients receiving beva-
cizumab therapy based on AI prediction outcomes (0: invalid; 1: effective) by the two best models,
i.e., proposed method-AIM2 and Coudray et al. [44]-AIM2.

Table 5. Multivariate analyses of DL model prediction and clinical factors associated with recurrence.

Adjusted HR 1 (95% C.I.) p Value

Age 1.03 (0.98–1.07) 0.212
BMI 1.01 (0.92–1.11) 0.848
Number of bevacizumab used times 0.97 (0.89–1.05) 0.472
FIGO 2 (III + IV vs. I + II) 4.23 (0.82–21.86) 0.085
Histology (others vs. serous) 0.82 (0.26–2.62) 0.737

Surgery
CRS + HIPEC 3 1.00 (reference) reference
optimal 0.92 (0.35–2.42) 0.869
suboptimal 1.18 (0.42–3.30) 0.753

Theraphy
Concurrent therapy 1.00 (reference) reference
Second-line therapy 1.71 (0.66–4.41) 0.265
Maintenance therapy 0.23 (0.04–1.40) 0.110

DL model prediction
Proposed DL Method-AIM2 (effective v.s. invalid) 0.18 (0.06–0.55) 0.003 *

1 HR = Hazard ratio; 2 FIGO = International Federation of Gynecology and Obstetrics. 3 CRS+HIPEC = Cytore-
ductive surgery with hyperthermic intraperitoneal chemotherapy. * The proposed model prediction is useful as
an indicator for patient selection with statistical significance (p < 0.01).
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5. Conclusions and Discussion

This study presents a new precision oncology approach with a hybrid DL framework
to guide cancer treatment on patients with EOC and PSPC using immunostained TMA WSIs.
Bevacizumab is the first antiangiogenic agent to have demonstrated benefit as first-line and
maintenance therapy in EOC and was explored in two large prospective randomized trials.
The Gynecologic Oncology Group 218 and ICON 7 phase III trials revealed significantly
prolonged PFS for carboplatin/paclitaxel plus bevacizumab followed by bevacizumab
maintenance versus carboplatin/paclitaxel alone [46]. Other antiangiogenics have been
assessed in EOC, such as pazopanib, sorafenib, sunitinib, cediranib, VEGF trap (aflibercept),
and AMG386. However, EOC response rates to these inhibitors were relatively low, ranging
from 6–20% [47]. In addition, none have been adopted in routine clinical practical use due
to toxicity and the cost of licensing [9,48]. Bevacizumab is the only approved antiangiogenic
agent in routine clinical practice.

Unlike most other targeted therapies, bevacizumab is used in the general patient
populations instead of targeting patients preselected by a biomarker. Despite intense efforts,
no predictive biomarker has been identified for personalized use of bevacizumab [49].
Given the high cost, the potential for toxicity, and finding that only a subset of patients
will benefit from these drugs, patients who receive bevacizumab treatment should be
carefully selected [50]. Although several potential predictive biomarkers such as circulating
combination of Ang1 and Tie2 proteins, VEGFR-1 and neuropilin-1 in the plasma or cancer
tissue as well as plasma cell-free DNA [51–53], and Ang-2, FGF, HGF activation of c-Met,
deltalike ligand 4 (Dll4) -induced Notch signaling, hedgehog signaling or inhibition of
Zeste homolog 2 (EZH2) [54–57], are found, these biomarkers have not consistently been
predictive of response.

In the past decade, advances in precision oncology have resulted in an increased
demand for predictive methods that enable the selection of patients for treatment. In
clinical practice, anatomical pathologists base their histological diagnosis on the visual
recognition, semiquantification and integration of multiple morphological features of
the analyzed sample. However, the traditional histology-based classification of EOC
has no benefit for the prediction of therapeutic outcome. Immunohistochemistry (IHC)
with antibodies specific for EOC antigens help identify those that are overexpressed or
aberrantly expressed in tumor tissues and may be a potential biomarker for therapeutic
prediction. In our previous study [58], the expression of AIM2, C3 and C5 was analyzed
using immunohistochemical staining according to the percentage and intensity of the color
reaction by visual observation to predict the efficacy of bevacizumab in epithelial ovarian
cancer (EOC) patients, and the AIM2 immunostaining scores were significantly higher
in the bevacizumab-resistant group than in the bevacizumab-sensitive group (p < 0.001),
but there were no significant differences in C3 (p = 0.077) or C5 (p = 0.326) regarding
bevacizumab. Based on the results of the previous study and this study, we propose a
possible link between the AIM2 inflammasome and antiangiogenic therapy in EOC. In the
microenvironment favorable for EOC, the inflammasome promotes transcription of certain
NLRs. NLRs and AIM2 assemble into the inflammasome complex which via the caspase
recruitment domain, recruit platelets and circulating leukocytes, all of which can secrete
proangiogenic factors and promote angiogenesis [19].

In cancer, the complexity of genomic alterations that affect cell signaling and cellular
interactions with their environment can influence the biological course of the disease
and affect responses to therapeutic interventions. The assessment of such alterations
requires simultaneous interrogation of multiple features with highly sensitive and precise
approaches [59]. The development of new AI-based image analysis approaches in pathology
and oncology is being led by computer engineers and data scientists, who are developing
and applying AI tools for a variety of tasks such as helping improve diagnostic accuracy
and identify novel biomarker approaches for precision oncology [12]. Over the past few
years, interest in the use of machine learning-based approaches for drug discovery and
development has increased [60]. The fact that most patients who receive cytotoxic agents
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or immune checkpoint inhibitors do not respond to treatment has led to increasing interest
in combining AI with digital pathology to identify the patients who are most likely to
derive therapeutic benefit [12,60]. The previous report has also developed an approach
whereby the spatial arrangement of nuclei or tumor-infiltrating lymphocytes enables
prediction of the responsiveness of patients with late-stage non-small-cell lung cancer to
the antiprogrammed cell death 1 (PD-1) antibody nivolumab [12]. Machine learning can
not only be used to analyze the tumor cells of epithelial origin, increasing interest exists in
trying to identify prognostic patterns within the tumor environmental stroma cells [61].

To the authors’ best knowledge, this is the first precision oncology framework created
to effectively predict the bevacizumab therapeutic effect of EOC or PSPC patients. The
proposed-AIM2 model is demonstrated to achieve excellent performance on accuracy 0.92,
recall 0.97, F-measure 0.93 and AUC 0.97. Furthermore, results of both Kaplan–Meier PFS
analysis and Cox proportional hazards model analysis show that the proposed model can
distinguish patients gaining positive therapeutic effects with low cancer recurrence from
patients with disease progression after treatment (p < 0.01). This study indicates new
potential precision oncology systems to predict antiangiogenic therapy benefits in EOC
and PSPC patients for assisting personalized medicine are possible.

Furthermore, the proposed method could also be applied to other types of cancers
for angiogenesis inhibitors, such as metastatic breast cancer, non-small-cell lung cancer,
glioblastoma, renal cell carcinoma, and cervical cancers. We hope that DL could play a
role in immunohistochemical stains for other potential candidate proteins such as Ang1,
Ang-2, Tie2, VEGFR-1, neuropilin-1, FGF and EZH2 to develop more effective predictive
biomarkers for personalized antiangiogenic target therapies. In conclusion, we demonstrate
that DL could be a very useful tool for assisting AIM2 immunostained slides in applying
the appropriate and tailored targeted therapy, increasing the scope and performance of
precision medicine, which aims to develop a treatment method tailored to the patients
with EOC and PSPC. Therefore, AI approaches will become key in analyzing these large
amounts of data, helping pathologists and oncologists in the process. These results highlight
the emerging role of DL in precision medicine for therapeutic prediction and suggest an
expanding utility for computational analysis of histology in the future practice of pathology.
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