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Introduction
Patients with end stage kidney disease (ESKD) 
require long-term renal replacement therapy, 
such as hemodialysis (HD) and peritoneal dialy-
sis. However, several clinical factors have been 
reported to influence long-term HD treatment 
outcomes such as serum albumin levels.1 

In addition, the HD treatment also becomes an 
economic burden to the reimbursement for medi-
cal care.2,3 Therefore, HD-related diagnosis, care 
planning, and prevention have become critical 
research issues. The all-cause mortality is com-
monly considered as a primary endpoint for 
patients undergoing long-term HD in the clinical 
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Abstract
Introduction: Mortality is a major primary endpoint for long-term hemodialysis (HD) patients. 
The clinical status of HD patients generally relies on longitudinal clinical observations such as 
monthly laboratory examinations and physical examinations.
Methods: A total of 829 HD patients who met the inclusion criteria were analyzed. All patients 
were tracked from January 2009 to December 2013. Taken together, this study performed full-
adjusted-Cox proportional hazards (CoxPH), stepwise-CoxPH, random survival forest (RSF)-
CoxPH, and whale optimization algorithm (WOA)-CoxPH model for the all-cause mortality risk 
assessment in HD patients. The model performance between proposed selections of CoxPH 
models were evaluated using concordance index.
Results: The WOA-CoxPH model obtained the highest concordance index compared with 
RSF-CoxPH and typical selection CoxPH model. The eight significant parameters obtained 
from the WOA-CoxPH model, including age, diabetes mellitus (DM), hemoglobin (Hb), albumin, 
creatinine (Cr), potassium (K), Kt/V, and cardiothoracic ratio, have also showed significant 
survival difference between low- and high-risk characteristics in single-factor analysis. 
By integrating the risk characteristics of each single factor, patients who obtained seven 
or more risk characteristics of eight selected parameters were dichotomized as high-risk 
subgroup, and remaining is considered as low-risk subgroup. The integrated low- and high-
risk subgroup showed greater discrepancy compared with each single risk factor selected by 
WOA-CoxPH model.
Conclusion: The study findings revealed WOA-CoxPH model could provide better risk 
assessment performance compared with RSF-CoxPH and typical selection CoxPH model in 
the HD patients. In summary, patients who had seven or more risk characteristics of eight 
selected parameters were at potentially increased risk of all-cause mortality in HD population.
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studies.4,5 Previous studies indicated all-cause 
mortality in HD patient is associated with multi-
ple clinical factors, including comorbidity, medi-
cations, nutrition status, and others.6–9

In current clinical medical research, it is no longer 
possible to consider only univariate association; 
there are complex interactions between multiple 
clinical factors and biomarkers for survival out-
come in HD population.10 Therefore, it is neces-
sary to explore the relevant risk factors that affect 
the disease in a multivariate and comprehensive 
manner.11 In the era of big data, there may be 
limits to complete care for all clinical factors and 
biomarkers using typical statistical methods. 
Therefore, machine learning methods can be 
used to quickly find out more significant risk fac-
tors for diseases to achieve maintenance and slow 
down the occurrence of disease exacerbations.12 
In 2017, Ramspek et al.13 used Cox proportional 
hazards (CoxPH) model to predict risk of all-
cause mortality in dialysis patients.

Multiple machine learning approaches, including 
artificial neural network,14 particle swarm optimi-
zation,15 biogeography-based optimization,16 and 
other hybrid methods have been widely used in 
the risk assessment of specific diseases.17 
Comparing with typical statistical approaches, 
the combination use of machine learning could 
overcome several limitations faced by statistical 
methods, including the sample size restriction 
and computation complexity.18 In 2022, Radović 
et  al.19 used kernel support vector machine and 
K-means to determine the expected mortality 
rate. Random survival forest (RSF) is an explora-
tory analysis method used to evaluate survival 
data.20 RSF uses the survival splitting rules for 
growing survival tree to identify highly impacted 
risk factor of mortality. Garcia-Montemayor 
et  al.21 evaluated the prediction performance of 
random forest and logistic regression in mortality 
of HD patients.

Whale optimization algorithm (WOA) is a meta-
heuristic optimization algorithm, which is inspired 
by the hunting behavior of humpback whales.22 
WOA uses exploration and exploitation capabili-
ties to avoid the local optimum and accelerate the 
convergence in the optimization procedure of fea-
ture selection. WOA is highly compatible with 
other algorithms and statistical methods.23–25 
WOA has the advantages of simple process and 
fast convergence speed, and it was found to be 

enough competitive with other state-of-the-art 
meta-heuristic methods.22 WOA can be used to 
find the best feature combination in feature selec-
tion,26 select the fewest features to obtain the 
maximum classification accuracy, and has excel-
lent performance in solving optimization prob-
lems and applications widely.

The risk assessment of mortality plays important 
roles in long-term medical care for HD patients.5 
The combined use of WOA, RSF, and typical 
survival analysis such as CoxPH model could 
provide more comprehensive risk assessment out-
come.27,28 We selected three typical models in 
each field for comparison. The full-adjusted and 
stepwise selection model represents the typical 
statistical method, the RSF selection model rep-
resents the permutation method, and the WOA 
model represents the heuristic optimization algo-
rithm. Therefore, this study aimed to apply the 
WOA, RSF, and typical statistical selection 
method in the mortality risk assessment, in pur-
pose to identify the optimal risk characteristics 
combination for all-cause mortality in HD 
patients.

Methods

Datasets and statistical analysis
This is a retrospective cohort study. All data were 
obtained from Kaohsiung Chang Gung Memorial 
Hospital. A total of 829 patients who received 
regular outpatient HD therapy (three times a 
week) before 1 January 2009 were retrospectively 
included under an approved data protocol 
(201800595B0). All patients were tracked from 1 
January 2009 to 31 December 2013. This study 
was conducted in accordance with the Declaration 
of Helsinki. We enrolled all HD patients in the 
beginning, and then excluded those who have not 
met the inclusion criteria. A total of 874 patients 
who received regular outpatient HD treatment 
(three times a week) were enrolled in the initial 
phase of study. Then, we selected potential risk 
factors associated with the risk of mortality in HD 
patients, and then excluded 45 patients who had 
loss to follow-up, and 2 patients who had missing 
values for blood measurements. Finally, a total of 
829 patients were included in the analysis, and 
the study population was divided into two groups 
according to their mortality status. A total of 633 
patients who remained alive within the study 
period were considered as alive cohort, and 196 

Yin-Syuan Chen 
Department of Electronic 
Engineering, National 
Kaohsiung University of 
Science and Technology, 
Kaohsiung

https://journals.sagepub.com/home/taj


C-H Yang, Y-S Chen et al.

journals.sagepub.com/home/taj 3

patients who expired within study period were 
considered as died cohort. Hence, the mortality 
rate of HD cohort was known to be approximately 
15–20%. Assume the probability of type I error is 
0.05 (α), the power is 80%, the population size of 
current study cohort is 829, the proportion of 
mortality of Taiwan population is 0.20, and the 
proportion of mortality of current study cohort is 
0.295. By using to the power estimation formula, 
the estimated critical Z value for given α is 
approximately 4.279 (Φ), which is equal to power 
of 1. Thus, the post hoc power of sample size is 
100%, which indicates the sample size for current 
study was appropriate for later analyses.

The clinical factors were collected at the initial 
phase of study, and the comorbidity and blood 
measurements data were collected for each HD 
therapy. The survival outcome was tracked using 
the death registry database of our institution. The 
baseline characteristics and laboratory measure-
ments in HD patients including dialysis vintage, 
age, sex, and diabetes mellitus (DM) status were 
collected.29 In addition, the baseline blood labo-
ratory measurements, including Hb, blood urea 

nitrogen (BUN), Cr, K, Ca, P, intact parathyroid 
hormone (iPTH), ferritin, HD adequacy index, 
Kt/V urea (Daugirdas), urea reduction ratio 
(URR), and cardiothoracic ratio by chest x-ray 
examination were collected at the initial phase of 
study. The distributions of baseline characteris-
tics and mortality-related risk in HD patients 
were summarized into median (interquartile 
range), mean (standard deviation), or frequency 
(percentage) according to the survival categories. 
The independent two-sample t-test or chi-square 
test was used to estimate the difference between 
alive and died group. Univariate CoxPH regres-
sion analysis was used to evaluate the association 
between all-cause mortality and individual risk 
factors. In addition, we have sorted out the algo-
rithm and application comparison of mortality 
risk assessment studies in related HD populations 
proposed by previous studies. Table 1 is as 
follows.

WOA feature selection
WOA is a novel nature-inspired meta-heuristic 
optimization algorithm, which was proposed by 

Table 1. Comparison of algorithms and application of mortality risk assessment studies in hemodialysis population.

Study Algorithms Application Model performance

Yang et al. (2022)
(Proposed method)

1. CoxPH model
2. Stepwise selection
3. WOA selection
4. RSF selection
5. Kaplan–Meier

Identifying risk factors for 
mortality in hemodialysis patients 
using multiple feature selection, 
including stepwise, WOA, and 
RSF selection approaches to 
generate all-cause mortality risk 
assessment model

Optimal concordance:
 1. full-adjusted-CoxPH: 0.7404
 2. stepwise-CoxPH: 0.7388
 3. RSF-CoxPH: 0.7406
 4. WOA- CoxPH: 0.7409
Kaplan–Meier (log-rank test p value)
  1. WOA-CoxPH model: Log-rank test 

p value < 0.001

Radović et al.19 1. Kernel SVM algorithm
2. K-means clustering 
algorithm

Applied SVM method to assess 
the expected mortality of 
hemodialysis patients using nine 
relevant parameters provided by 
professional nephrologists

Mortality rate prediction is realized 
with accuracy up to 94.12% and up to 
96.77%

Garcia-Montemayor 
et al.21

1. Logistic regression 
analysis
2. Random forest
3. AUC

Prediction of mortality of 
hemodialysis patients at different 
time points using random forest 
algorithm and evaluate the 
prediction performance using AUC

AUC
 1. random forest[ΔAUC 0.68–0.73]
  2. logistic regression models [ΔAUC 

0.007–0.046]

Ramspek et al.13 1. CoxPH model
2. Kaplan–Meier

Predict risk of all-cause mortality 
in dialysis patients using typical Cox 
model and Kaplan–Meier methods

C-statistics ranging from 0.710 
(interquartile range 0.708–0.711) to 
0.752 (interquartile range 0.750–0.753)

AUC, area under curve; CoxPH, Cox proportional hazards; RSF, random survival forest; SVM, support vector machine; WOA, whale optimization 
algorithm.
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Mirjalili et  al.22 This algorithm simulates the 
humpback whale predation behavior, including 
exploitation and exploration. The exploitation 
phase uses a spiral bubble-net attacking method 
to find a local optimum result, and the explora-
tion phase simulates the prey searching behavior 
in order to find a global optimum result. WOA 
feature selection could accelerate convergence  
to find the optimal solution for the mortality-
related risk assessment in HD patients.30  
WOA feature selection pseudocode is shown in 
Algorithm 1.

The algorithm first enters the stage of encircling 
prey, and subsequently the search in two stages, 
the first phase is the exploitation phase (spiral 
bubble-net attacking method), and the second 
phase is the exploration phase (search for prey). 
The behavior patterns in the two phases are 
described in detail below.

Encircling prey is the primary task, WOA assumes 
the current best solution or target prey, tries to 
advance toward the best search target and update 

the position, and updates the current position 
with the current best solution. The following 
equations (1)–(4) describe this behavior:

 

   

D C X * t X t= ( ) − ( ).
 

(1)

 
X t x* t A D




 

+( ) = +( ) −1 1 .
 

(2)

 


  

A a r a= −2. .  (3)

 




C r= 2.  (4)

where t is the current iteration, X is the current 
position vector solution, X* is the best solution of 
current position vector, |.| is the absolute value, 
and A and C are coefficient vectors. A and C are 
defined in equations (3) and (4). r is random vec-
tor in the range [0, 1]. The current position vec-
tor is updated according to equation (2). The 
values of A affect the range of the area where the 
current position vector can be moved. The calcu-
lation of a

��
 is shown in equation (5):

Algorithm 1. Pseudo-code of whale optimization algorithm (WOA)–based feature selection.

 Input: N number of whales、T number of iteration with F size of dimension
 Output:Optimal whale position.
  Initialize Xi

j (i = 1, 2, . . ., N; j = 1, 2, . . ., F).
  while (t < T)
  for (each whale and dimension (Xi

j))
     if Sigmoid (Xi

j ) ⩾ 0.5

      Yi
j  = 1

     else
      Yi

j  = 0
  end for
  Convert each binary individual Yi  into a feature
  combination.
  Calculating Cox proportional hazard using C-index for evaluation(fitness).
  Update X* if there is a better fit.
  for (each whale (Xi ))
    Calculate and Update a, A, C, p and l.
    if1 p < 0.5 then
     if2 (|A| < 1) then
      Update position by Eq. (2)
    else2 (|A| ⩾ 1)
      Choose search agent randomly (Xrand)
      Update position by Eq. (10)
    end if2
    else if1(p ⩾ 0.5)
    Update position by Eq. (6)
    else if1
  end for
  t = t + 1
 end while
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a t

MaxIter



= −2
2

 
(5)

where MaxIter is the maximum number of 
allowed iterations. According to the above for-
mula, a



 is decreased linearly from 2 to 0 over the 
iterations. This will reduce the movable range of 
shrinking encircling mechanism with iteration. 
X t( )
� ��

 and X t*
� ���

( )  can establish a spiral equation 
to simulate the spiral movement of humpback 
whales. The mathematical equation (6) is as 
follows:

 

  

X t D e cos l X tl bl+( ) ( ) + ( )1 = . 2ππ ∗∗
 

(6)

The local search capability is used in the exploita-
tion phase. This phase is divided into two behav-
ioral modes. The first is shrinking encircling 
mechanism, and the second is spiral updating 
procedure.

Shrinking encircling mechanism. This behavior 
pattern is achieved by decreasing the value of a in 
equation (3). The fluctuation range of A is 
decreased by linear reduction from 2 to 0 during 
the iteration of a, then A is a random value in the 
interval [–a, a]. A in [–1, 1], and a new search 
position can be updated between the current 
position and the current best position.

Spiral updating procedure. 


X t( )  and X t*
� ���

( )  are 
established as a spiral equation to simulate the 
spiral movement of humpback whales to update 
the current best position. The spiral updating pro-
cedure are shown in equations (6)–(8):
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where l is a random number in the range [–1, 1], 
b is a constant defining the spiral’s shape, and D 
is the distance between the whale X and a prey. In 
order to the behavior pattern of whale shrinking 

the enclosing mechanism is simulated, the trigger 
probability of the two behavior patterns (2) and 
(6) is set to 50% each. The mathematical equa-
tion is as follows:

When A
���

<1,  we use equation (7) to update the 
position, where p is a random number in [0, 1]

The exploration phase is used in global search 
capability, and the search prey behavior pattern is 
used. When A

���
≥1,  it enters the exploration 

stage, and uses the randomly selected whale 
method to update the current individual’s posi-
tion vector. Since| (A) 

→
| must be greater than 1 

at this stage, according to equation (10), the 
updated position will deviate from the reference 
whale, thereby the purpose of global search is 
achieved:

 

� � � ������ �
D C X X trand= − ( ).

 
(9)

 
X t X A Drand

� � ������ � �
+( ) = −1 .

 
(10)

Xrand

� ������
 is a random whale position vector selected 

from the current population.

WOA was used to solve the feature selection 
problem which must be converted into binary 
classification.26 Therefore, the sigmoid function 
is added to fit the binary trait of mortality-related 
risk category in HD patients. The position vector 
of each feature is converted into binary by S 
function to search for the best feature combina-
tion.26 The sigmoid function is shown in equa-
tion (11):

 
y

e

k
v ti
k=

+ −

1

1 ( )
 (11)

 

X
if S x t

otherwise
i
d i

k

=
+( )( ) ≥






1 1 0.5

0
 

(12)

where S indicates the sigmoid conversion. This 
study uses 0.5 to make the threshold for binary. 
x ti
k( )+1  in equation (12) represents that the ith 

whale is the vector of the kth dimension at the 
(t + 1) iteration, and the value mapped by the S 
function is converted to an integer of 1 or 0 by 
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equation (12). When the dimension k is 1, it 
means that the feature is selected. Conversely, 
when k is 0, this feature is not used.

RSF feature selection
Random forest was proposed by Breiman et al. 
(2001)31, and mainly applied to classification 
and regression.20 In 2008, Ishwaran et  al.32 
applied random forest extension to survival anal-
ysis, and developed the RSF, which belongs to 
integrated learning. RSF is a nonparametric 
tree-based survival analysis algorithm based on 
the random forest algorithm.33 RSF feature 
selection approach evaluates variable impor-
tance (VIMP) by simultaneously considering 
survival time and censor status of study popula-
tion. RSF uses the survival splitting rules for 
growing survival tree to identify highly impacted 
risk factor of all-cause mortality in study popula-
tion. The pseudocode of RSF feature selection 
algorithm is shown in Algorithm 2.

In this study, RSF is used in feature selection, and 
mortality-related risk in HD patients was con-
verted from continuous variables to categorical 
variable. The purpose is to improve the accuracy 
of RSF variable selection. VIMP, which was cal-
culated to filter select variables, can be ranked 
and screened. A larger VIMP indicates that the 
variable has predictive power. Otherwise, a VIMP 
of zero or negative indicates that the variable’s 
unpredictable power needs to be considered for 
filtering.

Fitness
In each iteration, the CoxPH model was used as 
the objective function to evaluate and update the 
whale position.34 In survival analysis, the CoxPH 
model is a commonly used statistic that uses med-
ical research patients and univariate or multivari-
ate variables to predict associations between 
survival times. The CoxPH model can be used to 
assess how specified factors influence the rate of a 
particular event happening (e.g. infection, death).

The CoxPH model was used to establish the sur-
vival objects of HD patients as dependent varia-
bles, and other HD influencing factors were used 
as independent variables to assess whether it was 
related to the mortality of HD patients, and the 
hazard ratio (HR) value was calculated for the 
death risk determination.35 The model can be 
written as follows:

 
In h t In h t b x b xp p( ) = ( ) + + +0 1 1 

 
(13)

 
or ln

h t
h t

b x b xp p
( )
( )0

1 1= + +

 
(14)

where h (t) is the risk of time (t); x1,  x2 . . . xp  are 
explanatory variables. When HR value is less than 
1, more than 1, and equal to 1, the risk of death is 
reduced, increased, and invalidated, respectively.

Concordance index is used to evaluate the predic-
tive ability of the model.36 It was first proposed by 

Algorithm 2. Pseudo-code of random survival forest (RSF)–based feature selection.

 Input: Dataset: D = (τi, δi, xi), i = 1, . . ., n, N number of trees
 Output: Random Survival Forest (RSF)
  Initialize:RSF is empty, all p covariates, mtry: number of variables randomly selected as candidates for  
  splitting a node, B: Ensemble size
  for i to 1: B do
    Draw a bootstrap sample with size N from D
    while node d0 > 0 unique deaths do
     randomly select mtry from p
     for j to 1 to mtry do
     if j-th survival splitting criterion then
      split internal node into two child nodes
      break;
     end
    end
  end
 end
 return the ensemble tree of all B sub-trees grown in the for loop;
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Frank E Harrell Jr, a professor of biostatistics at 
Vanderbilt University in 1996. It is mainly used 
to calculate the discrimination between the pre-
dicted value and the true value of the CoxPH 
model in survival analysis. It is also called Harrell’s 
concordance index. The C-index calculation 
method randomly pairs study objects. For a pair 
of patients, if A’s actual survival time is longer 
than B, and the predicted result is the same, it is 
called concordance. The calculation formula of 
concordance index c is as follows:

 
c

K

M
=

 
(15)

where M is the number of remaining matches.

Optimal CoxPH regression model
This study aimed to assess of mortality-related 
risk in HD patients using machine learning 
approach to select features. The typical CoxPH 
model selection approach including all associated 
factors in known as full-adjusted-CoxPH, and the 
stepwise-CoxPH model includes the associated 
factors which have met the critical p value (<0.2). 
In addition to the typical statistic selection 
approaches, RSF and WOA methods were used 
to assess the optimal risk factors combination for 
all-cause mortality in CoxPH regression model. 
RSF model uses VIMP to identify associated risk 
factors, and WOA model uses local and global 
optimum search to identify associated risk fac-
tors. Taken together, this study performed full-
adjusted-CoxPH, stepwise-CoxPH, RSF-CoxPH, 
and WOA-CoxPH model for the all-cause mor-
tality risk assessment in HD patients, and com-
pared the model performance using concordance 
index. Then, the survival interval and all-cause 
mortality status of HD patients were used to cre-
ate a survival object, and concordance index was 
used as the objective function. Model comparison 
between four feature selection CoxPH model was 
performed to clarify the efficiency of proposed 
feature selection approaches for mortality risk 
assessment in HD patients. Harrell’s concord-
ance index value was used to compare the model 
performance; the higher concordance index rep-
resents better combination solution. Finally, the 
identified associated risk factors will be assessed 
for relevance to all-cause mortality in HD patients. 
The HR and 95% confidence interval (CI) were 

computed. The significant associated risk factors 
identified by optimal CoxPH model were illus-
trated using Kaplan–Meier survival curves, and 
the survival difference between subgroups was 
tested using log-rank test. Moreover, the signifi-
cant factors in optimal model were further used to 
generate an integrated risk score for mortality risk 
assessment of study population. Receiver operat-
ing characteristics (ROC) analysis was performed 
to further dichotomize the study population into 
low- and high-risk subgroups, and the survival 
difference between integrated risk subgroup was 
also tested using log-rank test. All p values were 
two-sided, and a p value less than 0.5 was consid-
ered statistically significant. All analyses were per-
formed by R software (R Development Core 
Team 2020, version 4.0.2).

Results

Baseline characteristics and laboratory 
measurements
Table 2 showed the distribution and comparison 
of clinicopathological characteristics between 
alive and died groups. A total of 633 alive patients 
and 196 dead patients were analyzed. The died 
group had significant higher proportion in age ⩾  
65 (died versus alive: 57.65% versus 28.28%, 
p < 0.001) and DM (38.27% versus 22.27%, 
p < 0.001). In laboratory measurements, the died 
group had significant higher proportion in hemo-
globin (Hb) < 10.64 g/dl (59.18% versus 46.76%, 
p = 0.003), albumin < 3.87 g/dl (62.24% versus 
36.49%, p < 0.001), creatinine (Cr) < 10.52 mg/
dl (67.86% versus 46.29%, p < 0.001), potassium 
(K) < 4.95 meq/l (59.18% versus 47.24%, p =  
0.004), Kt/V urea < 1.7 (65.31% versus 52.61%, 
p = 0.002), and cardiothoracic ratio ⩾ 0.5 (72.96% 
versus 46.45%, p < 0.001) compared with the 
alive group.

Individual risk factors of all-cause mortality
Table 3 showed the univariate CoxPH regression 
analysis results for all-cause mortality in HD 
patients. The univariate analysis results showed 
patients with age ⩾ 65 years (HR = 2.91, 95% 
CI = 2.19–3.87, p < 0.001), DM (HR = 1.98, 
95% CI = 1.49–2.65, p < 0.001), and cardiotho-
racic ratio ⩾ 0.50 (HR = 2.75, 95% CI = 2.01–
3.77, p < 0.001) were more likely to achieve 
higher mortality risk. In addition, HD patients 
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Table 2. Baseline characteristics of mortality categories (n = 829) with two categories.

Characteristics Total (n = 829) Alive (n = 633) Died (n = 196) p

Dialysis vintage (years) 0.213

 ⩾5.60 415 (50.06) 325 (51.34) 90 (45.92)  

 <5.60 414 (49.94) 308 (48.66) 106 (54.08)  

Age (years) <0.001

 ⩾65 292 (35.22) 179 (28.28) 113 (57.65)  

 <65 537 (64.78) 454 (71.72) 83 (42.35)  

Sex 0.819

 Male 376 (45.36) 289 (45.66) 87 (44.39)  

 Female 453 (54.64) 344 (45.34) 109 (55.61)  

DM 216 (26.06) 141 (22.27) 75 (38.27) <0.001

Laboratory measurements  

 Hb (g/dl) 0.003

  ⩾10.64 417 (50.30) 337 (53.24) 80 (40.82)  

  <10.64 412 (49.70) 296 (46.76) 116 (59.18)  

 Albumin (g/dl) <0.001

  ⩾3.87 476 (57.42) 402 (63.51) 74 (37.76)  

  <3.87 353 (42.58) 231 (36.49) 122 (62.24)  

 BUN (mg/dl) 0.180

  ⩾68.91 409 (49.33) 321 (50.71) 88 (44.90)  

  <68.91 420 (50.66) 312 (49.29) 108 (55.10)  

 Cr (mg/dl) <0.001

  ⩾10.52 403 (48.61) 340 (53.71) 63 (32.14)  

  <10.52 426 (51.39) 293 (46.29) 133 (67.86)  

 K (meq/l) 0.004

  ⩾4.95 414 (49.94) 334 (52.76) 80 (40.82)  

  <4.9 415 (50.06) 299 (47.24) 116 (59.18)  

 Ca (mg/dl) 0.064

  ⩾9.22 384 (46.32) 304 (48.18) 79 (40.31)  

  <9.22 445 (53.68) 328 (51.82) 117 (59.69)  

(Continued)
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with Hb ⩾ 10.64 (HR = 0.62, 95% CI = 0.47–
0.83, p = 0.001), albumin ⩾ 3.87 g/dl (HR = 0.39, 
95% CI = 0.29–0.52, p < 0.001), Cr ⩾ 10.52 mg/
dl (HR = 0.44, 95% CI = 0.33–0.60, p < 0.001), 
K ⩾ 4.95 meg/l (HR = 0.66, 95% CI = 0.50–0.88, 
p = 0.004), Ca ⩾ 9.22 mg/dl (HR = 0.74, 95% 
CI = 0.56–0.98, p = 0.037), and Kt/V urea ⩾ 1.70 
(HR = 0.63, 95% CI = 0.47–0.84, p = 0.002) 
were more likely to achieve lower mortality risk.

Risk assessment model of all-cause mortality
The analysis results of full-adjusted-CoxPH, 
stepwise-CoxPH, RSF-CoxPH, and WOA-
CoxPH model for all-cause mortality in HD 

patients are summarized in Table 4. The full-
adjusted-CoxPH model showed patients with 
age ⩾ 65 years (HR = 1.19, 95% CI = 1.46–2.68, 
p < 0.001), DM (HR = 1.64, 95% CI = 1.19–
2.27, p = 0.002), Hb < 10.64 (HR = 0.66, 95% 
CI = 0.49–0.89, p = 0.006), albumin < 3.87 g/dl 
(HR = 0.62, 95% CI = 0.45–0.85, p = 0.003), 
Cr < 10.52 mg/dl (HR = 0.61, 95% CI = 0.43–
0.88, p = 0.008), K < 4.95 meq/l (HR = 0.73, 
95% CI = 0.55–0.99, p = 0.041), Kt/V urea < 0.71 
(HR = 0.61, 95% CI = 0.44–0.86, p = 0.005), and 
cardiothoracic ratio ⩾ 0.5 (HR = 1.98, 95% 
CI = 1.42–2.75, p < 0.001) were more likely to 
associate with the increasing risk of all-cause mor-
tality in HD patients.

Characteristics Total (n = 829) Alive (n = 633) Died (n = 196) p

 Phosphate (mg/dl) 0.588

  ⩾4.84 401 (48.37) 310 (48.97) 91 (45.43)  

  <4.84 428 (51.63) 323 (51.03) 105 (53.57)  

 iPTH (pg/ml) 0.919

  ⩾205.60 415 (50.06) 318 (50.24) 97 (49.49)  

  <205.60 414 (49.94) 315 (49.76) 99 (50.51)  

 Ferritin (ng/ml) 0.171

  ⩾412.70 415 (50.06) 308 (48.66) 107 (54.59)  

  <412.70 414 (49.94) 325 (51.34) 89 (45.41)  

 Kt/V urea 0.002

  ⩾1.70 368 (44.39) 300 (47.39) 68 (34.69)  

  <1.70 461 (55.61) 333(52.61) 128 (65.31)  

 URR 1.000

  ⩾0.65 786 (94.81) 600 (94.79) 186 (94.90)  

  <0.65 43 (5.19) 33 (5.21) 10 (5.10)  

 Cardiothoracic ratio <0.001

  ⩾0.50 437 (52.71) 294 (46.45) 143 (72.96)  

  <0.50 392 (47.29) 339 (53.55) 53 (27.04)  

BUN, blood urine nitrogen; DM, diabetes mellitus; iPTH, intact parathyroid hormone; TSA, time-averaged serum albumin; 
URR, urea reduction ratio.
The p value is estimated using independent two-sampled t-test.
p values less than 0.5 were considered statistically significant.

Table 2. (Continued)
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In the stepwise-CoxPH model, the risk factors 
that met critical p value < 0.2 were included. The 
stepwise-CoxPH model indicates patients with 
age ⩾ 65 years (HR = 1.92, 95% CI = 1.43–2.59, 
p < 0.001), DM (HR = 1.55, 95% CI = 1.15–2.10, 
p = 0.004), Hb < 10.64 g/dl (HR = 0.65, 95% 
CI = 0.49–0.87, p = 0.004), albumin < 3.87 g/dl 
(HR = 0.62, 95% CI = 0.46–0.84, p = 0.002), 
Cr < 10.52 mg/dl (HR = 0.64, 95% CI = 0.46–
0.88, p = 0.007), K < 4.95 meq/l (HR = 0.75, 
95% CI = 0.56–1.00, p = 0.048), Kt/V urea < 0.71 
(HR = 0.61, 95% CI = 0.45–0.84, p = 0.002), and 
cardiothoracic ratio ⩾ 0.5 (HR = 1.99, 95% 

CI = 1.44–2.75, p < 0.001) were more likely to 
increased all-cause mortality risk.

The RSF-CoxPH model included dialysis vin-
tage, age, sex, DM, Hb, albumin, BUN, creati-
nine, K, Ca, phosphate, Kt/V urea, and 
cardiothoracic ratio. Patients characterized with 
age ⩾ 65 years (HR = 1.97, 95% CI = 1.46–2.66, 
p < 0.001), with DM (HR = 1.63, 95% CI = 1.18–
2.25, p = 0.003), Hb < 10.64 g/dl (HR = 0.66, 95% 
CI = 0.49–0.89, p = 0.006), albumin < 3.87 g/dl 
(HR = 0.62, 95% CI = 0.45–0.85, p = 0.003), Cr <  
10.52 mg/dl (HR = 0.62, 95% CI = 0.46–0.88, 

Table 3. Univariate Cox proportional hazard regression analysis results for all-cause mortality.

Characteristics Comparison Unadjusted

HR 95% CI p

Dialysis vintage(years) ⩾5.60 versus <5.60 0.82 0.62–1.09 0.167

Age ⩾65 versus <65 2.91 2.19–3.87 <0.001

Sex Female versus male 1.05 0.79–1.39 0.735

DM Yes versus no 1.98 1.49–2.65 <0.001

Laboratory measurements

 Hb (g/dl) ⩾10.64 versus <10.64 0.62 0.47–0.83 0.001

 Albumin (g/dl) ⩾3.87 versus <3.87 0.39 0.29–0.52 <0.001

 BUN (mg/dl) ⩾68.91 versus <68.91 0.80 0.60–1.06 0.116

 Cr (mg/dl) ⩾10.52 versus <10.52 0.44 0.33–0.60 <0.001

 K (meq/l) ⩾4.95 versus <4.95 0.66 0.50–0.88 0.004

 Ca (mg/dl) ⩾9.22 versus <9.22 0.74 0.56–0.98 0.037

 Phosphate (mg/dl) ⩾4.84 versus <4.84 0.90 0.68–1.19 0.465

 iPTH (pg/ml) ⩾205.60 versus <205.60 0.96 0.73–1.27 0.795

 Ferritin (ng/ml) ⩾412.70 versus <412.70 1.27 0.96–1.68 0.095

 Kt/V urea ⩾1.70 versus <1.70 0.63 0.47–0.84 0.002

 URR ⩾0.65 versus <0.65 0.97 0.51–1.83 0.927

 Cardiothoracic ratio ⩾0.50 versus <0.50 2.75 2.01–3.77 <0.001

 Optimal concordance 0.6290

BUN, blood urea nitrogen; CI, confidence interval; DM, diabetes mellitus; HR, hazard ratio; iPTH, intact parathyroid 
hormone; URR, urea reduction ratio; WOA, whale optimization algorithm.
p values less than 0.5 were considered statistically significant.
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p = 0.008), K < 4.95 meq/l (HR = 0.74, 95% 
CI = 0.55–0.99, p = 0.042), Kt/V urea < 0.71 
(HR = 0.62, 95% CI = 0.44–0.86, p = 0.005), and 
cardiothoracic ratio ⩾ 0.5 (HR = 1.99, 95% 
CI = 1.43–2.76, p < 0.001) were more likely to 
increased all-cause mortality risk.

The WOA-CoxPH model included dialysis vin-
tage, age, DM, Hb, albumin, BUN, Cr, Ca, 
phosphate, ferritin, Kt/V urea, URR, and cardio-
thoracic ratio. Patients characterized with age ⩾  
65 years (HR = 1.99, 95% CI = 1.47–2.69, p <  
0.001), DM (HR = 1.63, 95% CI = 1.18–2.24, 
p = 0.003), Hb < 10.64 g/dl (HR = 0.65, 95 % 
CI = 0.48–0.88, p = 0.005), albumin < 3.87 g/dl 
(HR = 0.62, 95% CI = 0.45–0.85, p = 0.003), 
Cr < 10.52 mg/dl (HR = 0.62, 95% CI = 0.44–
0.87, p = 0.006), Kt/V urea < 0.71 (HR = 0.60, 
95% CI = 0.44–0.83, p = 0.002), and cardiotho-
racic ratio ⩾ 0.5 (HR = 1.94, 95% CI = 1.40–
2.70, p < 0.001) were more likely to increased 
all-cause mortality risk.

RSF-CoxPH and WOA-CoxPH model obtained 
similar analysis results. Both models selected 13 
out of the 16 factors but differ in three factors. 
The concordance index for full-adjusted-CoxPH, 
stepwise-CoxPH, RSF-CoxPH, and WOA- 
CoxPH model were 0.7404, 0.7388, 0.7406, and 
0.7409, respectively. The comparison results 
showed that WOA-CoxPH model obtained the 
highest C-index among all models, which indi-
cates that the WOA model could achieve better 
concordance in all-cause mortality risk estimation 
for HD patients. Furthermore, the Kaplan–Meier 
curve of significant risk factors identified in both 
RSF and WOA model were illustrated in Figure 
1. Figure 1(a) presented the overall survival prob-
ability of all patients, the overall survival rate of all 
patients was 76.9% (95% CI = 74.0–79.8). 
Figure 1(b)–(i) illustrated overall survival proba-
bility analysis results of the eight significant 
parameters obtained from the WOA-CoxPH 
model including age (log-rank test p < 0.001), 
DM (log-rank test p < 0.001), Hb (log-rank test 
p = 0.001), albumin (log-rank test p < 0.001), Cr 
(log-rank test p < 0.001), K (log-rank test 
p = 0.004), Kt/V (log-rank test p = 0.016), and 
cardiothoracic ratio (log-rank test p < 0.001), 
which have also showed significant survival differ-
ence between low- and high-risk characteristics in 
single-factor analysis. The red solid line indicates 
the high-risk characteristics, and the blue solid 

line indicates the low-risk characteristics. The 
high-risk characteristics of eight selected param-
eters were scored 1, and the low-risk characteris-
tics were scored 0. An integrated risk score for 
overall survival was generated based on the sum-
mation of eight selected parameters derived using 
WOA-selection model. An optimal cutoff point 
for the integrated risk score was determined using 
ROC analysis according to the mortality status. 
Thus, the patients were dichotomized into low- 
and high-risk subgroup by the optimal cutoff 
points of seven. Figure 1(j) showed that the 
patients who obtained seven or more risk charac-
teristics of eight selected parameters will achieve 
significant worse overall survival probability com-
pared with those who obtained less or equal to six 
risk characteristics (log-rank test p < 0.001). 
Overall, the integrated low- and high-risk sub-
group showed greater discrepancy compared with 
each single risk factor selected by WOA-CoxPH 
model. In summary, patients who obtained seven 
or more risk characteristics of eight selected 
parameters could have potentially increased risk 
of all-cause mortality in HD population.

Discussion
In this study, we identified optimal risk factors 
combination of all-cause mortality in HD patients 
using WOA-CoxPH model. The identified risk 
factors were age, diabetes, hemoglobin, serum 
albumin, serum creatinine, serum potassium, 
Kt/V urea, and cardiothoracic ratio. The study 
results are consistent with previous studies in HD 
patients.1,37–46 Based on clinical practice point, 
aging is characterized by the progressive decline 
in function of organs. Consequently, aging con-
tributes to the disease occurrence and disease-
related mortality. In our previous investigations, 
we found that elder age was associated with 
decline in physical functional performance and 
cognitive function in HD patients.12,47 We believe 
that these disability circumstances predispose 
HD patients to death risk. It is well recognized 
that protein-energy-wasting is strongly associated 
with mortality in dialysis patients.38 Serum albu-
min, creatinine, and hemoglobin are commonly 
applied to be as surrogates for nutritional status. 
Our previous observational studies have validated 
that these clinical factors are associated with poor 
quality of life and death risk in dialysis 
patients.1,12,48 Diabetes has become the major eti-
ology of chronic kidney disease. This disease 
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Figure 1. Kaplan–Meier curve for all-cause mortality in (a) all patients and difference subgroup of (b) age, (c) 
DM status, (d) hemoglobin, (e) albumin, (f) creatinine, (g) potassium, (h) Kt/V, (i) cardiothoracic ratio group, and 
(j) integrated risk subgroup derived using WOA-CoxPH model.
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involves endothelial dysfunction and eventually 
organ failure. The association between diabetes 
and risk of mortality in HD patients also has evi-
denced via systematic review and meta-analysis.49 
Chronic kidney disease patients commonly have 
elevated serum potassium levels due to reduced 
renal clearance. Cardiac conductive activity is 
influenced by serum potassium levels. Elevated 
serum potassium levels could increase cardiac 
arrythmia events in dialysis patients. Con-
sequently, death risk would increase in the event 
of serum potassium increment especially in HD 
patients.45 Considering HD adequacy, Kt/V-urea 
calculation is commonly used.44 This calculation 
reflects the clearance of small molecular weight 
uremic toxins. This index has been applied as 
standard surrogate to evaluate dialysis adequacy 
either on HD or on peritoneal dialysis for years. 
Moreover, this adequacy index has been reported 
with survival in HD patients.50 Taken together, 
selected risk factors for death in HD patients via 
WOA and RSF feature are reasonable via clinical 
practice point and literature review.

The study results indicate WOA-CoxPH model 
could perform as better survival model compared 
with typical statistical survival selection model.51 
WOA used a group-based approach combined 
with exploration and exploitation procedures to 
accelerate the optimal search process. WOA algo-
rithm could maintain an appropriate balance 
between exploration and exploitation by consid-
ering both local and global search for optimal 
combination. The mentioned search strategy 
made WOA more competitive than other meth-
ods, especially in terms of complex and interac-
tive feature issues. Moreover, RSF-CoxPH also 
provides a similar performance with WOA-
CoxPH compared with typical CoxPH models. 
RSF calculates the VIMP of each variable and 
ranked the value in purpose to filter the high-
impact variables for interest outcome, which 
could provide lower prediction errors.52 Both 
WOA-CoxPH and RSF-CoxPH showed the 
addition machine learning algorithm in feature 
selection procedure could improve the perfor-
mance of CoxPH model.

Several limitations of current study should be 
noted. First, the inclusion of certain covariates 
was limited due to the retrospective nature of cur-
rent study. Second, this is a single institution 
study. Third, the study findings are restricted in 

HD population. Although the mentioned limita-
tions could limit the generalisability of current 
findings, this study still provides an optimal fea-
ture selection approach by using RSF and WOA 
in survival model, which could provide better 
concordance model performance compared with 
typical feature selection methods in survival 
model estimation.

Conclusion
The all-cause mortality is commonly considered 
as primary endpoints for patients undergoing 
long-term HD in the clinical studies. Previous 
studies indicated all-cause mortality in HD 
patient is associated with multiple clinical factors, 
including comorbidity, medications, nutrition 
status, and others. This study performed the all-
cause mortality risk assessment model of HD 
patients based on machine learning feature selec-
tion procedure. Compared with the typical statis-
tical selection model, RSF-CoxPH and 
WOA-CoxPH model showed better model per-
formance. Therefore, RSF-CoxPH and WOA-
CoxPH model identified risk factors combination 
might contribute to the more precise risk assess-
ment of all-cause mortality in HD patients, and 
those identified risk factors could be considered 
as an important monitoring index in further man-
agement for HD patients in order to provide bet-
ter survival outcome in maintenance HD 
population.
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