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Abstract: MnO2 and MnO2 blended with 1 and 2 weight percent of activated carbon (AC), MnO2/AC1
and MnO2/AC2 were synthesized through the sol–gel method. The pure chitosan (CS) films were
cast in the form of films. Similarly, 5 weight% of each MnO2, AC, MnO2/AC1 and MnO2/AC2
was intermingled with the CS to produce different films, such as CS-AC, CS-MnO2, CS-MnO2/AC1
and CS-MnO2/AC2. Zero-valent Co NPs were then supported on these films through the chemical
reduction method and expressed as CS@Co, CS-AC@Co, CS-MnO2@Co, CS-MnO2/AC1@Co and
CS-MnO2/AC2@Co NPs. All the catalysts were characterized by field emission scanning electron
microscopy (FESEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques.
The synthesized catalysts were used as a dip catalyst against the hydrogenation of 4-nitrophenol
(4NP), and for the degradation of methyl orange (MO) and Congo red (CR) dyes. The kapp and R2

values were deduced from pseudo-first-order kinetics for 4NP and MO and zero-order kinetics for CR
dye. The kapp values of CS-AC@Co and CS-MnO2/AC1@Co NPs for 4NP hydrogenation were higher
than those for any other member of the series, at 1.14 × 10−1 and 1.56 × 10−1 min−1 respectively.
Similarly, the rate of CR degradation was highest with CS-AC@Co. The R2 values for 4NP, MO
and CR dyes were above 0.9, which indicated that the application of pseudo-first- and zero-order
models were appropriate for this study. Furthermore, the antibacterial activity of all the catalysts
was evaluated against Pseudomonas aeruginosa and Escherichia coli. The CS-AC@Co NPs exhibited the
highest zone of inhibition compared to other catalysts against P. aeruginosa, while all the catalysts
were inactive against E. coli. This study reveals that the catalyst can be used for the degradation of
other pollutants and for microbial inhibition.

Keywords: chitosan; activated carbon; MnO2; Co NPs; antibacterial activity; degradation

1. Introduction

A dramatic increase in the anthropogenic activities, such as industrialization, mod-
ernization and urbanization, has contaminated water bodies to a serious extent. These
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activities are indeed exerting adverse effects on flora and fauna in ecosystems [1]. Nowa-
days, innumerable industries discharge their effluents directly into water bodies without
any treatment, hence posing potential threats to aquatic biota [2]. The effluents from textile,
paper, cosmetics, pharmaceuticals and food processing units are heavily loaded with dyes
and other chemicals, which decrease the transparency of the water and stimulate their
toxicity [3]. Dyes and dyestuff significantly block light penetration into water bodies,
thereby impeding the vital activity of photosynthesis, hence rendering the entire ecosystem
deprived of oxygen [4]. Reports have revealed that dyes and their degradation products
are genotoxic and cytotoxic to living organisms [5,6]. Moreover, dyes accelerate immuno-
logical reactions, induce hyperactivity in children [7] and cause nasal congestion, urticaria,
asthmatic disorders and rhinitis in men [8]. Besides the degradation of azo dyes, this study
also aimed to decontaminate the water from hazardous chemicals such as 4-nitrophenol
(4NP), which has been proven to be highly toxic to human beings. Indeed, 4NP is primarily
discharged as an effluent by the pharmaceutical, pesticide, petrochemical and dye indus-
tries. Moreover, 4NP is a well-known potential carcinogen and mutagen; 4NP has been
categorized as a priority contaminant by the United States (US) Environmental Protection
Agency (EPA) [9]. As a consequence of insights into the hazardous effects caused by dyes
and PNP, they should be removed from water bodies at the earliest opportunity.

In the last two decades, scientists and researchers have been attempting to remove as
much dyestuff from water as possible [10]. In this regard, they have incorporated several
water purification techniques, including adsorption, filtration [11] membrane technologies,
Fenton’s oxidation processes, advanced oxidation processes, electrochemical oxidation,
biological methods and the use of zero-valent metal (ZVM) nanocatalysis, which are
documented in appropriate detail in the literature [12]. Biological methods for wastewater
treatment represent the most promising techniques, owing to their simplicity, ease of
applicability, versatility and low costs [13]. However, most of the synthetic dyes are non-
biodegradable under their complex benzenoid frameworks; thus, biological treatments
cannot be extended to a broader spectral domain of dyes [14]. Chemical treatment of
wastewater, such as oxidation via ozone, ClO2 and chlorine, has also been proven to be
very effective due to its remarkably high efficiency and reproducibility, but they generate
chlorinated hydrocarbons as byproducts, which are well-established carcinogens [15].
Nowadays, advanced oxidation processes (AOPs) such as Fenton’s reagent [16], electro-
Fenton’s, photo-electro Fenton’s, photocatalytic and photo-ozonation techniques, are the
main areas of interest for environmental chemists worldwide for the decontamination of
waste water [17], but their rising prices and operational difficulties limit the applicability of
these techniques.

The introduction of catalytic degradation techniques for pollution control has gained
the attention of researchers globally, to a greater extent than any other technique. Over
the past few decades, among the catalytic techniques, the incorporation of zero-valent
metal (ZVM) nanocatalytic techniques for water pollution abatement constitutes a newly
emerging and highly promising tool due to its elevated catalytic potential [18–22]. The
catalytic potential of ZVM and various metal oxide nanoparticles is attributed to their
remarkably high surface to volume ratio, large surface energy and tiny quantum size effect,
diversity, versatility and ease of application over a broad spectral regime of pollutants
in water [23,24]. ZVM is synthesized in an eco-friendly way by treating a pristine or a
supported metal ion with a suitable reducing agent such as NaBH4; however, ZVM NPs
are always vulnerable to agglomeration and aggregation, which consequently leads to
a loss of catalytic activity, but this problem can be easily avoided by using a suitable
supporting matrix [25]. The supported catalyst after use can be conveniently recovered
from the reaction mixture and can be reused as a dip catalyst. The employment of polymer-
coated nanoscale composites for ZVM is gaining popularity in academic and industrial
sectors due to their intrinsic features and significantly enhanced surface area. Some serious
issues are always associated with the use of naked ZVM NPs for pollution abatement,
such as the percolation of ZVM in the reaction mixture, and its cyclization, mass transport
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and effective isolation from the reaction mixture after use; however, these problems can
be minimized by anchoring the ZVM over an appropriate polymeric support. Various
polymer supports have been mentioned in the literature for the stabilization of zero-
valent metal nanoparticles [10,26]. Chitosan is one of the emerging natural polymers that
is used for NP stabilization due to their various inherent functional groups. Chitosan
is a natural biopolymer with a linear structure and is derived from chitin. Chitosan
possesses several important characteristics, such as biodegradability, non-toxic nature
and biocompatibility; therefore, it is largely applied in various biomedical sectors [27,28].
All these characteristics make chitosan unique compared to other polymers; however,
several drawbacks are associated with chitosan polymers, such as their low antimicrobial
characteristics. To increase the antimicrobial characteristics and facilitate the anchoring
of the NPs on their surface, several modifications have been adopted—for instance, the
incorporation of inorganic fillers, which not only increases various characteristics of the
polymer, but is also reported to increase the bioactivity of the polymer [1,29]. Therefore,
the current study involved the stabilization of ZVM Co NPs over a variety of supports,
such as pristine chitosan (CS), CS-blended composites with activated carbon (CS-AC), CS
blended with MnO2 (CS-MnO2), CS-blended MnO2/AC1(CS-MnO2/AC1) and CS-blended
MnO2/AC1(CS-MnO2/AC1). The above-mentioned composites were templates in the
form of films and were employed as a solid supportive matrix for Co NPs’ stabilization;
they were evaluated in terms of the inhibition of pathogenic bacteria. These stabilized Co
NPs were utilized to address the degradation/reduction of target contaminants such as
4NP and different dyes to evaluate the comparative role of the matrix.

2. Experimental
2.1. Reagents and Materials

Chitosan polymer with 85% degree of acetylation was procured from BDH Com-
pany (London, England), and Congo red and methyl orange dyes, p-nitrophenol (4NP),
NaBH4 and acetic acid were obtained from Dae-Jung Company (Sasang-gu, Busan, Korea).
Moreover, CoCl2, MnCl2 salts and NaOH were purchased from Sigma Aldrich (Kawasaki,
Kanagawa, Japan). Distilled water was obtained from the distillation plant of the Depart-
ment of Chemistry, University of Swabi, KPK, Pakistan.

2.2. Instrumentation

The EDS and FESEM were performed on JSM-7600F, Tokyo, Japan, and FESEM JEOL
(JSM-7600F, Japan). The X-ray diffraction (XRD) technique was performed on a PAN JDX-
3532 JEOL Tokyo, JAPAN analytical diffractometer with a Cu Kα source of 1.5418 Å (40 kV,
30 mA, monochromatic). A UV–visible spectrophotometer was obtained from PerkinElmer
Company (Lambda 365) and scanned from 190 to 800 nm (Waltham, MA, USA).

2.3. Synthesis of Materials and Composite Films
2.3.1. Synthesis and Activation of Activated Carbon

The peanut shell was ground and heated at 400 ◦C for 6 h and then sieved with a
20 µm pore size sieve. After this, it was treated with concentrated HNO3, washed with
distilled water and dried. The as-prepared activated carbon (AC) was used for the synthesis
of other materials.

2.3.2. Synthesis of MnO2

For the synthesis of MnO2 NPs, 1 M MnCl2 solution was prepared in 200 mL distilled
water and basified with NaOH solution till pH 11, which was monitored on a pH meter.
The solution was placed on a hot plate at 80 ◦C for 6 h. After the reaction’s completion, the
supernatant was decanted and the precipitate was washed with a 7:3 ethanol–water mixture,
and then the solution was centrifuged three times for the separation of the precipitate based
on mass gravity. The precipitate was heated at 80 ◦C in an oven overnight and then we
calcined the MnO2 NPs at 400 ◦C in a furnace for 6 h.
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2.3.3. Synthesis of MnO2/AC1 and MnO2/AC2

First, 1 M MnCl2 was mixed with 200 mL distilled water. After this, 1 and 2 weight%
of AC was separately added to a beaker containing 100 mL of MnCl2 solution to prepare
MnO2/AC1 and MnO2/AC2, respectively. Each solution was basified with a dilute solution
of NaOH till pH 11, which was monitored by a pH meter. The mixture was placed on
the hot plate at 80 ◦C for 6 h and then washed with ethanol and water mixture (7:3) and
was centrifuged three times to separate the precipitate. The precipitate was dried at 80 ◦C
overnight, and calcined at 400 ◦C for 6 h in a furnace.

2.3.4. Synthesis of Pure CS Films

The solution of CS was prepared by mixing 2 g CS in a 7:3 (v/v) acetic acid and water
mixture. The mixture was stirred at room temperature until a clear paste formed. The CS
paste was cast in a petri dish and uniformly dispersed in the form of sheets, and it was
kept in an open environment. The solvent and water molecules were evaporated from the
sheets; as a result, one face of the sheet was porous, while the other was smooth. The dried
sheets were dipped in a concentrated solution of NaOH for a few minutes and then washed
with distilled water to remove acid/base content.

2.3.5. Synthesis of CS Hybrid Sheets

Various sheets were prepared by blending the synthesized nanocomposite with CS
host polymer.

All the films, such as CS-AC, CS-MnO2, CS-MnO2/AC1 and CS-MnO2/AC2, were
prepared by adding 5 weight% of AC, MnO2, MnO2/AC1 and MnO2/AC2, respectively, to
the CS polymer and cast in a petri dish in the form of sheets. The remaining procedure for
the sheet synthesis was the same as discussed above for the CS sheet preparation.

2.3.6. Stabilization of Co NPs on CS and CS Hybrid Sheets

The CS and CS hybrid sheets were dipped in 1 M Co salt solution for 6 h. All the sheets
that adsorbed Co2+ ions were washed with distilled water to remove the un-adsorbed
ions, and treated with freshly prepared NaBH4 solution, which changed the color of the
sheets from pink to black. The black color was an indication of Co0 NPs synthesis. The
synthesized Co NPs were used to treat discoloration caused by MO and CR dyes, as well as
for the hydrogenation of 4NP. A generalized schematic representation is given in Scheme 1,
including the preparation of CS-MnO2/AC1 and the synthesis of CS-MnO2/AC1@Co NPs.

2.4. Antibacterial Characteristics

The antibacterial potential of all the catalyst-supported Co NPs was assessed against
P. aeruginosa and E. Coli on Mueller–Hinton agar using the Kirby–Bauer disk diffusion
method [30]. The plates were sterilized, and then the culture of P. aeruginosa and E. coli
was spread uniformly via a sterilized spreader across the whole plate. Different plates
were used for P. aeruginosa and E. coli. After bacterial culture, the catalyst was cut into
appropriate dimensions and then positioned in the plates containing bacterial colonies.
These plates were incubated at 37 ◦C for 24 h and the zone of inhibition was measured
through a scale in cm. The zone of inhibition was calculated through the mean value
around the nutrient agar disk.

2.5. Evaluation of Catalyst Activity in 4NP Reduction and Dye Degradation

All the catalysts’ activities were assessed for the hydrogenation of 4NP and degrada-
tion of MO and CR dyes. Briefly, 0.2 mM 4NP solution was prepared in 100 mL of distilled
water and then 2.5 mL of it was placed in a cuvette and the absorption noted. After this,
0.5 mL of NaBH4 (0.5 mM) was added to the same cuvette and then 20 mg of the catalyst
was added. The hydrogenation of 4NP or degradation of dyes was recorded using a UV–vis
spectrophotometer. Similarly, 0.1 mM solutions of CR and MO were prepared in 100 mL
of distilled water and then 2.5 mL of each dye was placed in a cuvette, along with 0.5 mL
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NaBH4 (0.5 mM) solution and 20 mg of the catalyst, and their absorbance was recorded on
the UV–vis spectrophotometer (Waltham, MA, USA).
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3. Results and Discussion
3.1. FESEM and EDS

The FESEM images and EDS spectrum are provided in the inset of Figure 1. The
left- and right-hand sides of Figure 1 present the FESEM images and EDS spectrum. The
FESEM image of CS@Co NPs shows a smooth surface with small pores (Figure 1a). The
EDS spectrum and elemental window indicate peaks for C, O and N with 9.99, 31.68
and 2.75 weight%. The C, O and N atoms arise from the chitosan skeleton. Other peaks
arise for Co and Cu elements. The Co and Cu elements are present in 24.08 and 16.18 by
weight% (Figure 1b). Peaks for Cu are observed throughout the EDS spectrum, which
is due to the Cu sputtering. Cu sputtering was performed before the FESEM and EDS
analyses. Figure 1c indicates that AC covered the CS polymer and there were voids in
their morphology. The EDS spectrum indicated C, O, N and Co elements with 10.31,
31.51, 3.01 and 23.76 weight percent in the CS-AC@Co catalyst (Figure 1d). Similarly, the
FESEM spectrum of CS-MnO2 indicated a rough surface of the polymer sheet, with small
sphere-shaped embedded Co NPs (Figure 1e). The elemental window indicated peaks for
C, O, N, Mn and Co elements, which were present in 10.65, 37.54, 2.42, 0.16 and 18.11 by
weight percent in the CS-MnO2@Co NPs (Figure 1f). The FESEM image of CS-MnO2/AC1
(Figure 1g) indicated a protruding surface, while the EDS indicated peaks for C, O, N and
Co elements with 27.74, 36.39, 5.87, 0.23 and 11.64 weight percent in the CS-MnO2/AC1@Co
catalyst (Figure 1h). The CS-MnO2/AC2@Co catalyst showed a flat surface of the films,
with numerous white spots on them (Figure 1i). The EDS and elemental window indicated
peaks for C, N, O, Mn and Co with 31.55, 8.29, 32.93, 0.13 and 5.47 weight%, respectively
(Figure 1j).
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Figure 1. The FESEM and EDS images of CS@Co NPs (a,b), CS-AC@Co NPs (c,d), CS-MnO2@Co
NPs, (e,f), CS-MnO2/AC1@Co NPs (g,h) and CS-MnO2/AC2@Co NPs (i,j).
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3.2. XRD

The XRD spectrum of the synthesized catalysts is shown in Figure 2. The XRD spectra
of CS@Co, CS-AC@Co, CS-MnO2/AC1@Co and CS-MnO2/AC2@CoNPs indicated an
amorphous peak at 2θ = 22.5◦, while CS-MnO2@Co exhibited an amorphous peak at 27.8◦.
These amorphous peaks reveal that Co NPs grew in an amorphous nature during their fab-
rication. The literature also includes similar reports for Co and Cu NPs, respectively [31,32].
Therefore, it is suggested that Co NPs with a larger particle size are formed on CS and CS
hybrid catalysts during their synthesis.
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3.3. Antibacterial Activity

Antibacterial characteristics are important for applications in the biomedical field [33,34].
All the catalysts were tested against two bacterial species, P. aeruginosa and E. coli, for 24 h
of incubation time. The upper row of Figure 3 presents the disk diffusion results for
P. aeruginosa, while the lower row show the results for E. coli. The zones of inhibition of
all the catalysts were measured in cm. In the current study, CS-AC@Co NPs exhibited
the strongest antibacterial activity, inhibiting a 2.2 ± 0.1 cm zone of P. aeruginosa, while
the CS@Co NPs showed a 1.5 ± 0.1 cm zone of inhibition. Similarly, CS-MnO2@Co and
CS-MnO2/AC1@Co NPs also showed an approximately 0.3 ± 0.1 cm zone of inhibition,
while CS-MnO2/AC2@Co NPs was inactive against P. aeruginosa. Furthermore, all the
synthesized catalysts was inactive against E. coli.
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3.4. Catalyst Activity
3.4.1. Hydrogenation of 4NP

The hydrogenation of the –NO2 group of 4NP was carried out by using NaBH4
as a reductant to assess the catalyst activity of CS@Co, CS-AC@Co, CS-MnO2@Co,
CS-MnO2/AC1@Co and CS-MnO2/AC2@Co NPs. Firstly, 4NP exhibited a peak at 315 nm
in the absorbance spectrum, with a light yellow color; however, soon after the addition
of NaBH4, a red shift was observed and the λmax changed to 400 nm, with a deep yellow
color [35]. The increase in the wavelength of 4NP was due to the increase in conjugation
in the nitrophenolate anion. Numerous studies are available indicating that a reducing
agent has a negligible effect on the degradation of 4NP, and thus the hydrogenation of the
–NO2 group in the presence of a reducing agent is considered a kinetically unfavorable reac-
tion [36–38]. However, many catalyst systems have been described by various researchers
for the hydrogenation of the –NO2 group [1,39–41]; nevertheless, a more efficient and
retrievable catalyst system is required. The hydrogenation of 4NP is considered an atom
economic reaction where 4-aminophenol (4AmP) is the only major product. Furthermore,
this reaction can be easily recorded on a UV–vis spectrophotometer. The decrease in the
absorbance of 4-nitrophenolate was recorded at 400 nm as the reaction progressed, where a
peak at 290 nm was attributed to the formation of the 4AmP product.

The decline in the absorbance at 400 nm was documented after the addition of CS@Co,
CS-AC@Co, CS-MnO2@Co, CS-MnO2/AC1@Co and CS-MnO2/AC2@Co NPs. As depicted
in Figure 4a, the CS@Co NPs reduced 92.62% of 4NP to 4AmP in 37 min, 81.67% by
CS-AC@Co in 16 min (Figure 4b), 85.55% by CS-MnO2@Co in 54 min (Figure 4c) and 89.63%
by CS-MnO2/AC1@Co in 12 min (Figure 4d), while CS-MnO2/AC2@Co NPs reduces
81.60% of 4NP to 4AmP in 45 min (Figure 4e). The percent reduction of the –NO2 group of
4NP to –NH2 of 4AmP is presented in Figure 4f. The rate constant data were extracted from
the pseudo-first-order kinetics, which indicated the highest value for CS-MnO2/AC1@Co
NPs, which was 1.56 × 10−1 min−1, and the slowest for CS-MnO2@Co NPs. The rate
constant value and the % reduction of the –NO2 group to –NH2 indicated that the addition
of either AC or MnO2/AC composite had a significant effect on the chitosan polymer and
enhanced the rate of this hydrogenation reaction. However, amongst all the catalysts, the
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CS-MnO2/AC1@Co NPs showed superior catalyst performance compared to other catalysts
in this study. However, as is obvious from Table 1, all the hybrid films indicated stronger
activity as compared to the CS, except CS-MnO2@Co NPs; therefore, we can conclude that
the addition of AC or MnO2/AC played a prominent role in the improvement of the CS
polymer host. Furthermore, the value of R2 indicates that the experimental data are in good
agreement and the pseudo-first-order kinetic model is appropriate.

Polymers 2022, 14, 627 11 of 19 
 

 

 
Figure 4. Absorbance spectrum of 4NP reduction in the presence of NaBH4 by using CS@Co (a), CS-
AC@Co (b), CS-MnO2@Co (c), CS-MnO2/AC1@Co (d), CS-MnO2/AC2@Co NPs (e) and percentage 
reduction as a function of time (f). Experimental conditions: 2.5 mL of 0.2 mM 4NP solution; 0.5 mL 
of 0.5 mM NaBH4 solution and 20 mg of each catalyst. 

3.4.2. Discoloration of MO Dye 
All the catalysts were applied to treat the discoloration caused by MO dye in the 

presence of NaBH4. MO dye is a mono azo dye with a –N = N– functional group. A peak 
at 465 nm appeared in the absorbance spectrum of the MO dye; however, the azo group 
of MO dye reduces to the –NH2-NH2– group after the addition of NaBH4. It is noted in the 
literature that the MO dye is not or is less degraded in the presence of NaBH4, and thus it 

Figure 4. Absorbance spectrum of 4NP reduction in the presence of NaBH4 by using CS@Co (a),
CS-AC@Co (b), CS-MnO2@Co (c), CS-MnO2/AC1@Co (d), CS-MnO2/AC2@Co NPs (e) and percent-
age reduction as a function of time (f). Experimental conditions: 2.5 mL of 0.2 mM 4NP solution;
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Table 1. Rate constant, R2 values and % reduction or degradation values of 4NP and MO and CR
dyes by using Co NPs supported on different polymer sheets.

Catalyst Analyte R2 kapp % Degradation

CS@Co

4NP

0.9835 7.01 × 10−2 92.62
CS-AC@Co 0.9698 1.14 × 10−1 81.67

CS-MnO2@Co 0.9821 3.59 × 10−2 85.55
CS-MnO2/AC1@Co 0.9371 1.56 × 10−1 89.63
CS-MnO2/AC2@Co 0.9842 4.28 × 10−2 81.60

CS@Co

CR

0.9792 1.43 × 10−1 93.28
CS-AC@Co 0.9622 2.25 × 10−1 89.49

CS-MnO2@Co 0.9171 1.44 × 10−1 93.53
CS-MnO2/AC1@Co 0.9410 1.33 × 10−1 86.31
CS-MnO2/AC2@Co 0.7940 6.45 × 10−2 83.44

CS@Co

MO

0.8543 1.50 × 10−2 71.19
CS-AC@Co 0.9558 5.81 × 10−2 86.64

CS-MnO2@Co 0.9543 1.05 × 10−2 48.61
CS-MnO2/AC1@Co 0.9977 4.36 × 10−2 81.42
CS-MnO2/AC2@Co 0.9119 6.75 × 10−2 87.97

The kapp and R2 values of 4NP and MO are based on pseudo-first-order kinetics, while the kapp and R2 values for
CR discoloration were deduced from zero-order kinetics.

3.4.2. Discoloration of MO Dye

All the catalysts were applied to treat the discoloration caused by MO dye in the
presence of NaBH4. MO dye is a mono azo dye with a –N = N– functional group. A peak
at 465 nm appeared in the absorbance spectrum of the MO dye; however, the azo group
of MO dye reduces to the –NH2-NH2– group after the addition of NaBH4. It is noted in
the literature that the MO dye is not or is less degraded in the presence of NaBH4, and
thus it is kinetically an unfavorable process. The degradation of MO dye at 465 nm was
recorded using all the catalysts in the presence of NaBH4; as a result, a peak at 250 nm was
observed. The absorbance spectrum of CS@Co NPs is presented in Figure 5a, which shows
that approximately 71.19% of the MO dye was decolorized in 60 min. The CS-AC@Co NPs
degraded 86.64% of MO dye in 33 min (Figure 5b), while CS-MnO2@Co NPs degraded only
48.61% in 54 min (Figure 5c). Similarly, CS-MnO2/AC1 and CS-MnO2/AC2 decolorized
81.42 and 87.97% of MO dye in 60 and 29 min (Figure 5d,f), respectively. The % degradation
of MO dye with all the catalysts is presented in Figure 5f. Based on the data, it is inferred
that MnO2 further diminished the catalyst activity of CS, while the AC, MnO2/AC1 and
MnO2/AC2 enhanced the catalyst activity compared to CS. The pseudo-first-order model
was used to assess the kinetic rate of all the catalysts against the degradation of MO dye.
The experimental data fitted well in the pseudo-first-order model; therefore, this model
was applied to MO degradation to deduce the kapp and R2 values. As manifested in Table 1,
the highest catalyst activity was displayed by CS-MnO2/AC2, with a rate constant value of
6.75 × 10−2 min−1, followed by CS-AC@Co NPs (5.81 × 10−2 min−1), while the lowest MO
degradation rate was displayed by CS-MnO2@Co NPs (1.05 × 10−2 min−1). The linearity
of all the catalysts except CS@Co NPs was above 0.9, which indicates that the experimental
data fitted well in the pseudo-first-order model.
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Figure 5. Absorbance spectrum of MO degradation in the presence of NaBH4 by using CS@Co (a),
CS-AC@Co (b), CS-MnO2@Co (c), CS-MnO2/AC1@Co (d) and CS-MnO2/AC2@Co NPs (e) and %
degradation of MO dye (f). Experimental conditions: 2.5 mL of 0.1 mM MO solution; 0.5 mL of
0.5 mM NaBH4 solution and 20 mg of each catalyst.

3.4.3. Discoloration of CR Dye

CR is a diazo dye and its λmax appeared at 495 nm in the UV–vis spectrum. The azo
group is converted to the hydrazine group after NaBH4 treatment [38,42]. As with 4NP and
MO dye, the CR dye is also kinetically an unfavorable process with NaBH4 treatment [40,43].
A decrease in the absorbance of the CR dye at 495 nm was recorded during the UV–vis
spectroscopy and a few new peaks were noted at 248 and 280 nm due to the formation of
amine-containing products. The CS@Co NPs degraded 93.28% of CR dye (see Figure 6a
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for the absorbance spectrum) in 18 min. Similarly, CS-AC@Co NPs (Figure 6b) decolorized
89.49% of CR dye in 12 min, while CS-MnO2@Co NPs (Figure 6c) decolorized 93.53% in
19 min. The CS-MnO2/AC1@Co (Figure 6d) and CS-MnO2/AC2@Co NPs (Figure 6e)
decolorized 86.31% and 83.44% CR dye in 18 and 27 min, respectively. The % discoloration
of CR dye is depicted in Figure 6f. Unlike the 4NP and MO dye, the experimental data
of the CR dye are fixed in the zero-order kinetics because the linearity of the zero-order
kinetics for CR degradation is greater than that of the pseudo-first-order kinetics model.
The rate constant with CS-AC@Co NPs was the highest, at 2.25 × 10−1 min−1, and the
lowest was observed with CS-MnO2/AC2, at 6.75 × 10−2 min−1. The R2 values of all the
catalysts except CS-MnO2/AC2 were above 0.9, which suggests the agreement of the data
in the zero-order kinetics (Table 1).
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Figure 6. Absorbance spectra of CR degradation in the presence of NaBH4 by using CS@Co (a),
CS-AC@Co (b), CS-MnO2@Co (c), CS-MnO2/AC1@Co (d) and CS-MnO2/AC2@Co NPs (e), and %
degradation of CR dye (f). Experimental conditions: 2.5 mL of 0.1 mM CR solution; 0.5 mL of 0.5 mM
NaBH4 solution and 20 mg of each catalyst.
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3.4.4. Recyclability of the Catalyst

The recyclability of the CS-AC catalyst was evaluated against the hydrogenation re-
action of the 4NP reaction. First, 0.13 mM solution of the 4NP was treated with 0.5 mM
solution of NaBH4 and the reaction’s progress was recorded using the UV–vis spectropho-
tometer. The reaction was completed in 11 min, and afterwards, the catalyst was fed to
the second cycle for 11 min and similarly for the third cycle under the same experimental
conditions. As shown in Figure 7a, the CS-AC@Co NPs reduced approximately 85% of 4NP
to AmP in 11 min; however, the second and third (see Figure 7b,c for UV–vis spectrum)
cycles approximately reduced 40% of 4NP to 4AmP in 11 min. As is clear from Figure 7,
the catalyst activity was lost after the first cycle; however, no further loss in activity was
observed in the second and third cycles. This can be explained by the low availability
of the catalyst’s active sites after the first cycle. Figure 7d presents a bar graph of the %
reduction of 4NP and the inset in Figure 7d shows the % reduction of 4NP as a function of
reaction time.
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Figure 7. Recyclability of the CS-AC catalyst against 4NP reduction. The absorbance spectrum of
4NP reduction for the 1st cycle (a), 2nd cycle (b) and 3rd cycle (c), and the % reduction of 4NP against
the number of cycles (d). The bar graph shows the % reduction of 4NP as a function of time in
Figure 7d. Experimental conditions: 4NP (2.5 mL of 0.13 mM); NaBH4 (0.5 mL of 0.5 mM); 20 mg of
CS-AC catalyst.

4. Conclusions

In the current study, various nanocomposites, including MnO2, MnO2/AC1 and
MnO2/AC2, were synthesized through the sol–gel process. The effect of these nanocompos-
ites along with activated carbon (AC) was revealed on chitosan polymer (CS), and 5 weight
percent of each nanocomposite and AC was added as a filler in the CS polymer and cast in
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the form of films. All these films were fabricated with Co+2 ions and then converted to their
corresponding Co NPs by treatment with NaBH4. Among all the catalysts, CS-AC@Co
NPs indicated good antibacterial activity against P. aeruginosa, while all the catalysts were
inactive against E. coli. The synthesized Co NPs on the CS and CS hybrid film templates
were used as a dip catalyst for the hydrogenation of 4NP and degradation of MO and CR
dyes. The rate constant value of 4NP and MO dye was extracted from the pseudo-first-
order model, while it was based on zero-order kinetics for CR dye degradation. The rate
constant value for 4NP hydrogenation was higher for CS-MnO2/AC1@Co and CS-AC@Co
NPs (1.56 × 10−1 and 1.14 × 10−1 min−1, respectively). Furthermore, the degradation
of MO and CR dye was also well executed using CS-AC@Co, CS-MnO2/AC1@Co and
CS-MnO2/AC1@Co NPs. The CS-AC@Co NPs also showed good recyclability for the
hydrogenation of 4NP. In the first cycle, approximately 84% of 4NP was reduced to 4AmP
in 11 min, which was reduced to 38% in the second and third cycles, respectively. However,
a negligible loss of catalyst activity was observed in the second and third cycles.

This work applies generally to the removal of azo dyes and reduction of 4NP, as
well as the inhibition/killing of P. aeruginosa and E. coli. However, these catalysts may
be used for the degradation of different dyes, reduction of nitroaromatic compounds and
inhibition/killing of different microbes.
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