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Abstract: Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little
research has been conducted on the effect of ageing on the expression of small non-coding
RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine
metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq).
Differential expression analysis was performed in R using package DESeq2. For transfer RNA
(tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version
2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were
validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort
of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA
human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old
equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs.
qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs),
tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human
cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on
the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different
sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential
involvement in age-related cartilage diseases.
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1. Introduction

Articular cartilage is a specialised connective tissue of diarthrodial joints. Its smooth lubricated
surface assists joint movement and its mechanical properties facilitate load bearing in the joint. The
tissue harbours one cell type; the chondrocyte, and is devoid of blood vessels and nerves, receiving
nutrients from synovial fluid and subchondral bone [1]. Articular cartilage is characterised by an
extracellular matrix (ECM) consisting of mainly collagen type 2 and proteoglycans, which give the
tissue many of its properties. After reaching maturity, cartilage displays a limited repairing capacity as
indicated by low chondrocyte proliferation and low collagen turnover [2].

There are a number of factors affecting the homeostatic properties of cartilage such as genetics
and obesity [3]. However, ageing is a leading risk factor that predisposes cartilage to pathological
changes and disease, such as osteoarthritis (OA), the most common joint disease [3]. These age-related
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changes affect both chondrocyte physiology and ECM properties. Aged chondrocytes display increased
senescence and higher expression of catabolic markers; features also evident in OA chondrocytes [3,4].
Moreover, in humans, aged knee cartilage is thinner compared to younger cartilage and is characterised
by increased collagen crosslinking and altered proteoglycan content. These changes affect matrix
stiffness, make cartilage susceptible to fractures and lower its ability to sense mechanical stimuli [3,5,6].

The exact mechanisms through which age can affect cartilage health remain elusive, though
it is believed to be a cumulative combination of many molecular pathways rather than a single
aetiology. Recent advances in the field have recognised epigenetics in ageing and diseased articular
cartilage as an area of growing interest [6,7]. A class of epigenetic modifications that have attracted
increasing attention are small non-coding RNAs (sncRNAs). They are short, typically <200 bp, RNA
species, which are not translated into protein but have other structural or regulatory biological roles.
These include microRNAs (miRNAs or miRs), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), piwi-interacting RNAs and transfer RNAs (tRNAs). SncRNAs are promising candidates
for targeted therapeutics due to their small size and diverse cellular functions. By using specific
synthetic oligonucleotides, aberrant expression of sncRNAs in disease could be modified, resulting in
delay or reversal of pathological changes [8]. Furthermore, sncRNAs could be used as biomarkers to
monitor disease initiation and progression or response to treatment [9,10]. This is of high importance
in OA, as treatment is currently symptomatic and most patients with end-stage OA require joint
replacement; a procedure with a high social and economic burden for patients and the healthcare
system respectively [11].

MiRNAs, the most studied sncRNAs, regulate gene expression by binding complementary
sequences in the 3’ untranslated region of their messenger RNA (mRNA) targets, thus inhibiting mRNA
translation [8]. MiRNAs have been linked to ageing and diseased cartilage; miR-140 is important for
cartilage development and deletion of miR-140 in mice causes skeletal defects [12]. Moreover, OA
chondrocytes show decreased expression of miR-24, resulting in increased expression of the senescent
marker p16INK4a, highlighting the link between OA and senescence; a hallmark of ageing [4].

In addition to miRNAs, snoRNAs are increasingly studied in ageing and OA. Snora73 expression
increases in the joint and serum of old mice compared to young mice [9] and we have also previously
identified a catalogue of age-related snoRNAs in human knee cartilage [13]. SnoRNAs have canonical
roles in the post transcriptional modification of RNA substrates including ribosomal RNAs, and
mRNAs, but can also exhibit non-canonical functions such as miRNA-like activity [14]. Their aberrant
expression has also been associated with the development of some diseases [15]. Our previously
conducted mouse study demonstrated alterations in the snoRNA profile of young, old and OA joints
in mice when compared to healthy controls, highlighting the potential of snoRNAs to be used as
novel markers for this disease [9]. We have also identified changing snoRNA profiles in ageing and
OA human cartilage [16], synovial fluid from horses with early OA and diseased anterior cruciate
ligaments from OA joints [17].

tRNAs are adaptor molecules of ~73–90 nucleotides long consisting of a T-loop, D-loop, variable
loop, and the anticodon loop. Protein translation requires amino acids to be linked together into
polypeptides and tRNAs recruit these amino acids to the translating ribosome. Recent studies have
shown that tRNAs are a major source of sncRNAs with an active role in gene regulation [18]. tRNA
fragments result from specific processing of tRNAs. These include tRNA halves (tiRNAs), which are
28–36 nucleotide long fragments formed by Angiogenin (ANG). ANG divides the tRNA into two
halves at the anticodon loop [19] giving rise to the 3′ tiRNA and 5′ tiRNA halves. tRNAs are also
processed into smaller fragments; tRNA-derived small RNA fragments (tRFs); tRF-1, tRF-2, tRF-3 and
tRF-5, however the naming conventions of these classes is still not consistent [20]. RNase Z, or its
cytoplasmic homologue ELAC2, [21] cleaves the 3′ trailer fragment of pre-tRNAs resulting in tRF-1
formation. The enzyme responsible for the cleavage of tRF-2 fragments is still unclear. The tRF-2
fragment consists of the anticodon loop of the tRNA and has been detected in breast cancer MDA-231
cells [22]. Dicer and ANG cleave tRNAs into ~15–30 nucleotide tRF-3 and tRF-5 fragments. TRF-3
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fragments are cleaved at the T loop by Dicer [23] and ANG [24] and tRF-5 fragments are derived from
the cleavage of the D-loop by Dicer [23]. The final category of tRFs are i-tRFs, which are internal to
the respective tRNA and can straddle the anticodon loop [25]. Limited knowledge of the expression
and role of tRNA and tRFs is available in health and disease [26] with even less in musculoskeletal
biology [27,28].

In this study, we investigated the expression changes of sncRNAs in chondrocytes isolated from
healthy metacarpophalangeal joints of young and old horses. Findings for tRNAs are compared to a
human OA data set. Age-related changes may predispose cartilage to disease by altering the complex
sncRNA expression profile. This provides a sncRNA-wide insight into age-related targets for future
therapeutic approaches.

2. Materials and Methods

All reagents were from Thermo-Fisher-Scientific, Loughborough, UK unless stated.

2.1. Sample Collection and Preparation

Samples were collected from an abattoir as a by-product of the agricultural industry. Specifically,
the Animal (Scientific procedures) Act 1986, Schedule 2, does not define collection from these sources
as scientific procedures. Ethical approval was therefore not required. Full thickness equine cartilage
was removed from the entire surface of macroscopically normal metacarpophalangeal joints of young
n = 5 (age mean ± standard deviation; 4 ± 1 years) and old n = 5 (17.4 ± 1.9 years) non-Thoroughbred
horses. Scoring of the metacarpophalangeal joint was undertaken using a macroscopic grading system,
as previously described [29] and samples with no macroscopic perturbations were selected (combined
score of zero). Freshly isolated chondrocytes were removed from all 10 samples of harvested cartilage,
as previously described [30], plated to confluence and RNA extracted from two million cells per donor.

In addition to the above samples, RNA from chondrocytes from young n = 2 (age mean ±
standard deviation; 0.75 ± 0.3 years) and old n = 6 (age mean ± standard deviation; 19.3 ± 3.6 years)
non-Thoroughbred horses were used for validation.

2.2. RNA Isolation, cDNA Library Preparation, and Small RNA Sequencing (RNA-seq)

Total RNA including small RNAs was extracted, as previously described [31], and purified using
the miRNAeasy kit (Qiagen, Crawley, UK) according to manufacturer’s instructions and including an
on-column DNAse step to remove residual genomic DNA. The integrity of the RNA was assessed
on the Agilent 2100 Bioanalyser system using an RNA Pico chip (Agilent, Stockport, UK). The
NEBNext®Small RNA Library Prep Set for Illumina®was used for library preparation (New England
Biolabs, Ipswich, MA, USA) but with the addition of a Cap-Clip™ Acid Pyrophosphatase (Cell script,
Madison, WI, USA) step to remove potential 5′ caps found on some snoRNAs. Samples were amplified
for 15 cycles and size was selected. The libraries were sequenced on an Illumina MiSEq platform
(Illumina, San Diego, CA, USA) with version 2 chemistry using sequencing by synthesis technology to
generate 2 × 150 bp paired-end reads with >12 million clusters per run.

2.3. Data Processing

Sequence data were processed through a number of steps to obtain sncRNA expression values
including basecalling and de-multiplexing of indexed reads using CASAVA version 1.8.2 [32]; adapter
and quality trimming using Cutadapt version 1.2.1 [33] and Sickle version 1.200 to obtain fastq files of
trimmed reads; aligning reads to horse genome reference sequences (GCF_002863925.1) using Tophat
version 2.0.10 [34] with option “–g 1”; counting aligned reads using HTSeq-count against the annotated
features which are combined annotation information from the sources: NCBI Equus caballus 3.0 genome
annotation, miRBase horse micro RNA annotation, Rfam snoRNA annotation.

Differential expression analysis was performed in R environment using package DESeq2 [35].
The processes and technical details of the analysis included: assessing data variation and detecting



Int. J. Mol. Sci. 2020, 21, 5675 4 of 22

outlier samples through comparing variations of within and between sample groups using principle
component analysis (PCA) and correlation analysis; handling library size variation using the DESeq2
default method; formulating data variation using negative binomial distributions; modelling data using
a generalised linear model; computing log2 Fold Change (logFC) values for required contrasts based
on model fitting results through contrast fitting approach, evaluating the significance of estimated
logFC values by Wald test; adjusting the effects of multiple tests using False Discovery Rate (FDR)
approach to obtain FDR [36] adjusted P-values.

2.4. Pathway Analysis

In order to identify miRNA targets, bioinformatic analysis was performed by uploading
differentially expressed miRNA data into the MicroRNA Target Filter module within Ingenuity Pathway
Analysis software (IPA) (Qiagen Redwood City, CA, USA) along with previously identified differentially
expressed mRNAs from our ageing equine cartilage study following RNA-seq [31]. In IPA we selected
miRNA-target genes based on the direction of differential expression (for example, if a miRNA was
reduced in expression it was only matched to mRNAs that demonstrated increased expression). We
then identified the networks, functions, and canonical pathways of these miRNA-target genes.

2.5. qRT-PCR Validation

Validation of the small RNA-seq results was undertaken using real-time quantitative PCR
(qRT-PCR) analysis in the samples used for sequencing as well as additional samples. SncRNAs were
chosen based on level of differential expression. Total RNA was extracted and quantified as above.
cDNA was synthesized using 200 ng RNA and the miScript II RT Kit according to the manufacturer’s
protocol (Qiagen, Crawley, UK). qRT-PCR mastermix was prepared using the miScript SYBR Green
PCR Kit (Qiagen, Crawley, UK) and the appropriate miScript Primer Assay (Qiagen, Crawley, UK) (File
S1) using 1 ng/µL cDNA according to manufacturer’s guidelines. qRT-PCR was undertaken using a
LightCycler®96 system (Roche, Welwyn Garden City, UK). Relative expression levels were normalised
to U6 (as this was stable in the small RNA-seq data set) and calculated using the 2-∆Ct method [37].

2.6. tRNA Fragment Analysis

Following the alignment of trimmed reads to NCBI horse genome reference sequences (version
3.0) using Tophat version 2.1.0 [38], the candidate tRNA reads were extracted from the BAM files
according to whether they overlapped the ranges covered by tRNA features. The read pairs were
stitched into RNA fragments using PEAR (version 0.9.10) [39]. The output reads were aligned to horse
tRNA sequences (defined in NCBI GCF_002863925.1_EquCab3.0_genomic.gff) using Bowtie2 version
2.2.5. Only the perfectly mapped fragments were extracted and taken as tRNA fragments for further
explorations. Finally, statistical analyses were mainly focused on the fragment length and the mapping
start location, which generated the length distribution and the mapping start position distribution
of observed tRNA fragments, as well as the summary table for observed tRNA fragments and their
target tRNAs.

2.7. Novel snoRNA Analysis

Putative snoRNAs were detected from the raw pair-end reads using ShortStack 3.8.4 [40] with the
setting “–mincov 5”, which specifies that the clusters of small RNAs must have at least five alignments.
The ShortStack results were subsequently fed into SnoReport 2.0 [41], which uses RNA secondary
structure prediction combined with machine learning as the basis to identify the two main classes of
snoRNAs; the box H/ACA and the box C/D. Putative snoRNAs were annotated from our experimental
small RNA-seq data using ShortStack and SnoReport.
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2.8. Statistical Analysis

3D PCA score plots and heat maps were carried out using MetaboAnalyst 3.5 [42] (http://www.
metaboanalyst.ca) which uses the R package of statistical computing software [43].

For statistical evaluation of qRT-PCR results, following normality testing, Mann-Whitney tests
were performed using GraphPad Prism version 7.03 for Windows, (GraphPad Software, La Jolla, CA,
USA); p values are indicated.

2.9. Human Sample Collection and Preparation

De-identified human OA cartilage approved by Northeast Ohio Medical University (NEOMED)
Institutional Review Board and Summa Health Systems, Barberton, Ohio as ‘non-human subject study
under 45 CFR’ was used. Total RNA was extracted from smooth, macroscopically intact human OA
cartilage with a Mankin score of 2 or less (n = 1, female, 60 years old) and damaged OA cartilage with
a Mankin score of 4 or higher (n = 1, female, 80 years old) using MiRNeasy Kit (Qiagen, Germantown,
MD, USA). RNA was quantified using the Nanodrop 1000 Spectrophotometer (Thermo Fisher, Waltham,
MA, USA). TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA) was used to determine
RNA integrity using High Sensitivity RNA Screentape analysis kit (Agilent, Santa Clara, CA, USA).

2.10. Removal of tRF Modifications from Human Cartilage RNA

The rtStar™ tRF&tiRNA Pretreatment Kit (ArrayStar, Rockville, MD, USA) was used according
to the manufacture’s description. For cDNA qRT-PCR library construction, tRF modifications
were removed from RNA. The kit removes 3′-aminoacyl and 3′-cP for 3′ adaptor ligation,
phosphorylates 5′-OH for 5′-adaptor ligation, and demethylates m1A, m1G, and m3C for efficient
cDNA reverse transcription.

2.11. tRF 3′ and 5′ Adaptor Ligation for Human Cartilage cDNA Synthesis

The rtStar™ First-Strand cDNA Synthesis Kit (ArrayStar, Rockville, MD USA) was used according
to the manufacturer’s description. The kit sequentially ligates 3′-Adaptor with its 5′-end to the 3′-end
of the RNAs, and 5′-Adaptor with its 3′-end to the 5′-end of the RNAs. The non-ligation ends of 3′

and 5′ Adaptors were blocked by modifications. A universal priming site for reverse transcription was
contained within the 3′ adaptor. Spike-in RNA was used for monitoring the cDNA synthesis efficiency
and as a quantitative reference.

2.12. tRF and tRNA Human qPCR Arrays

The nrStar™ Human tRF and tiRNA PCR Array (ArrayStar, Rockville, MD, USA) was used
according to the manufacturers description to profile 185 tRF and tiRNA fragments, of which 101 are
derived from tRF and tiRNA database [44,45] and the other 84 from recently published papers [46–48].
RNA Spike in control and a positive PCR control were used to evaluate PCR efficiency and a genomic
DNA control was used to monitor genomic DNA contamination. To profile parent tRNAs, the nrStat
Human tRNA PCR Array (ArrayStar, Rockville, MD, USA) was used according to the manufacturer’s
protocol. This array consisted of 163 PCR-distinguishable nuclear tRNA isodecoders and 22 PCR
distinguishable mitochondrial tRNA species covering all anti-codons compiled in GtTNAdb [49,50]
and tRNAdb [51] databases. Genomic DNA and positive PCR controls were included to monitor the
quality of RNA sample.

qRT-PCR reactions were conducted using Power SYBR Green master mix (Life technologies,
Carlsband, CA, USA) on a Step One Plus (Applied Biosystems, Waltham, MA, USA) machine. U6,
SNORD43 and SNORD45 were used as endogenous controls for normalisation of tRF, tiRNA and tRNA
detection. Target tRNA, tiRNA and tRF levels were determined as fold change differences utilising the
∆∆Ct method [37].

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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3. Results

3.1. Preliminary Analysis of Small RNA-seq Data

To identify differential expression of sncRNAs in ageing, Illumina MiSeq was utilised. Summaries
of raw, trimmed reads, and mapped reads to Equus caballus database can be found in File S2. Reads
mapping percentages were between 92 to 94.3%. There were 2128 sncRNAs identified. The categories
of non-coding RNAs identified are in Figure 1A and File S3 and included miRNAs, snoRNAs, novel
snoRNAs, tRNAs, snRNAs, and long non-coding RNAs (lncRNAs).
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Figure 1. Age-related differential small non-coding RNA (sncRNA) gene expression. (A) The 
categories of non-coding RNAs identified in young and old equine chondrocytes; long non-coding 
RNAs (lncRNAs), microRNAs (miRNAs or miRs), small nucleolar RNAs (snoRNAs), small nuclear 
RNAs (snRNAs), transfer RNAs (tRNAs). (B) 3D principle component analysis (PCA) plot between 
the selected principle components (PCs). The explained variances are shown in brackets. (C). 
Clustering results shown as a heatmap (distance measure using Euclidean, and clustering algorithm 
using Ward) for the top 90 molecules. 

3.2. Age-Related Differential Small Non-Coding RNA Gene Expression 

There were no overall differences in the distribution of classes of sncRNAs in ageing. The effect 
of age on the expression of sncRNAs was weak and the separation of young and old samples was not 
clear. The 3D PCA plot (Figure 1B) indicated that few, but very specific changes in the expression of 
sncRNAs were found, and samples from old donors were more variable than those from young. A 
heat map of hierarchical clusters of correlations among samples (Figure 1C) depicts that the sncRNA 
expression of young and old groups are not very different. 

There were 83 sncRNAs differentially expressed with age; six snoRNAs, 11 novel snoRNAs, 
three snRNAs, 31 lncRNAs, 27 tRNAs (p < 0.05) and five miRNAs (FDR-adjusted p < 0.05) (Table 1). 
Data is deposited on NCBI GEO, accession; E-MTAB-8112.  
  

Figure 1. Age-related differential small non-coding RNA (sncRNA) gene expression. (A) The categories
of non-coding RNAs identified in young and old equine chondrocytes; long non-coding RNAs
(lncRNAs), microRNAs (miRNAs or miRs), small nucleolar RNAs (snoRNAs), small nuclear RNAs
(snRNAs), transfer RNAs (tRNAs). (B) 3D principle component analysis (PCA) plot between the
selected principle components (PCs). The explained variances are shown in brackets. (C). Clustering
results shown as a heatmap (distance measure using Euclidean, and clustering algorithm using Ward)
for the top 90 molecules.

3.2. Age-Related Differential Small Non-Coding RNA Gene Expression

There were no overall differences in the distribution of classes of sncRNAs in ageing. The effect of
age on the expression of sncRNAs was weak and the separation of young and old samples was not
clear. The 3D PCA plot (Figure 1B) indicated that few, but very specific changes in the expression of
sncRNAs were found, and samples from old donors were more variable than those from young. A
heat map of hierarchical clusters of correlations among samples (Figure 1C) depicts that the sncRNA
expression of young and old groups are not very different.

There were 83 sncRNAs differentially expressed with age; six snoRNAs, 11 novel snoRNAs, three
snRNAs, 31 lncRNAs, 27 tRNAs (p < 0.05) and five miRNAs (FDR-adjusted p < 0.05) (Table 1). Data is
deposited on NCBI GEO, accession; E-MTAB-8112.
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Table 1. Differentially expressed sncRNAs in ageing chondrocytes. Log2 fold change values were
derived with young as the reference group. A positive log2 fold change equates to higher expression
in old, whereas a negative log2 fold change equates to lower expression in old. All are significant at
p < 0.05, except for miRNAs that are significant with a false-discovery rate (FDR-)adjusted p value of
p < 0.05.

Gene/Transcript Name Gene Biotype Log2 Fold Change

eca-miR-143 miRNA −1.3
eca-miR-145 miRNA −1.8

eca-miR-181b miRNA −1.8
eca-miR-122 miRNA 2.3

eca-miR-148a miRNA 1.3
snora71 snoRNA −3.2

snord113 snoRNA −2.4
snora46 snoRNA 1.0
snora77 snoRNA 2.0
snora47 snoRNA 2.5
snord29 snoRNA 2.5

ECABCGRLG0000003960 novel snoRNA −2.6
ECABCGRLG0000002980 novel snoRNA −2.5
ECABCGRLG0000006050 novel snoRNA −1.6
ECABCGRLG0000000640 novel snoRNA −1.1
ECABCGRLG0000002800 novel snoRNA −1.0
ECABCGRLG0000007680 novel snoRNA 1.8
ECABCGRLG0000008070 novel snoRNA 2.0
ECABCGRLG0000007010 novel snoRNA 2.5
ECABCGRLG0000008090 novel snoRNA 2.9
ECABCGRLG0000004470 novel snoRNA 3.0
ECABCGRLG0000005680 novel snoRNA 3.1

LOC111775808 snRNA −1.3
LOC111773055 snRNA 2.2
LOC111772636 snRNA 2.5
LOC111770368 lncRNA −3.4
LOC111768432 lncRNA −3.2
LOC102148414 lncRNA −3.2
LOC102149168 lncRNA −2.9
LOC111772155 lncRNA −2.5
LOC106783307 lncRNA −2.5
LOC111775319 lncRNA −2.5
LOC102148711 lncRNA −2.5
LOC111775759 lncRNA −2.5
LOC111774351 lncRNA −2.5
LOC102150704 lncRNA −2.5
LOC111775994 lncRNA −2.5
LOC102150027 lncRNA −2.5
LOC106781358 lncRNA −2.5
LOC102147393 lncRNA −2.5
LOC111776203 lncRNA −2.5
LOC111771286 lncRNA −1.3
LOC102149893 lncRNA 1.7
LOC111775969 lncRNA 1.7
LOC106781629 lncRNA 1.9
LOC111773181 lncRNA 2.0
LOC102149863 lncRNA 2.5
LOC102149361 lncRNA 2.5
LOC111770630 lncRNA 2.5
LOC102147707 lncRNA 2.5
LOC106783385 lncRNA 2.5
LOC102149569 lncRNA 2.5
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Table 1. Cont.

Gene/Transcript Name Gene Biotype Log2 Fold Change

LOC106782740 lncRNA 2.5
LOC111770896 lncRNA 2.5
LOC102150024 lncRNA 2.9
LOC102150338 lncRNA 2.9
TRNAR-ACG tRNA −3.4
TRNAR-CCU tRNA −3.2
TRNAS-AGA tRNA −3.2
TRNAS-GCU tRNA −3.1
TRNAA-UGC tRNA −3.0
TRNAP-AGG tRNA −2.9
TRNAQ-UUG tRNA −2.9
TRNAS-AGA tRNA −2.9
TRNAA-UGC tRNA −2.9
TRNAF-GAA tRNA −2.5
TRNAP-UGG tRNA −2.5
TRNAE-UUC tRNA −2.5
TRNAF-GAA tRNA −2.2
TRNAV-AAC tRNA −2.2
TRNAM-CAU tRNA −2.1
TRNAT-AGU tRNA −1.9
TRNAY-GUA tRNA −1.9
TRNAQ-CUG tRNA −1.4
TRNAN-GUU tRNA −1.4
TRNAY-GUA tRNA −1.4
TRNAY-GUA tRNA −1.2
TRNAV-AAC tRNA 1.9
TRNAP-CGG tRNA 2.2
TRNAA-UGC tRNA 2.4
TRNAC-GCA tRNA 2.5
TRNAI-AAU tRNA 2.9
TRNAD-GUC tRNA 3.4

3.3. Age Specific miRNA Interactome

To generate an age-specific miRNA interactome of the most likely miRNA-mRNA target pairs,
analysis was performed to identify miRNA targets of the five differentially expressed miRNAs from
this study. In IPA, the five miRNAs (miR-143, miR-145, miR-181b, miR-122, miR-148a) were paired
with 351 protein coding genes differentially expressed in our previous RNA-seq study on ageing equine
cartilage [31]. In File S4, the miRNA-mRNA pairings in the correct direction (miR increase and mRNA
decrease or vice versa) are shown, including the target predictions and /or experimental validation
in the respective database. Four of the five miRNAs interacted in IPA with 31 different differentially
expressed target genes reflecting that miRNAs target many mRNAs. These mRNAs targeted by the
miRNAs were used in IPA as network-eligible molecules and overlaid onto molecular networks based
on information from the IPA Database. Networks for the four miRNAs (miR-148a, miR-122, miR-143,
and miR-181b) were generated based on connectivity (Figure 2A–D). Interesting age-related features
were determined from the gene networks inferred. Among the top canonical pathways were hepatic
fibrosis (p = 1.51 × 10−3), glycoprotein 6 (GP6) signalling (p = 5.67 × 10−4), and osteoarthritis pathway
(p = 2.93 × 10−3). The top diseases and cellular functions associated with this network are shown in
Table 2 and Figure 3. All IPA results are in File S5.
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cartilage study. (A) miR-148a, (B) miR-122, (C) miR-143, (D) miR-181b. The legend for individual 
molecules is shown. Genes in red are upregulated and green downregulated in old 
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Figure 3. Significant pathways and networks affected in cartilage ageing. IPA was used to pair 
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Figure 2. miR-mRNA interactome for differentially expressed miRs in ageing. Significantly differentially
expressed miRs were paired with differentially expressed mRNAs from our original cartilage study.
(A) miR-148a, (B) miR-122, (C) miR-143, (D) miR-181b. The legend for individual molecules is shown.
Genes in red are upregulated and green downregulated in old chondrocytes/cartilage compared to
young, and depth of colour correlates to fold expression change.
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Table 2. IPA mRNA target diseases and functions.

a. Top Molecular and Cellular Functions p-Value Range Number of Molecules

Cellular Movement 1.41 × 10−3–4.23 × 10−10 21

Cell Morphology 1.37 × 10−3–3.52 × 10−8 16

Cellular Development 1.42 × 10−3–4.94 × 10−7 24

Cell Death and Survival 1.37 × 10−3–1.08 × 10−5 18

Cell-To-Cell Signalling and Interaction 1.37 × 10−3–1.88 × 10−5 20

b. Top Diseases and Disorders

Skeletal and Muscular Disorders 1.50 × 10−3–1.22 × 10-9 16

Connective Tissue Disorders 1.50 × 10−3–3.52 × 10-8 16

Organismal Injury and Abnormalities 1.50 × 10−3–3.52 × 10-8 31

Cancer 1.49 × 10−3–5.30 × 10-7 31

Developmental Disorder 1.37 × 10−3–5.30 × 10-7 17

3.4. Confirmation of Differential Gene Expression Using qRT-PCR

For selected snoRNAs (snora46, snora71, snora77, and snord113) and miRNAs (miR-143, miR-145,
miR-148a, miR-122, and miR-181b) we used qRT-PCR to validate the small RNA-Seq findings in an
extended cohort of chondrocytes. Findings for snora71, snord113, miR-143, miR-145, miR-122, and
miR-181b were validated (Figure 4).
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Figure 4. Validation of selected sncRNAs in an extended cohort of equine young and old chondrocytes.
Real-time quantitative Polymerase Chain Reaction (qRT-PCR) was used to validate findings from the
small RNA sequencing (A) microRNAs and (B) snoRNAs, n = 5–12 per group. Statistical analysis was
undertaken using a Mann Whitney test in GraphPad Prism. Mean and standard errors are shown with
* denoting p < 0.05.

3.5. tRNA Fragment Changes in Equine Ageing

As we identified differentially expressed tRNAs in ageing equine chondrocytes, we undertook
additional analysis to identify tiRNAs and tRFs, as increasing experimental evidence suggests their
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functional roles in OA [27]. Figure 5 shows cumulative density of tRNA fragment length, alignment
length, gene counts, and map start position. On the assessment of data variation using PCA, samples
in group “old” did not scatter very closely. Differential expression analysis of all young versus all old
did not identify any differentially expressed tRFs (FDR < 0.05). Therefore, we reanalysed the data with
the old group divided into two subgroups based on PCA findings: ‘old 1’ (samples 6, 7, 8) and ‘old 2’
(samples 9 and 10) for further differential expression analysis. There were 81 differentially expressed
tiRNAs/tRFs; 44 higher in ‘old 2’ and 37 lower in ‘old 2’ compared to young (File S6).
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Figure 5. Summary of differentially expressed tRNA fragment data. (A) Cumulative density of tRNA
fragment length, (B) alignment length, (C) gene counts, and (D) map start position. Samples 1–5 are
derived from young donors and 6–10 are old donors.

3.6. Human tRNA and tRF Profiles Compared to Equine tRNA and tRF Profiles

In both human and equine samples, 26 parent tRNAs were detected. Of these 26 tRNAs, 13 tRNAs
were induced and 13 were reduced in cartilage from high grade OA compared to cartilage from low
grade OA. In equine chondrocytes, 6 parent tRNAs were expressed higher and 20 parent tRNAs were
expressed lower in old samples compared to young. Four parent tRNAs were induced in both high
grade OA cartilage compared to low grade OA cartilage and in old versus young equine samples.
Eleven parent tRNAs were reduced in high grade OA cartilage compared to low grade OA cartilage
and in the old versus young equine samples (Figure 6A).
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Figure 6. tRNA analysis of human osteoarthritic cartilage. (A) High grade versus low grade OA
human cartilage and old versus young equine chondrocyte tRNA profiles. Heatmap of Log2 fold
change expression of 26 tRNAs detected in both human and equine samples. Human cartilage tRNAs
detected using a Human tRNA PCR Array. Red highlights induced tRNA expression in high grade OA
human cartilage compared to low grade and in old equine chondrocytes compared to young. Green
highlights reduced tRNA expression in high grade OA human cartilage compared to low grade and
in old equine chondrocytes compared to young. (B) High grade OA versus low grade OA human
cartilage and equine tiRNA/tRF profiles. Heatmap of Log2 foldchange expression of 11 tRF/tiRNA
fragments detected in both human and equine samples. Human cartilage tRF/tiRNA detected using a
Human tRF&tiRNA PCR Array. Red highlights induced tRF/tiRNA expression in human high grade
versus low grade OA samples and in old versus young equine samples. Green highlights reduced
tRF/tiRNA expression in human high grade versus low grade OA samples and in old versus young
equine samples.
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In both human and equine samples, the tRF-5 fragment known as tRF293/294 and 10 tiRNAs
were detected (Figure 6B). In high grade OA compared to low grade OA cartilage, seven tiRNAs and
tRF293/294 were induced and three tiRNAs were reduced. In old 1 versus young equine, five tiRNAs
and tRF293/294 were induced and five tiRNAs were reduced. In old 2 versus young equine, two
tiRNAs were induced and eight tiRNAs and tRF293/294 were reduced. Of these tRNA fragments, three
tiRNAs and tRF293/294 were induced and tiRNA-5029-GlyGCC-3 was reduced in high versus low
grade OA cartilage and in old 1 versus young equine. Two tiRNAs were induced and three tiRNAs
were reduced in high versus low grade OA cartilage and in old 2 versus young equine. In high versus
low grade OA cartilage and old 1 versus young equine tiRNA-5029-GlyGCC was reduced.

4. Discussion

Our study investigated the changing sncRNA landscape in ageing chondrocytes. Several risk
factors exist that influence cartilage health and chondrocyte homeostasis. Among them, ageing is one
of the leading risk factors contributing to cartilage-related diseases, such as OA [52]. Many studies
have shown that ageing can affect cartilage in different ways, both at cellular and molecular level.
Increased chondrocyte death, apoptosis, and a shift towards a catabolic profile have been observed
in aged chondrocytes [53]. Additional age-related changes in articular cartilage include increased
chondrocyte senescence [54], oxidative stress [55], and changes in the composition and structure of
ECM [56]. Although the underlying molecular causes of these changes are not completely understood,
it is hypothesised that aged chondrocytes respond differently to various stimuli, such as growth
factors, [53,57] and demonstrate altered molecular signatures [6].

SncRNAs are a subset of epigenetic modifiers and their role in cartilage ageing has been studied
increasingly in the last decade [6,31,58]. In the current study, we have used small RNA-seq to identify
alterations in sncRNAs between young and old equine chondrocytes. The horse is a good model
to study musculoskeletal ageing and disease as we could assess the whole joint for pathological
perturbations during tissue collection. It is very challenging to source aged human cartilage that
has no OA changes, whereas this is easily undertaken in equine samples. Moreover, the horse has
been used as a model of OA and there has been significant research on equine joint anatomy and
pathophysiology [59,60].

Within our set of differentially expressed sncRNAs, miRNAs are the best studied in musculoskeletal
ageing and cartilage. In old chondrocytes, we identified two miRNAs with higher expression; miR-122
and miR-148a, and three miRNAs with lower expression; miR-143, miR-145, and miR-181b. Of these
five miRNAs, all except miR-148a were validated in an extended cohort of young and old equine
chondrocytes with qRT-PCR. MiR-122 has been researched extensively in liver [61,62], but its role in
musculoskeletal ageing is less clear. MiR-122 was decreased in the serum and plasma of patients with
osteoporosis, the most common age-related bone disease [63], but was significantly upregulated in
senescent human fibroblasts [64] and was shown to upregulate p53 which is induced in senescence [65].
MiR-143 was downregulated in muscle satellite cells from old mice and primary myoblasts from
old humans and mice [66]. In addition, circulating miR-143 was upregulated in young individuals
following resistant exercise, but was downregulated in older individuals after resistant exercise [67].
MiR-145 was downregulated in old OA patients [68] as well as in experimental OA rat chondrocytes
treated with tumour necrosis factor (TNF) [69] and, finally, miR-181b was downregulated in skeletal
muscle of old rhesus monkeys [70].

To further investigate the potential role of the differentially expressed miRNAs identified in this
study, we used IPA to combine them with the differentially expressed mRNAs from our previous
equine cartilage study [31]. IPA miRNA ‘Target Filter and Expression Pairing’ identified 31 potential
target genes. IPA core analysis of these genes revealed canonical pathways associated with cartilage
physiology, such as role of chondrocytes in rheumatoid arthritis, OA-related pathways and bone
morphogenic protein (BMP) signalling, all of which have been reported to change with ageing [56,71,72].
Moreover, top diseases and disorders linked to these genes, as identified by IPA, included skeletal and
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muscular disorders and connective tissue disorders. Of note, follistatin (FST) which was upregulated
in old equine cartilage and was predicted by IPA as a target of the downregulated miR-143, was
overexpressed in human OA chondrocytes [73] and canine OA cartilage [74] and was induced by
telomere shortening [75], a process associated with ageing. Moreover, TNF ligand superfamily member 11
(TNFSF11), also known as receptor activator of nuclear factor kappa-B ligand (RANKL) was upregulated in
old equine cartilage and was identified as a predicted target of the downregulated miR-181b. Higher
expression of TNFSF11/RANKL, which correlated with bone loss, was reported in old C57BL/6 mice [76],
rabbits with chronic antigen-induced arthritis [77], and in human high grade OA cartilage [78]. These
results demonstrate the adverse effect of ageing on miRNA levels and their potential use as biomarkers
or therapeutic targets for age-related musculoskeletal diseases.

Six snoRNAs were identified as differentially expressed due to ageing in chondrocytes.
This conserved class of non-coding RNAs are principally characterised as guiding site-specific
post-transcriptional modifications in ribosomal RNA [79] (canonical snoRNAs), but can also modify
additional classes of RNAs including other snoRNAs, tRNAs and mRNAs; so called non-canonical
snoRNAs [80,81]. Examples of age-related snoRNAs in equine ageing chondrocytes with canonical
functions include snora71 and snord29. Novel non-canonical functions reported for snoRNAs
including the modulation of alternative splicing [82], an essential involvement in stress response
pathways [83] and the modulation of mRNA 3′ end processing [84]. Similar to miRNAs, snoRNAs are
emerging as important regulators of cellular function and disease development [15], related to their
ability to fine-tune ribosomes accommodating changing requirements for protein production during
development, normal function, and disease [85]. We have previously identified a role for snoRNAs
in cartilage ageing and OA [16] and their potential use as biomarkers for OA [9]. Interestingly there
was a reduction in snord113/114 in ageing chondrocytes which agrees with our previous findings in
equine cartilage ageing [31]. We have also previously demonstrated that SNORD113 was reduced
in ageing human knee cartilage but increased in OA [16] and increased in human anterior cruciate
ligament [17]. SNORD113/114 are located in imprinted loci and may play a role in the evolution and/or
mechanism of epigenetic imprinting. Although belonging to the C/D box class of snoRNAs which
direct site-specific 2′-O-ribose methylation of substrate RNAs, they differ from other C/D box snoRNAs
in their tissue specific expression profiles (including fibroblast, chondrocytes and osteoblasts) and the
lack of known substrate RNA complementarity. This currently classifies them as orphan snoRNAs
as they are not predicted to guide the 2′-O-ribose methylation but have novel, unknown roles [86].
Additionally, SNORD113 functions as a tumour suppressor in hepatic cell carcinoma by reducing
cell growth, and it inactivates the phosphorylation of extracellular signal-regulated kinase (ERK)
1/2 and mothers against decapentaplegic homolog (SMAD) 2/3 in mitogen-activated protein kinase
(MAPK)/ERK and transforming growth factor beta (TGF-β) pathways [87]. Together, our snoRNA
findings indicate that age-related changes in chondrocyte snoRNAs could have important implications
through both canonical and non-canonical snoRNA routes.

This is the first study to detect tRNA and tRNA fragments in equine chondrocytes and to compare
these findings with tRNA and tRNA fragments detected in human OA cartilage. For our tRNA data,
old donors clustered into two groups and further analysis was undertaken with these subgroups.
There were no apparent differences in these subgroups with regards to age or sex and scores were all
zero. The parent tRNA Cys-GCA was found to be increased in both aged equine chondrocytes and
high grade OA human cartilage samples. tRNA Cys-GCA levels have previously been reported to
be increased in human chondrocytes induced with the cytokine interleukin (IL) 1 beta resulting in
the production of the tRNA fragment tRF-3003a, a type 3-tRF produced by the cleavage of Cys-GCA.
tRF-3003a has been shown to post-transcriptionally regulate the Janus Kinase 3 (JAK3) expression
through sequence complementarity via the Argonaute (AGO) / RNA-induced silencing complex (RISC)
in human chondrocytes [27].

The Janus Kinase and Signal Transducer and Activator of Transcription (JAK-STAT) pathway
is the target of several cytokines such as interferon-γ, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, and IL-15.
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Many of these cytokines are known to play important roles in synovial inflammation during OA
pathogenesis [88,89].

The tRNA fragments detected in equine samples that matched with human samples consisted of
5′ tiRNA and tRF-5 fragments. Many of the equine fragments detected did not fall into the classical
tRF-3, tRF-5, or tiRNA size ranges and instead may likely be i-tRFs, which are internal to the respective
tRNA and can straddle the anticodon loop. 5′ tiRNA, 3′ tiRNA, tRF-3, and tRF-5 fragments were
detected in the low-grade OA cartilage and in the high grade OA cartilage. In our human studies,
base modifications found on tRNAs and tRF/tiRNA fragments that would normally block reverse
transcription were removed and this may account for some of the differences found between the equine
and human tRNA/tRF profiles.

The importance of modulation of tRNA levels and tRNA fragments in articular cartilage
homeostasis remains an unexplored area. This is the first evidence that aged equine samples
have changes in the expression of specific tRNAs and tRFs when compared to young equine samples.
We report for the first time several 5′ tiRNAs, such as tiRNA Glu-TTC and tiRNA His-GTG, were
induced in old compared to young equine chondrocytes and in high grade compared to low grade
human OA cartilage. Previous reports have shown that 5′ tiRNAs can be produced by cell stress in
mammalian cells and these 5′ tiRNA half fragments may have a role in inhibiting cell translation and
could be involved in stress granule formation [90]. Further studies are required to find the mechanism
by which these fragments are produced and whether the changes in the profile of fragments found in
old compared to young equine chondrocytes or high compared to low grade OA cartilage potentially
contribute to the development of OA.

We are aware our study has a number of limitations. The effect of ageing between young and old
equine chondrocytes was small on the differential expression of sncRNAs. However, it is likely that we
are therefore interrogating highly specific changes that are age dependent. Furthermore, we cannot rule
out changes related to the use of chondrocytes instead of cartilage tissue. Even though chondrocytes of
low passage were used, collagenase digestion and plating of cells could have affected their phenotype
and gene expression. The choice of chondrocytes over cartilage tissue was made based on RNA from
cartilage tissue is of low quality (in our hands) and heavily contaminated with proteoglycans [91],
usually making it challenging for sequencing. In our previous study interrogating snoRNAs in human
knee cartilage ageing and OA [16] we utilized cartilage tissue as opposed to chondrocytes. The old
non-OA cartilage was derived from the grossly normal condyle of OA joints. In the study we found
a number of age and OA specific snoRNAs, but we could not define the cartilage as truly normal
as it was derived from an OA joint. Nevertheless, we identified two age related, no species specific
snoRNAs that were DE in both our studies, snord113 and snord29. The use of the Illumina MiSeq
platform would have contributed to the low number of differentially expressed sncRNAs as it offers
less depth coverage compared to other platforms, such as the HiSeq platform. Finally, we have used
a relatively small number of samples per group. Given the use of primary cells and the degree of
variability observed, especially for the old group, the inclusion of five samples pre group may have
contributed to the small number of differentially expressed sncRNAs in ageing equine chondrocytes
on our study.

5. Conclusions

For the first time we have described, using unbiased methods, the effect of ageing on the expression
of sncRNAs in equine chondrocytes. We detected variable classes of sncRNAs (the small non-coding
RNAome) in young and old chondrocytes, which are differentially abundant, indicating that there are
multiple levels of epigenetic control in cartilage and chondrocyte ageing. Among them, there were
miRNAs, which are predicted to play a role in the development of the musculoskeletal system and
in skeletal disorders. In addition, the current study is one of the few studies that have investigated
tRNAs and tRNA fragments, in an attempt to uncover novel molecular signatures in aged and diseased
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chondrocytes/cartilage that could be useful in the future as therapeutic targets. Further research is
needed to elucidate the role and function of these molecules and their potential link to disease.
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Abbreviations

ECM extracellular matrix
OA osteoarthritis
sncRNAs small non-coding RNAs
miRNAs or miRs microRNAs
snRNAs small nuclear RNAs
snoRNAs small nucleolar RNAs
tRNAs transfer RNAs
mRNA messenger RNA
tiRNAs tRNA halves
ANG angiogenin
tRFs tRNA-derived small RNA fragments
PCA principle component analysis
logFC log2 fold change
FDR False Discovery Rate
IPA Ingenuity Pathway Analysis
RNA-seq RNA sequencing
qRT-PCR real-time quantitative Polymerase Chain Reaction
lncRNAs long non-coding RNAs
PCs Principle components
GP6 glycoprotein 6
BMP bone morphogenic protein
FST follistatin
TNF tumour necrosis factor
TNFSF11 TNF ligand superfamily member 11
RANKL receptor activator of nuclear factor kappa-B ligand
ERK extracellular signal-regulated kinase
SMAD mothers against decapentaplegic homolog
MAPK mitogen-activated protein kinase
TGF-β transforming growth factor beta
IL interleukin
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JAK3 Janus Kinase 3
AGO Argonaute
RISC RNA-induced silencing complex
JAK-STAT Janus Kinase and Signal Transducer and Activator of Transcription
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