
ARTICLE

Ballistic geometric resistance resonances in a
single surface of a topological insulator
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Transport in topological matter has shown a variety of novel phenomena over the past

decade. Although numerous transport studies have been conducted on three-dimensional

topological insulators (TIs), study of ballistic motion and thus exploration of potential

landscapes on a hundred nanometer scale is for the prevalent TI materials almost impossible

due to their low carrier mobility. Therefore, it is unknown whether helical Dirac electrons in

TIs, bound to interfaces between topologically distinct materials, can be manipulated on the

nanometer scale by local gates or locally etched regions. Here we impose a submicron

periodic potential onto a single surface of Dirac electrons in high-mobility strained mercury

telluride (HgTe), which is a strong TI. Pronounced geometric resistance resonances

constitute the clear-cut observation of a ballistic effect in three-dimensional TIs.
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Topological insulators that feature conducting surface states
while the bulk is insulating are a new class of materials
with unique physical properties (see, e.g., refs. 1,2 and

references therein). By combining materials with different topo-
logical index, e.g., HgTe which has an inverted band structure
with HgCdTe (or CdTe) being a conventional semiconductor,
helical two-dimensional electron systems (2DES) form at the
interface. These states have a linear, Dirac-like electron dispersion
E(k) and are protected from direct backscattering by time reversal
symmetry1,2. The 2DES of surface states encases the (ideally)
insulating bulk. The electron spin in theses surface states is
helical, i.e., locked to the electron’s k vector and spin-up (↑) and
spin-down states (↓) are for systems with time reversal symmetry
connected by Kramers degeneracy, E(k, ↑)= E(−k, ↓). Thus,
any k-space state is only singly occupied. This means that the
connection between carrier density ns and Fermi wave vector kF is
given by kF ¼

ffiffiffiffiffiffiffiffiffi
4πns

p
and not kF ¼

ffiffiffiffiffiffiffiffiffi
2πns

p
, as in a conventional

2DES. Clear signatures of the unusual spin texture of three-
dimensional TIs have first been seen in Bi1−xSbx by angle-resolved
photoemission spectroscopy3,4.

Here we probe ballistic geometric resonances in an antidot
lattice, which directly reflect the wave vector of helical Dirac
fermions. An antidot lattice consists of a periodic array of holes
etched into the surface and constitutes a periodic, repulsive
potential for the electrons in the 2DES5–7. Pronounced
resonances occur in the magnetoresistance when the ratio
of cyclotron radius Rc= ħkF/(eB) (ħ= reduced Planck constant,
e= elementary charge, B=magnetic field) and period a of the
antidot lattice enables stable orbits around one or a group of
antidots5, stabilized by the repulsive potential8. Similar effects

were predicted and observed in graphene, also a system with
Dirac-like dispersion9–11. The B-field positions at which the
resistance peaks appear are a direct measure of kF. Such reso-
nances have been used, e.g., to experimentally proof the concept
of composite fermions12 and the formation of Wigner crystals13.
The observation of these commensurability effects requires that
the electron mean free path ‘e � a, i.e., high electron mobilities.
Hence, strained HgTe which belongs to the class of strong
TIs14,15 is ideal for these experiments as it features very high
electron mobilities of order 5 × 105 cm2 (Vs)−1, corresponding to
electron mean free paths of around 5 microns. Experimental
verification that strained HgTe is a TI has been provided before
by transport16,17, capacitance18, and photocurrent experiments19.
In this material, we observe clear-cut geometric resonances
reflecting the superimposed lateral periodic potential.

Results
Antidot lattices and characteristic geometric resonances. The
present experiments were carried out on strained 80 nm-thick
HgTe films, grown by molecular beam epitaxy on CdTe (013).
For details, see ref. 19. The cross section of the heterostructure is
sketched in Fig. 1a. Square antidot lattices with periods a= 408,
600, and 800 nm were defined by electron beam lithography and
etched through the cap layers slightly into the HgTe layer. In
order to keep the high electron mobility of the surface electrons,
we used wet chemical etching to engrave the antidots gently into
the material. An electron micrograph of a corresponding antidot
lattice is shown in Fig. 1b, illustrating that the antidots get only a
few nm into the 80 nm-thick HgTe layer. Transport and
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Fig. 1 Sample layout and antidot resonances. a Layer sequence grown on a virtual CdTe (013) substrate having a 0.3% larger lattice constant than
HgTe, causing tensile strain19. One antidot, slightly etched into the HgTe top layer is sketched. The whole structure is covered by a 30 nm/100 nm-thick
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different temperatures and ntops � 1:7 ´ 1015 m�2. Peaks in the resistivity correspond to commensurate orbits around 1, 2, and 4 antidots as sketched in
the inset. The corresponding arrow positions, characteristic for a strong antidot potential, have been calculated using B1= ħkF/(0.5ea), B2= ħkF/(0.8ea),
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πntops

p
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capacitance experiments were carried out on devices with Hall
bar geometry, sketched in Fig. 1c. For transport measurements,
carried out at temperatures T between 1.5 and 48 K, we used
standard lock-in techniques. Typical traces of resistivity ρxx(B),
taken at different temperatures, are shown in Fig. 1d and display
clear antidot resonances. The positions of the resonances, marked
by arrows, correspond to commensurate orbits around one, two,
and four antidots occurring at Rc/a= 0.5, 0.8, and 1.14, respec-
tively5, shown in the inset of Fig. 1d. With increasing tempera-
ture, the Shubnikov-de Haas (SdH) oscillations fade away but the
antidot resonances are still visible at higher T indicating their
semi-classical origin.

The occurrence of clear antidot resonances raises the question
about the origin of the repulsive potential as the two-dimensional
topological surface states are bound to the interface. Thus, by
etching the holes, the boundary between HgTe and vacuum is
locally shifted deeper into HgTe but there are no regions devoid
of electrons as in a conventional 2DES-based antidot lattice.
Opening the cap layer at the antidot positions and exposing
the HgTe surface to ambient conditions most likely increases
locally the p-doping thus constituting an electrostatic potential
barrier between etched and pristine regions of the HgTe surface.
Etching the array of holes might also introduce a periodic strain
pattern, which contributes to the antidot potential in a similar
way as ripples affect the band structure in Bi2Te320. Although the

detailed microscopic origin and shape of the antidot potential is
unknown yet, its effect on electron transport is clearly visible in
Fig. 1d. From the similarity to geometric resonances in GaAs-
based 2DES, we conclude that the antidot potential has the
diameter of the etched holes and drops precipitously but softly
toward the region between the antidots.

Carrier densities and geometric resonances. To establish the
connection between Fermi wave vector kF and carrier density, we
need accurate knowledge of the electron density ntops on the top
surface, i.e., the surface locally dented by the antidots. The period of
SdH oscillations, taken at high B, or Drude transport data give the
total carrier density ns of the TI system, i.e., the sum of densities on
top and bottom surface and, for EF in the conduction band, of bulk
electrons17. Therefore, we resort to measurements of the quantum
capacitance which reflects the electronic density of states (DoS) and is
sensitive to the top surface only18. In capacitance experiments, the
top layer dominates, as it screens, to a large extent, the electric field
from the gate. The capacitance is measured by adding a small ac
voltage to the dc top gate voltage Vg and probing the ac current phase
sensitively. Corresponding data are shown in Fig. 2a. The capacitance
oscillations of the 800 nm period antidot sample, shown for three
different gate voltages, stem from Landau quantization, echoed in the
measured DoS. From these measurements, we can extract the carrier
density ntops Vg

� �
of the top surface, shown as a function of the gate

voltage in Fig. 2b. Here we have used that the spin-degeneracy factor
gs, utilized to extract the carrier density from the period of the
capacitance oscillations, is 1, i.e., the Landau levels are not spin
degenerate18. These data show a striking change of slope at ~1.75 V,
marked by an arrow. This reflects a change in the filling rate
dntops =dVg and occurs when the Fermi level enters the
conduction band17. This kink in slope is characteristic for quantities
like low-B SdH oscillations17, quantum capacitance18, or antidot peak
position (see below), which all stem from a single topological surface.

Gate voltage and antidot period dependencies. The dc top gate
voltage on our devices allows tuning the carrier density and thus
the position of the Fermi level EF. The characteristic evolution of
the sheet resistance ρ□= ρxx (B= 0) with Vg is shown for three
antidot samples and an unpatterned reference sample in Fig. 3a.
The maxima of ρ□, located between Vg ~ 0.5 and 1 V, reflect
the charge neutrality point (CNP), corresponding to an EF
position located slightly in the valence band (see band structure in
Fig. 3b)17. The fact that the CNPs of the patterned samples are
shifted to higher gate voltages (clearly for the 408 and 800 nm,
only weakly for the 600 nm sample) implies local p-doping.

For gate voltages to the right of the CNP peak, EF starts to
move into the gap. The dark blue traces in Fig. 3c show ρxx(B)
data for Vg between 1.2 and 1.7 V at which EF is in the gap. The
evolution of the fundamental antidot peak position B1 for
different Vg, matches perfectly the calculated position at

B1 ¼ 2�h
ffiffiffiffiffiffiffiffiffiffiffiffi
4πntops

p

ea
; ð1Þ

marked by arrows. Here for each particular gate voltage ntops has
been derived from the oscillation period of the quantum
capacitance. The antidot peaks even withstand moving EF into
the conduction band (purple curves in Fig. 3c), showing that bulk
electrons do not contribute. This happens for Vg> 1.75 V, as
deduced from the kink in the capacitance data of Fig. 2b.
Although current also flows through the bottom surface and, for
Vg> 1.75 V, through bulk regions, thus contributing to the
resistivity, only electrons in the top layer contribute to the
geometric transport resonances. At lower bias, however, where EF
is in the valence band (light blue traces) the antidot peaks quickly
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Fig. 2 Capacitance oscillations and density. a Oscillations of the quantum
capacitance with constant Δ(1/B) periodicity reflect Landau quantization of
Dirac electrons on the top surface. The corresponding carrier density is
given by ntops ¼ e= 2π�hΔð1=BÞð Þ. b Inset: Capacitance is measured by
superimposing a small ac signal (0.01 V at 50 Hz) onto a dc voltage (which
tunes EF) and probing the ac current phase sensitively18. The blue points
show the carrier density of the top surface, ntops , obtained from the
periodicity of the capacitance oscillations. The arrow marks the gate voltage
at which the slope dntops =dVg changes. For Vg< 1.75 V the filling rate is
1.22 × 1015 m−2 V−1, for Vg> 1.75 V it is 0.87 × 1015 m−2 V−1
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disappear and are hardly visible for Vg= 1 V, i.e., close to the
CNP. After we have shown the evolution of the antidot peak
position as a function of Vg, i.e., carrier density, we present in
Fig. 3d the fundamental peak positions for three different periods
at constant carrier density. Also, here the position of the
fundamental peak is given by B1 (Eq. 1) and marked by arrows
in Fig. 3d. For the 600 and the 800 nm device also the position of
the orbits around two B2ð Þ and four antidots B4ð Þ are shown. For
calculating the resonance position, we have used kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4πntops

p
,

i.e., the relation between Fermi wave vector and carrier density of
a two-dimensional electron gas which is not spin degenerate (see
inset of Fig. 4b). The nearly perfect agreement between measured
and calculated resonance position is in line with antidot
resonances stemming from helical Dirac surface states, which
are spin-polarized, as sketched in Fig. 3b, and probe a single
topological surface. Figure 4 provides further evidence that the
antidot peaks sample the properties of the top surface only. For
that, we extract the carrier density from the B-field position at
which the fundamental resonance occurs, using
ntops ¼ eaB1ð Þ2= 16π�h2

� �
. The result is shown by the red circles

in Fig. 4a. These data points resemble closely ntops , derived from
the quantum capacitance oscillations in Fig. 2b, also shown in
Fig. 4a. Most importantly, ntops Vg

� �
, acquired from the antidot

resonance position displays a change of slope at about 1.75 V, in
analogy to the capacitance data. This is a clear indicator that the
antidot signals root in a single topological surface. Therefore,
antidot resonances can be used to extract the carrier density of
the top surface also at higher temperatures at which quantum
oscillations are smeared out. In contrast, the total carrier density,

determined here from the position of the quantum Hall plateaus
at high fields and shown in the upper inset of Fig. 4a echoes the
total carrier density, i.e., the sum of ntops , the carrier density of the
bottom surface, nbots , and, for Vg> 1.75 V, nbulk the bulk carrier
density. The slope of the total carrier density ns(Vg), in contrast, is
constant and reflects the constant filling rate dns/dVg (upper inset
Fig. 4a).

Figure 4b shows the magnetic field positions B1 of the
fundamental antidot resonance occurring at 2Rc = a for all three
investigated devices. The carrier density ntops for each gate voltage
has been taken from the quantum capacitance oscillations. The
solid lines have been calculated using Eq. (1). The lines describe
the data for the 600 and 800 nm antidot lattice perfectly well; in
the case of the 408 nm lattice, there is a small deviation of ~10%.
There, the capacitance was measured on a sample area where only
a fraction of ~18% was covered with antidots. Therefore, the
extracted ntops is an average value, which is slightly higher than the
carrier density in the antidot lattice. By assuming a 20% reduced
carrier density in the antidot patterned areas compared to pristine
ones, a plausible value for our system, we obtain a perfect match
with experiment (green dashed line in Fig. 4b).

Discussion
In the present work, we have imposed a (periodic) potential on
the nanometer scale onto a single surface of Dirac electrons and
observe clear geometric resonances, which stem from the upper
topological surface. This is of central importance for all kinds of
(ballistic) manipulation of helical Dirac electrons on the
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nanoscale. The antidot resonances probed here reveal the Fermi
wave vector, being consistent with Dirac surface states, which are
singly occupied in k-space.

Methods
Device fabrication. The first step in device fabrication is defining the antidots by
electron beam lithography and etching the antidot slightly into the HgTe layer by
using a wet chemical etching solution containing 0.1 ml bromine, 100 ml ethylene
glycol, and 25 ml distilled water. To ensure reproducible etching rates, the solution
is cooled to 0 °C. The etched antidots have a diameter between 170 and 190 nm.
After etching the antidots, we defined and etched a Hall bar by optical lithography
and wet chemical etching. By etching the Hall bar after nanostructuring, we remove
differently deep etched antidots, which occur along the perimeter of the patterned
area between the potential probes so that they do not matter in transport experi-
ments. As gate insulator, we deposited 30 nm SiO2 using a plasma-enhanced
chemical vapor deposition process followed by atomic layer depositing of 100 nm
Al2O3; both processes were carried out at 80 °C. In a final patterning step, we

defined a titanium/gold (10 nm/100 nm) gate by thermal evaporation. Finally,
ohmic contacts to HgTe where formed by indium soldering.

Capacitance measurements. The capacitance measurements where performed at
1.5 K in a 4He cryostat with magnetic fields up to 14 T. For these measurements, we
used an Andeen–Hagerling (AH) 2700A capacitance bridge with a modulation
amplitude of 0.01 V at 50 Hz.

Magnetotransport measurements. We used conventional Hall bar geometries
having a width of 50 µm and a length of 650 µm with four potential probes of width
5 µm on each side, separated by either 100 or 250 µm. The resistivity ρxx(B) was
extracted from areas of size 100 µm× 50 µm or 250 µm× 50 µm, respectively.
Standard four-terminal measurements were carried out at 1.5 K, unless specified
otherwise, using digital lock-in amplifiers (Signal Recovery 7265/EG&G Instru-
ments 7260) at a frequency of 13 Hz. A Yokogawa 7651 DC source was used to
apply the gate voltage.

Data availability. The data supporting the findings of this study are available
within the paper and from the corresponding author on request.
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