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ABSTRACT
The content and the ratio of soluble sugars and organic acids in fruits are significant
indicators for fruit quality. They are affected by multiple environmental factors, in
which water-deficient is the most concern. Previous studies found that the content of
soluble sugars and organic acids in fruit displayed great differences under varied
water stress. It is important to clarify the mechanism of such difference and to
provide researchers with systematic knowledge about the response to drought stress
and the mechanism of sugar and acid changes in fruits, so that they can better carry
out the study of fruit quality under drought stress. Therefore, the researchers studied
dozens of research articles about the content of soluble sugar and organic acid, the
activity of related metabolic enzymes, and the expression of related metabolic genes
in fruits under water stress, and the stress response of plants to water stress. We
found that after plants perceived and transmitted the signal of water deficit, the
expression of genes related to the metabolism of soluble sugars and organic acids
changed. It was then affected the synthesis of metabolic enzymes and changed their
metabolic rate, ultimately leading to changes in soluble sugar and organic acid
content. Based on the literature review, we described the pathway diagrams of sugar
metabolism, organic acid metabolism, mainly malic acid, tartaric acid, and citric acid
metabolism, and of the response to drought stress. From many aspects including
plants’ perception of water stress signal, signal conversion and transmission, induced
gene expression, the changes in soluble sugar and the enzyme activities of organic
acids, as well as the final sugar and acid content in fruits, this thesis summarized
previous studies on the influence of water stress on soluble sugars and the
metabolism of organic acids in fruits.
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INTRODUCTION
Drought is among the most important abiotic limiting factors in agricultural production.
Drought stress alone has caused about $30 billion losses in global crop production over the
past decade (Gupta, Rico-Medina & Cao-Delgado, 2020). Drought is one cause of water
stress, whereby water loss exceeds water absorption, resulting in a decrease in water
content and turgor pressure in plant tissues, and abnormal metabolism. In fruit crop
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production, water stress may cause severe reduction in fruit quality and yield. Therefore, it
is important for improvement of fruit quality under water stress to understand the
mechanism of metabolic changes.

In fruit, soluble sugars mainly comprise fructose, sucrose, and glucose, of which fructose
is the sweetest (Wang et al., 2018, 2019). Organic acids in fruit predominantly comprise
malate, citrate, and tartaric acid (Chen et al., 2015). The sugar:acid ratio is the primary
index for evaluation of fruit quality, specifically of flavor and fruit ripening (Zhang et al.,
2021). In addition, soluble sugars are substrates for anthocyanin synthesis, and acids are a
potential stimulus for anthocyanin synthesis, which is important for fruit coloring (Noro,
Kudo & Kitsuwa, 1989; Smeekens, 2000; Ban et al., 2009; Lester, Jifon & Makus, 2010).
Therefore, understanding the mechanisms of sugar and acid metabolism is important for
improvement of fruit quality under water stress.

Isotope labeling has revealed that the O2 gas and H+ ions produced by photosynthesis
are derived from water, and the H+ ions are utilized for carbon assimilation. Water acts as a
solvent to transport organic compounds synthesized by photosynthesis between source
and sink units, and plays an important role in fruit sugar metabolism. In addition, the
synthetic substrate of organic acids in plants is the sugar produced from photosynthesis.
Therefore, sugar and organic acid metabolism are closely related. Researchers have long
studied the effect of water stress on sugar and acid metabolism in fruit (Li, Feng & Cheng,
2012; Jiang et al., 2020). Genetic modification, osmoregulation, and the breeding of
drought-resistant cultivars have been used to lessen the impact of water stress on fruit
sugar and acid metabolism, and to promote the orderly metabolism of fruit sugars and
acids. In addition, this research has provided insight into the mechanisms of sugar and acid
metabolism under water stress.

Moderate water deficit has a positive effect on the soluble sugar content and sugar:acid
ratio of the fruit of jujube (Ziziphus jujuba Mill.) ‘Lizao’ (Cui et al., 2009). However,
drought stress has a negative impact on the jujube ‘Lingwuchangzao’ fruit sugar:acid ratio
and pigment content (Jiang et al., 2020). Water stress improves the activities of sucrose
synthase (SuSy) and invertase (INV) in tomato fruit (Lu, Li & Jiang, 2009). With regard to
acid metabolism, organic acids in fruit can be roughly divided into tartaric acid, malate,
and citrate types. L-Idonate dehydrogenase (L-IDN DH) catalyzes the cleavage between
the C4 and C5 positions of ascorbic acid (AsA), thus resulting in the synthesis of tartrate
(Narnoliya, Kaushal & Singh, 2019). Malate, citrate, and other organic acids are
synthesized through the tricarboxylic acid (TCA) cycle (Huang et al., 2021). Organic acid
accumulation in sarcocarp cells is under environmental control. Water stress has no
notable effect on titratable acid content (Reynolds & Naylor, 1994).Ussahatanonta, Jackson
& Rowe (1996) observed that water deficit leads to an increase in pH and reduction in
tartaric acid content in grape (Vitis vinifera L.) ‘Cabernet Sauvignon’ berries, whereas
drought increases the total acid content in fruit of orange (Citrus sinensis (L.) Osbeck)
‘Valencia’ (Hutton, Landsberg & Sutton, 2007). Drought strongly prevents the degradation
of citrate in fruit, thereby increasing the citrate content in fruit, in association with
differential expression of citrate metabolism genes. However, other researchers have
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reported that water stress leads to a decrease in pH in grape ‘Sauvignon blanc’ berries
during fruit development (Gachons et al., 2005).

This article reviews the results of previous studies and provides a theoretical basis for
fruit tree production and fruit quality regulation in water-deficient and arid areas.
In addition, the changes in fruit sugar and organic acid contents, fruit sugar:acid ratio,
associated metabolic enzyme activities, gene expression, and stress response mechanisms
under water stress are summarized.

SURVEY METHODOLOGY
In this article, we used the Blyun database (https://www.blyun.com/), Web of Science
(https://www.webofscience.com/wos/alldb/basic-search), Baidu Academic (https://xueshu.
baidu.com/) and sci-hub (https://sci-hub.se/) to search for literature. The search keywords
and their combinations included “soil water stress”; “water stress”; “water deficit”;
“drought stress”; “irrigation effects”; “soil drought”; “abiotic stress”; “carbohydrates”;
“sugar metabolism”; “glycolysis”; “sucrose metabolizing enzyme activities”; “sucrose
metabolism”; “expression patterns of genes involved in sugar metabolism”; “TCA”;
“organic acids”; “abscisic acid”; “ABA accumulation”; “sugars and acids”; “sucrose-
synthase genes”; “organic acid degradation-related genes”. We collected and screened a
large number of related studies based on their relevance to the topic, and excluded those
unrelated. We aimed to describe the effects of water deficit on sugar and acid metabolism
and the mechanism of response in fruits, so we also excluded articles with less relevance
after identifying their focus by reading the abstract. It is important to note that this is a
comprehensive but exhaustive literature review.

EFFECT OF WATER STRESS ON SUGAR METABOLISM IN
FRUIT
Sugar content in fruit
The content and composition of sugars in fruit are important indices of fruit quality, and
the main prerequisites for synthesis of amino acids, pigments, and organic acids (Lester,
Jifon & Makus, 2010; Zhang, Li & Cheng, 2010; Etienne et al., 2013). Glucose, fructose, and
sucrose are the primary sugars accumulated in fruit. The sink strength of the fruit greatly
affects the sugar content in the fruit. One index for estimation of sink strength is the
activity of metabolic enzymes, which is strongly affected by the water content. Therefore,
the water content of the plant is extremely important for sugar accumulation in fruit.

Many studies have found that reduced irrigation and water stress change the sugar
content in fruit. For example, Rahmati et al. (2015) applied three severities of water stress
—low-intensity stress (LS; 30% less water supply at harvest than cumulative crop
transpiration), moderate stress (MS; 53%), and severe stress (SS; 64%)—from the mid-pit
hardening stage (12 June) to the harvest stage (23 September) of 8-year-old peach (Prunus
persica (L.) Batsch) ‘Alberta’ trees. In the LS treatment, the glucose and fructose contents
decreased during fruit development, whereas no significant difference in glucose and
fructose contents was observed among the treatments approaching fruit maturity. The SS
treatment increased the concentrations of glucose, fructose, and sorbitol in the fruit flesh
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by approximately 12–70%, whereas the sucrose concentration was not affected by the
water-stress treatment. During the harvest period, the fruit volume under the MS and SS
treatments was 66% and 44% of that under the LS treatment. The fruit dry weight under
the MS and SS treatments was 85% and 73% of that under the LS treatment. Although the
fruit volume was significantly reduced under the MS and SS treatments, the dry weight and
fructose, glucose, and sorbitol contents increased to a greater proportion. These results
suggest that greater amounts of sugars accumulate in fruit under moderate and severe
drought.

Wang et al. (2019) treated apple (Malus × domestica Borkh.) ‘Gala’ at stage I (from the
young fruit stage to the mature stage) and stage II (from the fruit expanding stage to the
mature stage B) with either LS (60–70% of field capacity [θf] (Yang et al., 2015b)) or
MS (50–60% θf) treatments. In stage I, compared with the control (CK; 70–80% θf),
fructose, glucose, and sorbitol contents under the MS and LS treatments increased by 10%
and 15%, 13% and 16%, and 56% and 107%, respectively. The sucrose content under the LS
treatment increased by 27% in the harvesting period. During this stage, the enhanced
activities of SuSy, sucrose phosphate synthase (SPS), and acid invertase (AI) under MS and
the enhanced activities of SuSy and SPS under LS promoted the conversion of sucrose to
fructose and glucose. In stage II, under the MS and LS treatments, the sugar contents in the
fruit were increased compared with those of the CK in the harvesting period, especially
fructose (26% and 12%), glucose (64% and 24%), and sorbitol (61% and 19%), whereas the
sucrose content decreased by 23% and 17%, respectively. At this stage, the MS and LS
treatments increased the activities of sorbitol oxidase (SOX) and AI in the fruit.
Furthermore, LS reduced the fruit size in stage I but not in stage II. Thus, MS at stage I, and
MS and LS at stage II, significantly increase the contents of fructose, glucose, and sorbitol
in apple fruit, and the fruit size is reduced in stage I compared with that in stage II under
exposure to water stress.

Alcobendas et al. (2013) observed that, compared with those under full irrigation, the
contents of glucose and sorbitol in plants treated with deficient irrigation were higher in
the mid- to late-maturing peach ‘Catherine’. However, no distinct differences in fructose
and sucrose contents were detected. Kobashi, Gemma & Iwahori (2000) reported that
sorbitol, sucrose, and total sugar contents in peach fruit increase under moderate water
stress, whereas no significant difference is observed under severe water stress. Other
studies have shown that water stress increases fruit sugar content (Seymen et al., 2021).
Snchez-Rodrguez et al. (2012) examined the effect of grafting on fruit yield and quality
under water stress in tomato (Solanum lycopersicum L.). The authors observed that a high
content of sugars accumulated in fruit under moderate water stress when the
drought-resistant ‘Zarina’ formed the rootstock and the drought-sensitive ‘Josefina’ was
the scion.

In sum, the most strongly significant effect of water stress on fruit yield is on the average
fruit weight rather than on the fruit number per plant, and the amount of sugars
accumulated varies with the degree of water stress. The reason for these inconsistent results
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may be that moderate drought can lead to greater accumulation of sugars compared with
that under mild and severe drought (Atkinson et al., 1998).

Activity of enzymes associated with sugar metabolism
Photosynthates are transported from the leaves to the fruit in the form of sucrose or
sorbitol, and entry into the cells is mediated by protein carriers for carbohydrate
metabolism. Metabolites such as fructose and glucose are either stored in the vacuoles via

Figure 1 Sugar metabolism in fruit cell under water stress. The red circles indicate elevated fructose
and glucose content (Rahmati et al., 2015; Alcobendas et al., 2013; Wang et al., 2019), while the green
arrows represent enhanced activity of SS, SPS, vAINV, NAD+-SDH and SOX under water stress
(Hockema & Etxeberria, 2001; Lu, Li & Jiang, 2009; Li et al., 2019;Wang et al., 2019). With enhanced SS
activity, the rate of sucrose-fructose interconversion was accelerated (Hockema & Etxeberria, 2001), but
SPP catalyzed irreversible reactions leading to sucrose-to-fructose conversion (Huber & Huber, 1996);
with enhanced NAD+-SDH activity, the rate of sorbitol conversion to fructose was accelerated (Li & Li,
2005); with enhanced SPS activity, the rate of Sucrose-6-phosphate synthesis and decomposition was
accelerated (Yang et al., 2002; Cornic, Ghashghaie & Fresneau, 2007), and due to enhanced SS activity, the
rate of Sucrose-6-phosphate to sucrose, resulting in SPS-catalyzed Sucrose-6-phosphate synthesis, and
the above reasons led to the increase of fructose content. The sorbitol transported into the fruit, due to the
enhanced activity of SOX and NADP+-SDH (Li & Li, 2005;Wang et al., 2019), the conversion of sorbitol
to glucose and the increase of glucose content. Full-size DOI: 10.7717/peerj.13691/fig-1
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the hexose transporter (HXT) or catalyzed by soluble AI to produce sucrose. The sucrose
can also contribute to the Embden–Meyerhoff–Parnas (EMP) glycolytic pathway for
energy metabolism (Fig. 1).

The enzymes primarily involved in sucrose metabolism in fruit are SuSy, SPS, and INV
(Li, Feng & Cheng, 2012). Of these enzymes, INV catalyzes the irreversible breakdown of
sucrose to glucose and fructose. Depending on the pH for optimal activity, INV comprises
neutral invertase (NINV) and AI, and AI is further dividable into soluble AI and insoluble
AI. Soluble AI is localized in the cytoplasm or apoplastic space within the cell, whereas
insoluble AI is bound to the cell wall. Sucrose synthase, comprising soluble SS in the
cytoplasm and insoluble SS in the cell membrane, is mostly localized in the cytoplasm and
catalyzes reversible reactions converting sucrose to uridine diphosphate glucose (UDPG)
and fructose (Tanase et al., 2002; Yang et al., 2019). Sucrose phosphate synthase in the
cytoplasm catalyzes UDPG and fructose 6-phosphate to produce sucrose phosphate, which
is then irreversibly converted to sucrose under the catalysis of sucrose-phosphate
phosphatase (Huber & Huber, 1996).

The enzymes associated with hexose metabolism are hexokinases, comprising
glucokinase in the mitochondrial membrane and fructokinase in the cytoplasm.
Glucokinase catalyzes the reversible phosphorylation of glucose, whereas fructokinase
catalyzes the reversible phosphorylation of fructose (Petreikov et al., 2001; Renz, 1993).

Sorbitol is synthesized mainly in members of the Rosaceae. The enzymes that
participate in sorbitol metabolism consist of sorbitol 6-phosphate dehydrogenase, SOX,
and sorbitol dehydrogenase (SDH). Sorbitol 6-phosphate dehydrogenase catalyzes the
conversion of glucose-6-phosphate and sorbitol-6-phosphate, and the activity of sorbitol-
6-phosphate phosphatase converts sorbitol-6-phosphate into sorbitol. The decomposition
of sorbitol into glucose is catalyzed by SOX. Sorbitol dehydrogenases comprise
nicotinamide adenine dinucleotide phosphate-dependent sorbitol dehydrogenase (NADP
+-SDH) and nicotinamide adenine dinucleotide-dependent sorbitol dehydrogenase (NAD
+-SDH). Of these enzymes, NAD+-SDH catalyzes the decomposition of sorbitol to form
fructose, and NADP+-SDH and SOX primarily catalyze the conversion of sorbitol to
glucose (Yamaguchi, Kanayama & Yamaki, 1994).

Under water stress, SuSy activity in the fruit increases, thus accelerating the rate of
sucrose metabolism (Hockema & Etxeberria, 2001). Under light water stress, the activities
of SuSy and AI increase, but under moderate water stress only the activity of SuSy
increases. In addition, light and moderate water stress boost the activity of SOX, and
thereby promote conversion of sorbitol into glucose in apple (Wang et al., 2019).
The activities of SuSy and INV in tomato fruit increase under long-term water stress (Lu,
Li & Jiang, 2009; Li et al., 2019). Increased SDH activity under drought accelerates the rate
of sorbitol decomposition (Li & Li, 2005). The activity of SPS increases in rice (Oryza
sativa L.) and durum wheat (Triticum durum L.) under water stress (Yang et al., 2002;
Cornic, Ghashghaie & Fresneau, 2007). As the activities of SuSy and sucrose INV
(especially sucrose AI) increase in the leaves of coffee (Coffea canephora Pierre ex A.
Froehner var. kouilouensis De Wild.), the content of hexose is also increased (Praxedes
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et al., 2007). Therefore, the activities of SuSy, SOX, SDH, INV, and SPS are generally
increased under water deficit. This may be the cause of hexose accumulation.

The ectopic expression of appleMdSUT2 in tomato improves the soluble sugar content
in the transformed lines and enhances tolerance to adverse environmental factors, such as
soil salinization and drought (Ma et al., 2016). In addition, drought stress induces
expression of the monosaccharide transporter TMT1 on the vacuolar membrane of
Arabidopsis thaliana (Wingenter et al., 2010). The genes TaSUT1A, TaSUT1B, and
TaSUT1D are highly expressed in the glume, stem, grain, and seeds during the grain filling
stage. Such expression promotes sugar absorption and source–sink transport (Aoki et al.,
2004; Aoki et al., 2006). Under mild water deficiency, an increase in glucose content is
associated with significant decrease in expression of the VvHT1 hexose transporter gene.
Under severe water stress, the expression levels of the monosaccharide transporter VvHT5,
sucrose carrier VvSUC11, vacuolar invertaseVvGIN2, and ASR (abscisic acid [ABA], stress,
and ripening-induced) genes increase in grape (Medici, Laloi & Atanassova, 2014).

Expression of genes associated with sugar metabolism
Sugar accumulation in fruit is associated with the expression of enzymes involved in
sucrose metabolism. Islam et al. (2014) observed that, compared with those of the control,
under moderate water stress the transcript levels of CitSUS1 and CitSUS3–5 (no obvious
phenotypic change was observed in the leaves and other tissues) decrease significantly and
those of CitSUS6 are slightly reduced, whereas the CitSUS2 transcript level increases almost
2.5 times in the fruit segment membrane of Citrus unshiu (Swingle) Marcow. In fruit juice
sacs, CitSUS2, CitSUS4, and CitSUS6 transcript levels show a trend to increase compared
with those of the control. The levels of CitSUS2 transcripts increase 2-fold and CitSUS4
transcripts increase 3.6-fold, which is significantly higher than those in the control. The SS
genes are the main genes involved in plant sucrose metabolism. In most dicotyledonous
plants, there are two non-allelic genes, SS1 and SS2. Osmotic stress induces expression of
SuSy in the resurrection plant (Craterostigma plantagineumHochst.), non-dormant wheat
(Triticum aestivum L. ‘Trémie’), and tomato ‘Liaoyuan Duoli’ (Kleines et al., 1999;
Niedzwiedz-Siegien et al., 2004; Lu, Li & Jiang, 2010). Interestingly, Baud, Vaultier &
Rochat (2004) reported that AtSS3 was expressed in various organs of Arabidopsis after leaf
dehydration. Invertase-related genes display different expression patterns under water
stress and the expression of INV genes differs under various degrees of water stress. A
similar finding has been reported for tomato, in that the expression levels of AI and
mRNAs increase under water stress (Lu, Li & Jiang, 2009; Li et al., 2019). Trouverie et al.
(2004) showed that the expression level of INV2 in the vacuole of maize (Zea mays L.)
leaves is elevated under moderate water stress and thus AI activity is increased in mature
maize leaves. Sharifi et al. (2018) observed that the expression levels of SPS and INV genes
increases under drought stress. However, Mclaughlin & Boyer (2004) reported that, under
drought stress, the expression levels of cell wall INV, vacuolar INV, and SuSy decrease in
the ovary of maize. These differences may result from the differential expression of INV2
(Pelleschi et al., 1999).

Ma et al. (2022), PeerJ, DOI 10.7717/peerj.13691 7/22

http://dx.doi.org/10.7717/peerj.13691
https://peerj.com/


EFFECT OF WATER STRESS ON ORGANIC ACID
METABOLISM IN FRUIT
Content of organic acids in fruit
Both the acid content of the fruit and the sugar:acid ratio are important indicators of fruit
quality. The principal site of organic acid synthesis is the mitochondria and the main
synthetic pathway is the TCA cycle (Etienne et al., 2013). In the process of fruit ripening,
organic acids are gradually metabolized and utilized through the TCA pathway, glycolytic
pathway, and gluconeogenesis. The diverse species share the same TCA pathway. Based on
the predominant constituent organic acid, fruit can be roughly divided into tartaric acid,
malate, and citrate types.

In grape berries, organic acid synthesis and accumulation are initiated in the stages of
pollination and fruit set, and the main location for their metabolism is the mitochondria.
Ussahatanonta, Jackson & Rowe (1996) studied the effects of nutrient and water stress on
vegetative and reproductive growth in grape ‘Cabernet Sauvignon’. These authors reported
that under intermittent water stress (watering three times per week), the number and total
weight of berries decreased by 21.9% and 12.9%, respectively. Compared with the results
from the intermittent water stress treatment, the contents of malic acid and tartaric acid
under treatment with water and nutrient sufficiency (applying a standard concentration of
fertilizer) increased by 23.9% and 16.6%, respectively. Cholet et al. (2016) conducted a
comparative study of the tartaric acid pathway in grape ‘Ugni blanc’ berries under two
vintages with contrasting climatic conditions (one hotter and drier, the other colder and
wetter). Under the hotter and drier climate, the tartaric acid content of fruit in the harvest
period was considerably higher than that under the cooler and wetter climate, which
indicated that a dry climate is more favorable for tartaric acid accumulation. Aguado et al.
(2012) observed that, compared with the control (irrigation with 100% of crop
evapotranspiration), the weight of orange ‘Navelina’ fruit and juice under water deficit
(irrigation with 75% of the control) increased by 17% and 21%, respectively, but no
significant change in titratable acidity was detected. Qi et al. (2003) reported that water
deficit increases the organic acid content of tomato fruit. In addition, compared with LS
and MS treatments, SS treatment significantly increases citric acid and quinic acid
concentrations throughout fruit development; with intensification of drought, the total
organic acid and total non-structural carbohydrate concentrations increase (Rahmati et al.,
2015). Overall, the organic acid content of fruit increases under water stress.

Activity of enzymes associated with organic acid metabolism
Organic acids accumulate gradually during plant growth. Two types of proton pumps at
the tonoplast, vacuolar-type ATPase and vacuolar pyrophosphatase, drive entry of the
synthesized organic acids into the vacuole for storage by means of transporters and
specialized cation channels (Ratajczak, 2000; Meyer et al., 2011). Tartaric acid only
accumulates in the fruit of grape and Pelargonium species (Stafford, 1959). Tartaric acid is
synthesized in leaves and immature fruit of grape, and in the leaves and pods of
Pelargonium plants, but not in mature fruit. In grape, tartaric acid is mainly synthesized as
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the result of cleavage of the C4–C5 group of AsA and involves the metabolic enzymes
2-keto-gulonate reductase (2-KGR) (Jia et al., 2019), L-IDN DH (Debolt, Cook & Ford,
2006), transketolase, and tartaric semialdehyde dehydrogenase (TSAD) (Debolt, 2006).
Tartaric acid synthesis progresses as follows. Ascorbic acid is hydrolyzed and oxidized to
produce 2-keto-gluconic acid (2-KGA). Then, 2-KGR catalyzes 2-KGA to produce
L-idonic acid (L-IDN), and the rate-limiting enzyme L-IDNDH oxidizes L-IDN to form 5-
keto-gluconic acid (5-KGA). Transketolase then catalyzes 5-KGA to produce L-threo-
tetruronate (L-TT) and glycoaldehyde, and finally TSAD catalyzes L-TT to produce
tartaric acid (Fig. 2) (Debolt, Cook & Ford, 2006). Given its restricted distribution among
flowering plants, few studies have investigated tartaric acid metabolism. Other organic
acids, except some malate synthesized in the cytoplasm, are synthesized in mitochondria
through the TCA cycle (Etienne et al., 2013).

The enzymes that participate in malate metabolism in fruit are malate dehydrogenase
(MDH), malic enzyme (ME), phosphoenolpyruvate carboxylase (PEPC), and
phosphoenolpyruvate carboxykinase (PEPCK). Malate dehydrogenase catalyzes reversible
reactions and is mainly localized in the cytoplasm (Cyt-MDH, the most important

Figure 2 The synthesis of tartaric acid in grape. The initial substrate of tartaric acid synthesis is
ascorbic acid, and the synthesis reaction takes place in the fragment of ascorbic acid C4-C5, and tartaric
acid in grapes is synthesized through the intermediate metabolic pathways (Jia et al., 2019). The related
enzymes mainly include 2-KGR, L-IDN DH, TK and TSAD, among which L-IDN DH is the rate-limiting
enzyme. The process of 2-KGA synthesis by AsA is not clear. 2-KGA is reduced to L-Idn by 2-KGR (Jia
et al., 2019), then L-IDO is oxidized to 5-KGA by L-Idn DH (Debolt, 2006). TK catalyzes the cleavage of
5-KGA between C4 and C5 to produce L-TT and Gly. Finally, L-TT generates TA by the catalysis of
TSAD (Debolt, 2006). Full-size DOI: 10.7717/peerj.13691/fig-2
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isozyme), mitochondria, and chloroplasts (Yao et al., 2011). Based on the characteristics of
the coenzymes, there are two forms of ME: NAD-ME and NADP-ME. The form NAD-ME
is mainly localized in mitochondria, whereas NADP-ME is predominantly in the
cytoplasm and plastids.

The synthesis and degradation pathways for malic acid are shown in Fig. 3.
Two pathways are involved in malate anabolism. In one pathway, the
phosphoenolpyruvate (PEP) produced by EMP in the cytoplasm generates oxaloacetic acid
(OAA) under the activity of PEPC, and then NAD-malate dehydrogenase (NAD-MDH)
catalyzes OAA to produce malate. In the second pathway, malate is synthesized through
TCA in the mitochondria (Etienne et al., 2013). Malate is degraded by two mechanisms.
Cytoplasmic NADP-ME catalyzes malate to produce OAA, which is then irreversibly
converted to PEP under the catalysis of PEPCK (Bahrami et al., 2001). Alternatively,
NAD-ME catalyzes degradation of malate to pyruvate and CO2 in the mitochondria and
chloroplasts. The latter reaction is the main means of malic acid degradation (Sweetman
et al., 2009).

Figure 3 Malate metabolism in fruit cell under water stress. The red font: material accumulation (Jiang
et al., 2014). Dark blue dashed arrows: omission of the multiple reaction process of the substrate for-
mation product; red arrow: inhibition of related metabolic enzyme activities. Under water stress, ACO,
IDH and MDH enzyme activities are inhibited and citrate, isocitrate and malate metabolism rates are
reduced (Jiang et al., 2014), leading to accumulation. Malate was translocated to vacuole storage and its
content increases. Full-size DOI: 10.7717/peerj.13691/fig-3
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The primary enzymes involved in citrate synthesis are citrate synthase (CS) in the
mitochondria (O’Hara, Slabas & Fawcett, 2002; Lin et al., 2016), and aconitase (ACO) in
the cytoplasm and mitochondria. Aconitase reversibly catalyzes the conversion of citrate
and isocitrate. The principal enzymes for citrate degradation are isocitrate dehydrogenase
(IDH), glutamate dehydrogenase (GAD), glutamine synthetase (GS), and ACO (Tadeo
et al., 2008; Chen et al., 2013; Liao et al., 2019). Isocitrate dehydrogenase can be divided
into NAD-IDH (localized in mitochondria) and NADP-IDH (localized in the cytoplasm).

Citrate is mainly degraded in the cytoplasm by two mechanisms. Aconitase and IDH
catalyze citric acid to produce a-ketoglutarate, which gives rise to glutamate (Glu) under
the activity of GAD. In turn, GAD catalyzes glutamate to produce GABA, and GABA
enters the mitochondria. Then GABA transaminase (GABA-T) and succinate
semialdehyde dehydrogenase (SSADH) catalyze GABA to produce succinate, and finally
succinate enters the TCA cycle (Cercós et al., 2006; Michaeli et al., 2011). The second type
of degradation involves the breakdown of citrate to OAA and acetyl coenzyme A by the
activity of ATP citrate lyase (Giovannoni, 2004). In addition, citrate can be degraded via
the glutamine pathway. By this mechanism, glutamine synthetase (GS) catalyzes glutamate
to produce glutamine (Fig. 4) (Cercós et al., 2006).

The activity of MDH decreases under water stress. Malic acid and citric acid accumulate
in juice cells of ripe citrus fruit after mulching, and the organic acid content in fruit flesh
increases with continuing water deficiency after mulching. Water shortage from surface
mulching may reduce the activity of NADP-IDH and cytoplasmic ACO, resulting in the
slow degradation of citric acid. Jiang et al. (2014) observed that mulching film had little
effect on the activities of PEPC and CS, but decreases the activities of cytoplasmic ACO
and cytoplasmic IDH during fruit development and at fruit maturity.

Expression of genes associated with organic acid metabolism
Previous studies have focused on malic acid metabolism-related gene expression at
different stages. Few studies have investigated the effect of water stress on the expression of
tartaric acid and malic acid metabolism-related genes, whereas studies on the expression of
citric acid metabolism-related genes in citrus fruit under water stress has been studied in
more detail.

The Citrus genome contains two CS genes, CitCS1, and CitCS2. According to the
relevant studies, the increase in citric acid content in fruit of Wenzhou mandarin (Citrus
reticulata Blanco ‘Unshiu’) under 40% water stress may be due to increased expression of
CitCS. In addition, expression of CitIDH and CitIDHI in Wenzhou mandarin fruit
increases during late drought, but in other periods the expression levels decrease to
different degrees; overall, CitIDH and CitIDHImainly increase compared with the control.
However, CitNADPIDH rapidly increases in late drought but decreases in other periods of
drought. Accumulation of citric acid is associated with ACO activity. For example, Liu
et al. (2007) observed that decrease in ACO expression led to accumulation of citrate in
late-ripening navel orange fruit, andMorgan, Osorio & Gehl (2013) showed that inhibition
of the expression of SlAco3a and SlAco3b in tomato fruit decreases ACO activity and
increases the citrate content.
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SIGNAL TRANSDUCTION OF WATER STRESS AND SUGAR
AND ACID METABOLISM IN FRUIT
Under water stress, plant cells perceive and receive stress signals through signal sensors,
and convert the extracellular signals into intracellular signals for transduction. By this
process, the second messenger, produced in plants with the stimulation of water stress,
plays an important role in signal transduction.

Upon exposure of a plant to water stress, the initial stress signals are translated into
osmotic stress signals, mechanical stress signals, and oxidative stress signals (Fig. 5)
(Niedzwiedz-Siegien et al., 2004; Cao et al., 2015; Gong et al., 2020). The water deficit in
cells leads to a change in turgor pressure and results in mechanical pressure. Phospholipase
C and mechanosensitive channels recognize the mechanical pressure on the plasma
membrane, and stimulate a brief increase in Ca2+ concentration within the cell (Gong et al.,
2020). The change in turgor pressure also leads to recognition of osmotic stress by

Figure 4 Cirrate metabolism in fruit cell under water stress. The red font: material accumulation
(Jiang et al., 2014). Dark blue dashed arrows: omission of the multiple reaction process of the substrate
formation product; red arrow: inhibition of related metabolic enzyme activities; red dashed arrows:
multiple reaction processes in which the substrate forms a product are omitted and the catalyticase
activity of at least one step of the reaction is inhibited. Under water stress, ACO, IDH and MDH enzyme
activities are inhibited and citrate, isocitrate and malate metabolism rates are reduced (Jiang et al., 2014),
leading to accumulation. Citrate was transported to the cytoplasm for metabolism.

Full-size DOI: 10.7717/peerj.13691/fig-4
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mitogen-activated protein kinase (MAPK). Both osmotic stress and mechanical stress lead
to increase in the intracellular free Ca2+ concentration and the production of reactive
oxygen species (Dastogeer et al., 2017; Gong et al., 2020). In addition, water stress increases
the activity of phospholipase C and promotes the synthesis of inositol (1,4,5)-triphosphate
(IP3). The IP3 molecule is also a second messenger and induces transport of endoplasmic
reticulum Ca2+ into the cytoplasm to increase the intracellular Ca2+ concentration.
Calmodulin receives high cytoplasmic Ca2+ concentrations leading to reversible
phosphorylation of proteins (Iwata et al., 1998). Protein phosphorylation promotes SPS
enzyme activity in banana (Musa) (Hubbard, Pharr & Huber, 1990). The drought-induced
protein kinase MdCIPK22 interacts with and phosphorylates Md-SUT2.2, thus enhancing

Figure 5 Signal transduction from root to fruit and water stress response in the root cell.Water stress
is translated into osmotic stress, mechanical stress and oxidative stress (Gong et al., 2020; Niedzwiedz-
Siegien et al., 2004; Cao et al., 2015). Mechanical stress triggered by cellular water loss is recognized
by phospholipase C (PLC) and stretch channels and on the plasma membrane, and osmotic stress is
recognized by mitogen-activated protein kinase (MAPK), leading to an increase in intracellular free Ca2+

concentration and the production of reactive oxygen species (ROS) (Gong et al., 2020; Dastogeer et al.,
2017). In addition, water stress increases intracellular inositol (1,4,5)-trisphosphate (IP3) and ABA
synthesis, which induces endoplasmic reticulum Ca2+ entry into the cytoplasm. High intracellular
concentrations of ABA and Ca2+-receiving calmodulin caused reversible phosphorylation of proteins
(Iwata et al., 1998), induced gene expression, and caused changes in sugar and acids metabolism.

Full-size DOI: 10.7717/peerj.13691/fig-5
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MdSUT2.2 protein stability and promoting accumulation of soluble sugars in the vacuole.
Ultimately, stress resistance and fruit quality are enhanced (Ma et al., 2019).

Water stress induces gene expression in the ABA biosynthesis pathway, which is an
important signal transduction pathway (Jia et al., 2002). It is generally considered that
ABA can be synthesized in all plant tissues (Gong et al., 2020), but under water stress ABA
is only synthesized in root cells owing to changes in plant metabolism. Under water stress,
a large amount of ABA, an intracellular messenger, is synthesized in root cells (Christmann
et al., 2005), which is sensed by ABA-binding sites (Gong et al., 2020). As a consequence,
protein kinase gene expression is induced, the activity of calcium-dependent kinase is
increased, and protein phosphorylation is regulated (Li et al., 2019). In addition, ABA
stimulates elevation in the concentration of the second messenger Ca2+. Soluble sugars
accumulate under drought (Falahi et al., 2018). In almost all studied grape cultivars,
increase in ABA content promotes sugar accumulation in the fruit under water stress
(Castellarin et al., 2007). Similarly, the concentration of fructose and glucose in fruit is
significantly increased in response to spray application of exogenous ABA onto tomato
leaves (Barickman, Kopsell & Sams, 2017). Sugars act as osmotic regulators in plants and
their accumulation is also a result of genetic induction (Izanloo et al., 2008; Ambavaram
et al., 2014; Yang et al., 2015a). Giribaldi et al. (2010) observed that ABA affected the
activity of a vacuoles-inverting enzyme (GIN1) and ME during fruit ripening.
Furthermore, ABA regulates the expression of sugar-responsive genes through the
downstream signaling element ABI4. In addition, ABA regulates sugar metabolism by
inducing the transcription of relevant genes by signaling in the nucleus (Rook et al., 2006).

CONCLUSION
Studies on the effect of water stress have shown that sugar and acid contents in different
fruit vary under different intensities of water stress. Monitoring the activities of catalytic
enzymes indicates that water stress changes the activity of enzymes involved in sugar and
acid metabolism in fruit, and thus change the rate of sugar and acid metabolism. Advanced
technologies have been utilized to study the reasons for the changes in sugar and acid
contents in fruit at the molecular level, and indicate that water stress also stimulates
changes in the expression level of genes associated with sugar and acid metabolism.
In addition, many studies on water stress signal perception, signal transduction, and
differential expression of stimulus-related genes have revealed the effects of water stress on
plant physiological metabolism.

Although substantial progress has been achieved, some limitations remain. First,
previous studies on the effect of water stress on fruit sugar content have mostly focused on
the changes in sucrose, glucose, and fructose contents and related metabolic enzymes and
genes, whereas few studies have investigated other types of sugars. Second, studies of the
effect of water stress on fruit acid content have predominantly concentrated on malate and
citrate, and investigations of tartaric acid have focused on its synthesis pathways. Lastly,
although it has been concluded that the changes in sugar and acid contents in different
fruit vary according to the degree of water stress, the molecular mechanism responsible is
unclear.
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Considerable research is still required to elucidate the effects of water stress on fruit
sugar and acid metabolism. We consider that, with continuing research effort, a more
complete picture of the mechanism by which water stress influences fruit sugar and acid
metabolism will be assembled in the near future.
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