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Micro-expression is extensively studied due to their ability to fully reflect individuals’ genuine 
emotions. However, accurate micro-expression recognition is a challenging task due to the subtle 
motion of facial muscle. Therefore, this paper introduces a Graph Attention Mechanism-based 
Motion Magnification Guided Micro-Expression Recognition Network (GAM-MM-MER) to amplify 
delicate muscle motions and focus on key facial landmarks. First, we propose a Swin Transformer-

based network for micro-expression motion magnification (ST-MEMM) to enhance the subtle 
motions in micro-expression videos, thereby unveiling imperceptible facial muscle movements. 
Then, we propose a graph attention mechanism-based network for micro-expression recognition 
(GAM-MER), which optimizes facial key area maps and prioritizes adjacent nodes crucial for 
mitigating the influence of noisy neighbors, while attending to key feature information. Finally, 
experimental evaluations conducted on the CASME II and SAMM datasets demonstrate the high 
accuracy and effectiveness of the proposed network compared to state-of-the-art approaches. The 
results of our network exhibit significant superiority over existing methods. Furthermore, ablation 
studies provide compelling evidence of the robustness of our proposed network, substantiating its 
efficacy in micro-expression recognition.

1. Introduction

Facial expressions, including macro-expressions and micro-expressions, play a crucial role in understanding emotions, which are 
vital in human cognition and human-machine interaction [1,2]. Macro-expressions are easily recognized but can be disguised, while 
micro-expressions, lasting from 4 milliseconds to half a second, are spontaneous and difficult to conceal, making them a more accurate 
reflection of genuine emotions. Despite Paul Ekman Group [3] produced the first Micro-Expression Training Tool (METT) in 2003, it is 
still challenged to recognize micro-expressions with the naked eye. Undergraduate students can achieve a accuracy rate of 40%, while 
the US Coast Guard can attain 50% accuracy without additional assistance. Therefore, computer-based automatic micro-expression 
recognition is broadly studied.

In the early stages of MER studies, hand-crafted approaches were employed. Yeasin et al. [4] proposed a two-step classification 
method that relied on refined optical flow computation from image sequences. Zhao and Pietikainen [5] developed a feature encoder 
utilizing volume local binary patterns (VLBP) to model textures. Moreover, they employed Local Binary Pattern histograms from 
Three Orthogonal Planes (LBP-TOP) to discriminate regional texture features. Another hand-crafted approach, introduced by [6], 
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Fig. 1. Magnified results of traditional approaches at different magnification factor.

was the 3D Histogram of Oriented Gradient (3DHOG), which extracted features from muscle movement in three dimensions for MER. 
Liong et al. [7] presented Bi-Weighted Oriented Optical Flow (Bi-WOOF) to encode the essential expressiveness of vertex frames. 
Van Quang et al. [8] developed a CapsuleNet specifically designed for MER using individual vertex frames. These studies have made 
significant contributions to the field of MER through their hand-crafted feature extraction techniques.

In recent years, deep learning has witnessed remarkable advancements, leading to the proposal of numerous deep learning net-

works that have achieved outstanding performance in MER. Kim et al. [9] introduced ELRCN, which leveraged CNN and LSTM to 
extract spatial and temporal characteristics from diverse micro-expressions. Khor et al. [10] proposed the Dual-Stream Shallow Net-

work (DSSN) that combined CNNs with inputs based on mixed movement to learn expressive characteristics. Gan et al. [11] presented 
the Optical Flow Features from Apex frame Network (OFF-ApexNet), which combined features extracted from micro-expressions.

Graph Convolutional Networks (GCNs) have also shown promise in MER tasks by leveraging relationships among landmarks. 
Lei et al. [12] proposed a graph temporal convolutional network (Graph-TCN), which encodes regional facial movement features of 
micro-expressions utilizing separate channels for node and edge features. Xie et al. [13] integrated emotion labels and action units 
in their MER approach, modeling different action units based on relevant information and combining action unit recognition with 
MER. Kumar and Bhanu [14] introduced the landmark-assisted three-stream graph attention network (GACNN), which dynamically 
selected varying patch sizes. Graph Convolution Networks (GCNs), which exploit landmark relationships, consider this relationship

and outperform CNNs in MER tasks. Recently, Transformers have made remarkable advancements in computer vision [15–18]. The 
attention mechanism in Transformers plays a critical role in selectively focusing on corresponding sections of face landmarks and 
extracting profound relationships among them. Therefore, we combine the attention mechanism of Transformers with the facial key 
region emphasized by GCNs, using the Graph Attention Network (GAT) to improve the accuracy of MER.

MER is a challenging task due to the slight facial muscle movements. Traditional motion magnification algorithms, such as Eule-

rian [19] and Lagrangian approaches [20], have been used but suffer from noticeable blurring and artifacts, as depicted in Fig. 1. To 
address this issue, a micro-expression motion magnification network based on the Swin Transformer is proposed. However, increasing 
the magnification factor amplifies noise from irrelevant movements. To mitigate this issue, key facial landmarks in unrelated areas are 
eliminated. This paper proposes a graph attention mechanism-based motion magnification guided micro-expression recognition net-

work (GAM-MM-MER). This paper proposes a Swin Transformer-based micro-expression motion magnification network (ST-MEMM) 
to enhance subtle motions while reducing blurring and artifacts. Additionally, this paper proposes a graph attention mechanism-

based micro-expression recognition network (GAM-MER) optimizes facial key area maps and focuses on adjacent nodes to mitigate 
the influence of noisy neighbors and extract essential feature information. The contributions of this paper are as follows:

1) We propose a Swin Transformer-based micro-expression motion magnification network, the first to employ a Transformer 
module for magnifying micro-expression motion, which reduces blurring and artifacts while enhancing the magnification factor of 
micro-expressions.

2) We propose a graph attention mechanism-based micro-expression recognition network, which optimizes facial key area maps 
and prioritizes adjacent nodes to reduce the influence of noisy neighbors and emphasize essential feature information.

3) We conduct experiment on CASME II and SAMM datasets and achieve better results than the state-of-the-art methods.

The rest of the paper is organized as follows: First, the proposed video motion magnification network ST-MEMM is introduced 
in Section 2.1. Secondly, the proposed micro-expression recognition network GAM-MER is introduced in Section 2.2. Then, the 
experiment results and analysis are shown in Section 3. Finally, conclusion and future work are provided in Section 4.

2. Methodology

The overall architecture of our proposed framework is depicted in Fig. 2. The framework comprises two main modules: the 
video motion magnification network and the micro-expression recognition network. The detailed description and functioning of each 
network will be presented in Sections 2.1 and 2.2, respectively.

2.1. Video motion magnification network

The proposed ST-MEMM network enhances subtle movements in micro-expression videos and reveals imperceptible facial muscle 
motion. The ST-MEMM network comprises of three sections: the Encoder module Me, the Manipulator module Mm, and the Decoder 
2

module Md, as shown in Fig. 3.
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Fig. 2. The overall architecture of GAM-MM-MER.

Fig. 3. Swin Transformer-based micro-expression motion magnification network (ST-MEMM) architecture.

First, the Encoder module Me extracts shallow features using the Shallow Encoder block ES (⋅) and deep features using the Deep 
Encoder block ED (⋅). Mathematically, the Encoder module is formulated in Equation (1) and Equation (2):

[𝐅1(S),𝐅2(S)] = ES([𝐈1, 𝐈2]) (1)

[𝐅1(D),𝐅2(D)] = ED([𝐈1, 𝐈2]) (2)

where 𝐈1 and 𝐈2 are input images. 𝐅1(S) and 𝐅2(S) are shallow features extracted with the Shallow Encoder block. 𝐅1(D) and 𝐅2(D)
are deep features extracted with the Deep Encoder block.

Subsequently, the extracted shallow and deep features are mixed and transferred to the Manipulator module Mm for further feature 
manipulation. Mathematically, the Manipulator module is formulated in Equation (3):

𝐅M = 𝐅1(MIX) +MConvRes(𝛼 ⋅MConvReLU(𝐅2(MIX) − 𝐅1(MIX))) (3)

where 𝐅M are amplified features and 𝛼 is adjustable magnification factor. 𝐅1(MIX) is combination of 𝐅1(S) and 𝐅1(D), and 𝐅2(MIX)
is combination of 𝐅2(S) and 𝐅2(D).ConvRes is combination of Convolution and Residual block, and ConvReLU is combination of 
Convolution and ReLU block.

Finally, after amplifying the difference of features between both frames, the magnified features are transferred to the Decoder 
module Md. This module comprises of the Mixed Magnified Transformer module MMMTB to further magnify and mix the feature, 
and the Reconstruction module to generate final magnified frame. Mathematically, the Mixed Magnified Transformer module is 
3

formulated in Equation (4):
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Fig. 4. Residual Swin Transformer Block.

𝐅MMTB =MMMTB(𝐅M) (4)

where MMMTB is the Mixed Magnified Transformer block, and 𝐅MMTB is the mixed magnified feature. Finally, the combination of 
magnified features and further magnified features are transferred to the Reconstruction module RSER , which reverses the shallow 
feature extractor to generate the final magnified frame. Mathematically, the Reconstruction module is formulated in Equation (5):

𝐈G =MConv(MConvTrans(𝐅MMTB + 𝐅M)) (5)

where MConvTrans is Transpose Convolution module, and MConv is Convolution module. 𝐈G is final generated magnified image of Swin 
Transformer-based micro-expression motion magnification network (ST-MEMM).

As depicted in Fig. 4, the Residual Swin Transformer block (RSTB) is utilized to capture deep features from input frames in the 
Deep Encoder module Me, and to further magnify features in the Mixed Magnified Transformer module Mm . RSTB consists of multiple 
Swin Transformer layers and a convolution layer, facilitating the processing of multilevel features.

The Swin Transformer layer partitions an input frame of size H×W×C into non-overlapping windows of size M×M and cal-

culates local attention within single window. The Multi-head Self Attention mechanism involves multiple iterations of the attention 
mechanism, and the resulting output is subsequently passed through a Multi-Layer Perception.

2.2. Micro-expression recognition network

Magnified micro-expression images are transferred to the graph attention mechanism-based network for micro-expression recog-

nition (GAM-MER). The architecture of GAM-MER network is shown in Fig. 5.

First, proposed ST-MEMM network NST−MEMM output the amplified micro-expression images. Mathematically, the ST-MEMM 
network is formulated in Equation (6):

IM = NST−MEMM(IR) (6)

where IR is the input raw micro-expression image and IR is the amplified image.

Subsequently, key facial landmark regions are extracted. Furthermore, in MER task, it is unnecessary to focus on all extracted 
facial landmark regions, as some of these regions may contain feature information that is irrelevant to micro-expressions or even 
introduce distracting information. For instance, non-voluntary behaviors such as head movements, blinking, and eye movements are 
unrelated to facial muscle movements caused by micro-expressions. Moreover, these interfering factors can be further amplified by 
proposed ST-MEMM network. Additionally, facial muscle micro-movements induced by micro-expressions primarily manifest around 
the eyebrows, nose tip, and mouth, while they rarely affect the muscle movements in the facial contour region. Consequently, we 
only concentrate on the facial landmark regions that are relevant to micro-expressions. Mathematically, the region select and extract 
is formulated in Equation (7):

IS =Mselect (Mextract (IM)) (7)

where IR is selected facial landmark regions. Mdlib and Mselect are separately employed to extract key facial landmark regions and 
select regions relevant to micro-expressions.

Consequently, selected facial landmark regions are transferred to shallow feature extraction module to extract local feature of 
each region. Due to the small size and the specific requirement for extracting local features from facial key regions, CNN is selected 
as the basic module for local feature extraction. Mathematically, the local feature extraction module is formulated in Equation (8):

𝐅𝐋 =MLFE(IS) (8)
4

where MLFE is the local feature extraction module and 𝐅𝐋 is extracted local feature of each facial landmark region.
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Fig. 5. Graph attention mechanism-based network for micro-expression recognition (GAM-MER) architecture.

Finally, the existing facial key region graph structure in current research is challenging to sufficiently capture the intrinsic con-

nections between distantly located but strongly correlated nodes. Considering prior knowledge, the topological structure of the facial 
key region graph is optimized. Based on the optimized facial landmark region map, local feature of each region is transferred to the 
two-layer graph network and output the micro-expression category. Mathematically, the graph attention network is formulated in 
Equation (9):

CMER =MGAT(𝐅𝐋) (9)

where CMER is the output category of MER and MGAT is the module of graph attention network.

3. Experiments

This section presents an extensive analysis of experiments, including datasets, evaluation metrics, experiment detail, experiment 
5

results, and ablation study.
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3.1. Datasets

3.1.1. Video motion magnification dataset

The Swin Transformer-based micro-expression motion magnification network (ST-MEMM) is trained using the selected dataset 
introduced by Oh et al. [21]. This dataset has demonstrated effectiveness in generating high-quality models that exhibit strong 
generalization capabilities, even when applied to scenarios unrelated to the training dataset. Oh et al. [21] constructed their dataset 
by utilizing 200,000 images from MS COCO dataset [22] as background and incorporating 7,000 segmented objects from the PASCAL 
VOC dataset [23] as foreground.

3.1.2. Micro-expression recognition datasets

To assess the performance of the graph attention mechanism based micro-expression recognition network (GAM-MER), experi-

ments are conducted on publicly available datasets, namely CASME II [24]. CASME II dataset consists of 247 micro-expression videos 
captured at a resolution of 640 × 480 and cropped to a size of 280 × 340 for the face. The dataset encompasses videos from 35 par-

ticipants, and it is categorized into six distinct facial micro-expression categories. The videos are provided in RGB format, and the 
average age of participants is 22.03 years.

Similarly, experiments are also conducted on publicly available datasets SAMM [25,6,26], which comprises 159 micro-expression 
videos captured at a resolution of 2040 × 1088, with the face cropped to a size of 400 × 400. The dataset includes videos from 32 
participants, and is divided into eight categories of micro-expressions. The SAMM dataset consists of gray-scale video samples from 
individuals representing 13 different ethnicities, and the average age of participants is 33.24 years.

Meanwhile, we conduct experiments on the publicly available SMIC-HS dataset [27]. The SMIC-HS dataset comprises 164 micro-

expression videos captured at a resolution of 1280 ×720, with the face cropped to a size of 190 ×230. The dataset contains videos from 
16 participants and is categorized into three distinct micro-expression categories. Notably, the SMIC-HS dataset consists of grayscale 
video samples from individuals representing two different ethnicities, with an average participant age of 28.1 years.

3.2. Performance metrics

F1−score and Acc are common metrics for evaluating MER network. Mathematically, the calculation of Acc is formulated in Equa-

tion (10):

Acc =
P
N

× 100% (10)

where Acc is calculated by dividing the sum of correct prediction results P by the total number of test data N. Additionally, the 
accuracy for each category is calculated.

The F1−score assigns equal weight to each category of test data. Based on the confusion matrix, True Positives TPC , False Positives 
FPC, and False Negatives FNC are calculated for each category of micro-expressions. The final balanced F1−score is obtained by aver-

aging the F1−score of each category. Mathematically, the calculation of F1C and UF1 is formulated in Equation (11) and Equation (12):

F1C =
2 × TPC

2 × TPC + FPC + FNC
(11)

UF1 =
F1C
C

(12)

where F1C represents the F1−score for each category, and C denotes the number of categories.

3.3. Experiment detail

Motion magnification is applied at various magnification factors (8, 10, 12, and 15) to augment the dataset and mitigate the 
category imbalance during training. Additionally, data augmentation techniques such as random brightness, contrast, and color 
transformations are employed to mitigate the issue of overfitting.

The ST-MEMM model utilizes the ADAM optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, a batch size of 4 and a learning rate of 10−5 without 
weight decay. The GAM-MER model also employs the ADAM optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999. The experiments are conducted on 
a workstation has Ubuntu 16.04 operating system and three NVIDIA GeForce GTX 3090 GPUs.

3.4. Experiment results

As depicted in Tables 1 and 2, a comparative analysis is conducted to evaluate proposed network in comparison to baseline 
handcrafted feature extraction approaches and state-of-the-art deep learning-based networks on CASME II, SAMM and SMIC-HS 
datasets. The evaluation is performed for three and five categories of micro-expressions.

Table 1 provides a detailed comparison between our proposed network and outstanding deep learning-based networks on CASME 
II and SAMM datasets, focusing on three categories of MER. On CASME II dataset, our proposed GAM-MM-MER network achieves an 
accuracy of 91.57% representing a 0.79% improvement over the prior leading network (SelfME [17]). However, our F1−score is 1.68% 
6

lower compared to the prior leading network (SelfME [17]). On SAMM dataset, our proposed GAM-MM-MER network achieves an 
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Table 1

Comparison with state-of-the-art methods. Experiments are conducted on CASME II, SAMM and SMIC-HS datasets 
with 3 categories: Negative, Positive, and Surprise.

Method Feature Extract
CASME II SAMM SMIC-HS

Acc F1 Acc F1 Acc F1
LBP-TOP [28] Handcrafted 0.7026 0.7429 0.3954 0.4102 0.2000 0.5280

Bi-WOOF [7] Handcrafted 0.7805 0.8026 0.5211 0.5139 0.5727 0.5829

CapsuleNet [8] Handcrafted 0.7068 0.7018 0.6209 0.5989 0.5820 0.5877

SSSN [10] CNN 0.7119 0.7151 0.5662 0.4513 0.6341 0.6329

DSSN [10] CNN 0.7080 0.7300 0.5735 0.4664 0.6341 0.6462

OFF-ApexNet [11] CNN 0.8764 0.8680 0.5409 0.5409 0.6817 0.6695

Graph-TCN [12] GCN 0.8648 0.8871 0.8050 0.7657 N/A N/A

AU-GACN [13] GCN 0.7120 0.3550 0.7020 0.4330 N/A N/A

GACNN [14] GCN 0.8966 0.8695 0.9098 0.8463 N/A N/A

𝜇-BERT [15] Transformer 0.9034 0.8914 N/A N/A 0.8580 0.8384

SelfME [17] Transformer 0.9078 𝟎.𝟗𝟐𝟗𝟎 N/A N/A 0.6970 0.7012

GAM-MM-MER (Ours) Transformer 𝟎.𝟗𝟏𝟓𝟕 0.9122 𝟎.𝟗𝟏𝟐𝟓 𝟎.𝟗𝟏𝟑𝟒 𝟎.𝟖𝟔𝟐𝟐 𝟎.𝟖𝟕𝟏𝟎

Table 2

Comparison with state-of-the-art methods. Experiments are conducted on CASME II dataset 
with 5 categories: Disgust, Happy, Surprise, Repression, and Other, and SAMM dataset with 
5 categories: Anger, Happy, Surprise, Contempt, and Other.

Method Feature Extract
CASME II SAMM

Acc F1 Acc F1
LBP-TOP [28] Handcrafted 0.3968 0.3589 0.3556 0.3589

LBP-SIP [29] Handcrafted 0.4656 0.4480 N/A N/A

STLBP-IP [30] Handcrafted 0.6397 0.6125 N/A N/A

Bi-WOOF [7] Handcrafted 0.5789 0.6100 N/A N/A

CNN-LSTM [9] CNN 0.6098 N/A N/A N/A

SSSN [10] CNN 0.7119 0.7151 0.5662 0.4513

DSSN [10] CNN 0.7078 0.7297 0.5735 0.4644

Graph-TCN [12] GCN 0.7398 0.7246 0.7500 0.6985

AU-GACN [13] GCN 0.7427 0.7047 0.7426 0.7045

GACNN [14] GCN 0.8252 0.7517 𝟎.𝟖𝟗𝟕𝟏 0.8365

𝜇-BERT [15] Transformer 0.8553 0.8348 0.8386 0.8475

C3Dbed [17] Transformer 0.7764 0.7520 0.8126 0.8067

GAM-MM-MER (Ours) Transformer 𝟎.𝟖𝟔𝟎𝟗 𝟎.𝟖𝟔𝟓𝟓 0.8788 𝟎.𝟖𝟖𝟏𝟕

accuracy of 91.25%, representing a 0.27% improvement over the prior leading network (GACNN [14]), and an F1−score of 91.34%, 
representing a 6.71% improvement compared to the prior leading network (GACNN [14]). On SMIC-HS dataset, our proposed GAM-

MM-MER network achieves an accuracy of 86.22%, representing a 1.30% improvement over the prior leading network (GACNN [14]), 
and an F1−score of 87.10%, representing a 3.26% improvement compared to the prior leading network (GACNN [14]).

With an increase of micro-expression categories from three to five, Table 2 provides a detailed comparison between our proposed 
approach and outstanding deep learning-based networks. On CASME II dataset, our proposed GAM-MM-MER network achieves an 
accuracy of 86.09% and an F1−score of 86.55%, representing a 0.56% and a 3.07% improvement over the prior leading network 
(𝜇-BERT [15]), respectively. On SAMM dataset, our proposed GAM-MM-MER network achieves an accuracy of 87.88%, 1.83% lower 
compared to the prior leading network (GACNN [14]), and an F1−score of 90.24%, representing a 3.42% improvement compared to 
the prior leading network (𝜇-BERT [15]).

Fig. 6 displays the confusion matrix on the CASME II and SAMM datasets with three and five categories, and on the SMIC-HS and 
mixed datasets with three categories. Each sub-figure corresponds to a different category and dataset, labeled from (a) to (f).

3.5. Ablation study

To evaluate the effectiveness of proposed network, ablation experiments are performed, specifically focusing on analyzing the 
improvement of the accuracy and F1−score with GAM-MER Architecture and magnification factor.

3.5.1. GAM-MER architecture

The ablation study conducted in this research demonstrates that the two-layer graph attention network achieves optimal results, 
as shown in Table 3. To ensure a fair comparison, we utilize identical magnified frames from the ST-MEMM network and maintain 
the same architecture of the GAM-MER network while adding one layer of graph attention network or removing one layer of graph 
attention network. In addition, we employ the graph convolution network instead of the graph attention network to showcase the 
improvement brought by the attention mechanism. Furthermore, to demonstrate the enhancement achieved by selecting facial key 
7

areas closely related to micro-expressions, we employ all facial key areas instead of selected key areas. Moreover, we compare the 
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Fig. 6. Confusion matrix on the CASME II and SAMM datasets with 3 and 5 categories, and on the SMIC-HS and mixed datasets with 3 categories. Each sub-figure 
represents a different category and dataset, labeled from (a) to (f).

Table 3

Ablation study of GAM-MER architecture on the CASME II and SAMM datasets.

Method
CASME II 3 Cat. CASME II 5 Cat. SAMM 3 Cat. SAMM 5 Cat.

Acc F1 Acc F1 Acc F1 Acc F1
Add one layer GAT 0.8957 0.8916 0.8261 0.8237 0.8750 0.8709 0.8182 0.8198

Remove one layer GAT 0.8795 0.8780 0.8087 0.8068 0.8500 0.8476 0.7913 0.7879

Graph convolution network 0.8535 0.8543 0.7780 0.7819 0.8467 0.8428 0.7692 0.7705

All facial key areas 0.8634 0.8675 0.8183 0.8204 0.8431 0.8406 0.8302 0.8267

Raw facial graph 0.9046 0.9010 0.8495 0.8512 0.9013 0.9034 0.8660 0.8637

Baseline 𝟎.𝟗𝟏𝟓𝟕 𝟎.𝟗𝟏𝟐𝟐 𝟎.𝟖𝟔𝟎𝟗 𝟎.𝟖𝟔𝟓𝟓 𝟎.𝟗𝟏𝟐𝟓 𝟎.𝟗𝟏𝟑𝟒 𝟎.𝟖𝟕𝟖𝟖 𝟎.𝟖𝟖𝟏𝟕

Table 4

Ablation study of magnification factor 𝛼 on the CASME II and SAMM datasets for 3 and 5 micro-expression 
categories.

Method
CASME II 3 Cat. CASME II 5 Cat. SAMM 3 Cat. SAMM 5 Cat.

Acc F1 Acc F1 Acc F1 Acc F1
Raw Image 0.7868 0.7902 0.7432 0.7474 0.7946 0.7921 0.7684 0.7706

𝛼=20 0.8349 0.8307 0.7891 0.7936 0.8472 0.8492 0.7989 0.8006

𝛼=10 0.8876 0.8884 0.8257 0.8288 0.8902 0.8913 0.8447 0.8468

𝛼=5 𝟎.𝟗𝟏𝟓𝟕 𝟎.𝟗𝟏𝟐𝟐 𝟎.𝟖𝟔𝟎𝟗 𝟎.𝟖𝟔𝟓𝟓 𝟎.𝟗𝟏𝟐𝟓 𝟎.𝟗𝟏𝟑𝟒 𝟎.𝟖𝟕𝟖𝟖 𝟎.𝟖𝟖𝟏𝟕

performance using the raw facial graph with that using the optimized facial key graph to highlight the improvement achieved by the 
optimized facial key graph. Fig. 7 represents the results conducted on the CASME II and SAMM datasets, considering three and five 
categories of micro-expressions to demonstrate improvements of each module in the proposed GAM-MER. Each sub-figure corresponds 
to a different category and dataset, labeled from (a) to (d).

3.5.2. Magnification factor

The magnified micro-expression of different factor is depicted in Fig. 9. The ablation study demonstrates that the GAM-MM-

MER network with magnification factor 𝛼=5 achieves optimal results, as shown in Table 4. For fair comparison, we only change 
the magnification factor. Table 4 represents the results conducted on the CASME II and SAMM datasets, considering three and five 
categories of micro-expressions to demonstrate improvements when using different magnification factor. Specifically, on the CASME 
II dataset accuracy is improved by 12.89%, 8.08%, and 2.81% and F1−score is increased by 12.20%, 8.16%, and 2.38% respectively for 
three categories. Similarly, for five categories, accuracy is improved by 11.77%, 7.18%, and 3.52% and F1−score is increased by 11.81%, 
7.19%, and 3.67% respectively. On the SAMM dataset, accuracy is improved by 11.79%, 6.53%, and 2.23% and F1−score is increased 
8

by 12.13%, 6.42%, and 2.21% respectively for three categories. Similarly, for five categories, accuracy is improved by 11.04%, 7.99%, 
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Fig. 7. Ablation study of GAM-MER architecture of accuracy and F1 on the CASME II and SAMM datasets. Each sub-figure represents a different category and dataset, 
labeled from (a) to (d).

Fig. 8. Comparative analysis of different magnification factor on the CASME II and SAMM datasets. Each sub-figure represents a different category and dataset, labeled 
from (a) to (d).

and 3.41% and F1−score is increased by 11.11%, 8.11%, and 3.47% respectively. These results demonstrate that The micro expression 
recognition results are significantly improved compared to the original image with magnification factor 𝛼=5. Furthermore, 𝛼=10 
further enhance the motion amplification effect of the micro expression videos, resulting in superior micro expression recognition 
9

results compared to 𝛼=5. However, when the magnification factor is further increased to 𝛼=20, the amplified micro expression video 
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Fig. 9. Magnified micro-expression of different factor 𝛼.

Table 5

Model inference time and engineering opti-

mization.

Model ST-MEMM GAM-MER

pytorch 156.4 ms 53.7 ms

ONNX 118.3 ms 43.2 ms

TensorRT 62.2 ms 25.3 ms

float 16 43.9 ms 18.5 ms

images start to exhibit a certain degree of distortion, leading to a decrease in micro expression recognition performance. Ultimately, 
the micro expression recognition results are even worse than those obtained with an enlargement factor 𝛼=5. Fig. 8 presents a detailed 
comparison of the accuracy for each micro-expression category while employing different magnification factor for both three and 
five categories on the CASME II and SAMM datasets. Each sub-figure corresponds to a different category and dataset, labeled from 
(a) to (d).

3.6. Time performance and engineering optimization

The Swin Transformer-based micro-expression motion magnification network (ST-MEMM)n and the graph attention mechanism-

based micro-expression recognition network (GAM-MER) proposed in Sections 2.1 and 2.2 are tested for inference time on the common 
GPU inference card A10.

The PyTorch deep learning framework integrates numerous Python libraries for model training and optimization. However, its 
performance in engineering inference is relatively poor. To enhance the model’s performance, this paper employs the ONNX (Open 
Neural Network Exchange) model format. By converting the PyTorch model to the ONNX model format, the inference performance of 
the model can be improved. Although converting the model to the ONNX format can improve inference performance to some extent, 
most video frame rates are not lower than 25 fps, and the existing inference time still cannot meet real-time requirements. To further 
enhance the model’s performance, this paper utilizes TensorRT. TensorRT is a high-performance inference optimizer and runtime 
engine developed by NVIDIA, specifically optimized for deep learning inference tasks. By converting the ONNX model format to the 
TensorRT model format, the inference time performance of the model can be further improved to meet real-time inference demands. 
Furthermore, during the model training stage, this paper employs a 32-bit floating-point precision (float32) for back propagation 
and weight updates. However, during the model inference stage, using a 16-bit floating-point precision (float16) is sufficient to meet 
the inference requirements and improve the model’s inference time performance. Therefore, this paper further optimizes the model 
by adjusting the precision of the model’s weights and input videos to 16-bit floating-point numbers, thereby further enhancing the 
model’s time performance. The inference times of various models on the A10 inference card using the PyTorch framework, converted 
ONNX, converted TensorRT, and 16-bit floating-point precision are shown in Table 5.

4. Conclusion

This paper proposes a graph attention mechanism-based motion magnification guided micro-expression recognition network 
(GAM-MM-MER). First, this paper presents a Swin Transformer-based micro-expression motion magnification network (ST-MEMM), 
which is the first work to utilize the Swin Transformer to magnify micro-expression motion to reduce blurring and artifacts while 
improving the magnification effect of micro-expressions. In addition, this paper proposes a graph attention mechanism-based micro-

expression recognition network (GAM-MER), which utilizes attention mechanism to focus on key facial landmarks related to micro-

expression, which improve the MER result on the public datasets.

For future research, we plan to focus on two main aspects in the field of micro-expression recognition (MER). Firstly, we aim to 
develop an automated method to dynamically determine the magnification factor for each micro-expression data. This approach will 
enhance the accuracy of MER tasks by effectively capturing the innermost relationships among facial landmarks. Additionally, we 
intend to address the computational efficiency of the ST-MEMM network architecture. While the GAM-MER network exhibits a rela-

tively simple architecture, allowing it to perform real-time inference on common GPU devices such as A10, the ST-MEMM network’s 
complexity results in longer inference times on standard machines. To overcome this limitation, we will simplify the architecture 
10

of the ST-MEMM network to enable real-time performance, facilitating practical applications of micro-expression recognition. These 
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advancements will contribute to the ongoing progress in the field of micro-expression recognition and pave the way for more efficient 
and accurate analysis of micro expressions in real-world scenarios.

Additional information
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