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Abstract: Mitochondrial DNA (mtDNA) has been identified as a biomarker for predicting sepsis
mortality. Although preclinical studies suggested that necroptosis could explain the mechanistic link
of mtDNA in sepsis, this is not yet evident in patients with sepsis. This study evaluated the association
between mtDNA and essential necroptosis mediators in prospectively enrolled patients with sepsis.
Plasma mtDNA copy number was measured using quantitative PCR assay and necroptosis mediators,
including receptor-interacting protein kinase-3 (RIPK3), mixed lineage domain-like pseudokinase
(MLKL), and high-mobility group box 1 (HMGB1), were measured by ELISA. Receiver operating
characteristic (ROC) analysis was conducted to evaluate the predictive ability of mtDNA copy
number as a predictor of hospital mortality. Among the 142 patients with sepsis, the mtDNA copy
number was significantly higher in non-survivors than in survivors (median, 4040 copies/µL vs.
2585 copies/µL; p < 0.001), and the area under the ROC curve was 0.73 (95% CI, 0.64–0.82) for the
relationship between mtDNA and hospital mortality. Furthermore, the correlation between mtDNA
copy number and each necroptosis mediator was excellent (p < 0.001 for all): RIPK3 (r = 0.803),
MLKL (r = 0.897), and HMGB1 (r = 0.603). The plasma mtDNA copy number was highly correlated
with essential necroptosis mediators, suggesting that mtDNA propagates necroptosis and increases
sepsis mortality.

Keywords: sepsis; biomarker; mitochondrial DNA; necroptosis; damage-associated molecular patterns

1. Introduction

Sepsis has been identified as a life-threatening organ dysfunction caused by a dysregu-
lated host response to infection [1]. Sepsis and septic shock are major healthcare problems,
affecting millions of people worldwide each year and killing approximately 17–33% of
affected patients [2,3]. Considering the high mortality in sepsis, accurately identifying
high-risk patients with sepsis and focusing treatment on this population is deemed crucial.
In this regard, there have been many biomarkers identified for predicting morbidity and
mortality in sepsis in the critical care setting [4,5].

Plasma mitochondrial DNA (mtDNA) was assessed as a biomarker for predicting
sepsis mortality [6]. Previous studies revealed that plasma mtDNA copy number is sig-
nificantly higher in patients with sepsis or septic shock than in healthy controls [7–9].
Furthermore, mtDNA copy number has also been associated with mortality in patients
with sepsis [9,10]. However, increasing evidence has shown that mtDNA is not only a
marker for sepsis mortality but also a key player in organ dysfunction and mortality in pa-
tients with sepsis. This is because circulating mtDNA can trigger innate immunity through
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multiple mechanisms, such as activating the Toll-like receptor 9/NF-κB pathway or the
NALP3 inflammasome [11,12]. Consequently, mtDNA may contribute to the persistent
and dysregulated inflammatory response and amplify organ dysfunction in sepsis [10].
mtDNA serves as damage-associated molecular patterns (DAMPs) that drive an immune
or inflammatory response in sepsis [6]. The DAMPs are often released during extensive,
infection-induced immune cell death, which is linked with multiple organ dysfunction [13].

Necroptosis is a type of cell death that combines apoptosis and necrosis. It is morpho-
logically similar to necrosis, but it can also be regulated by underlying genetic programs [14].
Previous studies suggested that the necroptotic pathway and its regulatory proteins are
crucial mediators of sepsis-induced organ injury [15–17]. Although a mouse study showed
that mtDNA was translocated to the extracellular space by necroptosis [18], clinical studies
exploring the association between mtDNA and necroptosis remain to be limited. Figure 1
schematically depicts the correlation between necroptosis and extracellular mtDNA.
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Figure 1. Schematic representation of a correlation between necroptosis and extracellular mito-
chondrial DNA. TNF, tumor necrosis factor; TNFR1, TNF receptor 1; TRADD, TNFR1-associated
death domain; RIPK1, receptor-interacting protein kinase 1; RIPK3, receptor-interacting protein
kinase 3; FADD, Fas-associated death domain; Casp8, caspase-8; cFLIP, cellular FLICE (FADD-like
IL-1β-converting enzyme)-inhibitory protein; MLKL, mixed-lineage kinase domain-like; mtDNA,
mitochondrial DNA.

This study aimed to evaluate the usefulness of mtDNA as a biomarker to predict
mortality in critically ill patients with sepsis and to assess the association between plasma
mtDNA levels and necroptosis mediators.

2. Materials and Methods
2.1. Study Design and Population

The Samsung Medical Center Registry of Critical Illness (SMC-RoCI) is a prospective
observational study conducted at the Samsung Medical Center (1989-bed, university-
affiliated, tertiary referral hospital in Seoul, South Korea) [16]. This ongoing prospective
study was initiated in April 2014 and aims to establish a human sample repository and
develop new biological markers for critical illness [16]. The cohort profile was described
previously [15–17,19]. This study was approved by the Institutional Review Board of
Samsung Medical Center, and written informed consent was obtained from all patients or
their legally authorized representatives prior to enrollment.

All consecutive adult patients (aged≥ 19 years) admitted to the medical intensive care
unit (ICU) were eligible for inclusion in this registry. The exclusion criteria from eligibility
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were as follows: (1) cognitive impairment, (2) inability to provide informed consent, (3) ICU
admission for a simple procedure or postsurgical care, (4) transfer from other hospitals,
(5) end-of-life decision or admission to facilitate palliative care, (6) hemoglobin < 8 g/dL
upon admission or persistent bleeding, and (7) discharge within 24 h of ICU admission [16].

In total, 1367 patients were admitted to the medical ICU from April 2014 to August
2016. After excluding 1172 patients who met the exclusion criteria and 1 who missed
screening (transferred to the general ward before the screening process), 194 were initially
identified. After further excluding 46 patients who were not diagnosed with sepsis, 4 who
withdrew consent, and 2 whose samples expired, 142 were ultimately included in the
analysis (Figure 2).
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2.2. Data Collection

Clinical data on patient demographics, the reason for ICU admission, the severity of ill-
ness score, and laboratory data were obtained at the time of enrollment. Illness severity was
assessed using the Acute Physiology and Chronic Health Evaluation II (APACHE II) [20],
Simplified Acute Physiology Score 3 (SAPS 3) [21], and Sequential Organ Failure Assess-
ment (SOFA) scores [22]. Sepsis was defined according to the third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3) [1]. Since the SMC-RoCI was initiated
in April 2014, patients enrolled before the release of the new definition were reclassified
using Sepsis-3.

2.3. Measurement of Plasma Mitochondrial DNA and Necroptosis-Related Markers

Blood samples were collected as 19 mL of whole blood within 48 h of study enrollment
and centrifuged within 4 h of collection. Plasma was separated and stored at −80 ◦C for
further analysis. In order to measure the mtDNA copy number, the plasma samples were
pre-filtered using 0.8 µm syringe filters, and additional centrifugation was performed to
eliminate residual cellular material. DNA was isolated from 1 mL of plasma using the QI-
Aamp Circulating Nucleic Acids kit (QIAGEN, Germany) and eluted in 50 µL of kit elution
buffer. The mtDNA copy numbers were then assessed by measuring the NADH dehydro-
genase 1 gene using quantitative real-time PCR with a PRISM 7300 sequence detection
system (Applied Biosystems, Austin, TX, USA) with the following primers: human NADH
dehydrogenase 1 gene (mtDNA): forward 5′-ATACCCATGGCCAACCTCCT-3′, reverse
5′-GGGCCTTTGCGTAGTTGTAT-3′; and human β-globin (nuclear DNA): forward 5′-
GTGCACCTGACTCCTGAGGAGA-3′, reverse 5′-CCTTGATACCAACCTGCCCAG-3′ [23].
The thermal profile for detecting mtDNA was as follows: denaturation at 95 ◦C for 10 min,
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followed by 40 cycles of 10 s at 95 ◦C, 10 s at 58 ◦C, and 10 s at 72 ◦C. In each application,
the samples were analyzed in duplicate, and the mean was used in the subsequent analysis.

The plasma levels of necroptosis-related markers (receptor-interacting protein kinase
3 [RIPK3], mixed lineage domain-like [MLKL], and high-mobility group box 1 [HMGB1])
were measured from stored aliquots using commercially available ELISA kits according to
the manufacturer’s recommendations (RIPK3; CUSABIO, Wuhan, China) (MLKL; LifeSpan
BioSciences, Seattle, DC, USA) (HMGB1; IBL-International, Hamburg, Germany) [15].

2.4. Statistical Analysis

Categorical variables were compared using the Chi-square test or Fisher’s exact test,
whereas continuous variables were compared using the Mann–Whitney U test. The receiver
operating characteristic (ROC) curve was used to analyze the diagnostic accuracy of mtDNA
in predicting survival among critically ill patients with sepsis. Pearson’s correlation analysis
was used to assess the association between plasma mtDNA copy numbers and necroptosis-
related markers. All tests were two-sided, and p < 0.05 was considered significant. Data
were analyzed using STATA version 16 (Stata Corp., College Station, TX, USA).

3. Results
3.1. Baseline Characteristics

Of the 142 critically ill patients with sepsis, 95 (66.9%) were male, and the median
age of all patients was 67 years (interquartile range [IQR], 53–74 years). No significant
intergroup differences were found in terms of age, sex, and comorbidities between non-
survivors and survivors. Non-survivors received mechanical ventilation therapy more
frequently than survivors (55.6% vs. 34.9%, p = 0.029). Although no significant intergroup
differences were observed in C-reactive protein (CRP) and lactate, non-survivors showed
higher SAPS 3 (median, 57 vs. 52; p = 0.042) and APACHE II (median, 26 vs. 22; p = 0.004)
scores than survivors (Table 1).

Table 1. Characteristics of the study population. Data are presented as number (percentage) or
median (interquartile range).

Total (n = 142) Non-Survivors (n = 36) Survivors (n = 106) p-Value

Age, years 67 (53–74) 67 (52–72) 67 (54–75) 0.429
Male 95 (66.9) 27 (75.0) 68 (64.2) 0.232
Comorbidities

All malignancies 75 (52.8) 22 (61.1) 53 (50.0) 0.249
Solid organ malignancies 51 (35.9) 16 (44.4) 35 (33.0) 0.217
Hematologic malignancies 25 (17.6) 6 (16.7) 19 (17.9) 0.864
Diabetes mellitus 43 (30.3) 12 (33.3) 31 (29.3) 0.645
COPD 11 (7.8) 5 (13.9) 6 (5.7) 0.146
Chronic kidney disease 11 (7.8) 2 (5.6) 9 (8.5) 0.730
Myocardial infarction 7 (4.9) 2 (5.6) 5 (4.7) 1.0
Congestive heart failure 5 (3.5) 2 (5.6) 3 (2.8) 0.601
Cerebrovascular disease 6 (4.2) 2 (5.6) 4 (3.8) 0.643
Chronic liver disease 13 (9.2) 6 (16.7) 7 (6.6) 0.070

Charlson Comorbidity Index 2 (1–3) 2 (2–3) 2 (1–3) 0.054
Clinical status on
ICU admission

Mechanical ventilation 57 (40.1) 20 (55.6) 37 (34.9) 0.029
Vasopressor support 49 (34.5) 17 (47.2) 32 (30.2) 0.063

Laboratory findings
PaO2/FiO2 ratio 184 (126–281) 161 (121–245) 193 (127–285) 0.178
CRP, mg/dL 12.9 (5.0–23.0) 16.4 (7.7–25.0) 12.4 (3.9–21.8) 0.173
Lactate, mg/dL 2.7 (1.8–3.9) 3.3 (1.8–5.2) 2.7 (1.8–3.4) 0.151

Severity of illness
SAPS 3 score 53 (46–59) 57 (48–71) 52 (45–58) 0.042
APACHE II score 23 (19–29) 26 (21–33) 22 (17–27) 0.004
SOFA score, initial 9 (6–11) 10 (7–12) 8 (6–11) 0.054

APACHE II, Acute Physiology and Chronic Health Evaluation II; COPD, chronic obstructive pulmonary disease;
CRP, C-reactive protein; ICU, intensive care unit; PaO2/FiO2 ratio, ratio of arterial oxygen pressure to fractional
inspired oxygen; SAPS 3, Simplified Acute Physiology Score 3; SOFA, Sequential Organ Failure Assessment.
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3.2. Plasma Mitochondrial DNA

The plasma mtDNA copy number was significantly higher (p < 0.001) in non-survivors
(median, 4040 copies/µL; IQR, 3232–6288 copies/µL) than in survivors (median,
2585 copies/µL; IQR, 1867–3642 copies/µL) (Table 2). Figure 3 depicts the receiver operat-
ing curve of mtDNA for predicting in-hospital mortality of critically ill patients with sepsis.
The area under the curve value was 0.727 (95% confidence interval, 0.635–0.818).

Table 2. Plasma levels of mtDNA, RIPK3, MLKL, and HMGB in non-survivors versus survivors
among critically ill patients with sepsis. Data are presented as median (interquartile range).

Total (n = 142) Non-Survivors
(n = 36)

Survivors
(n = 106) p-Value

mtDNA, copies/µL 3090 (2015–4629) 4040 (3232–6288) 2585 (1867–3642) <0.001
Necroptosis-related
markers
RIPK3, pg/mL 720 (259–1368) 1104 (512–2515) 536 (220–1197) 0.002
MLKL, ng/mL 2.4 (2.1–3.7) 3.2 (2.3–4.8) 2.3 (2.0–3.2) 0.004
HMGB1, ng/mL 5.0 (2.6–7.6) 6.8 (3.1–9.6) 4.5 (2.5–7.0) 0.017

RIPK3, receptor-interacting protein kinase-3; MLKL, mixed lineage domain-like pseudokinase; HMGB1, high-
mobility group box 1.
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3.3. Association between Plasma Mitochondrial DNA and Necroptosis-Related Markers

The plasma levels of necroptosis-related markers were found to be significantly higher
in non-survivors than in survivors (Table 2): RIPK3 (median, 1104 vs. 536 pg/mL; p = 0.002),
MLKL (median, 3.2 vs. 2.3 ng/mL; p = 0.004), and HMGB1 (median, 6.8 vs. 4.5 pg/mL;
p = 0.017). The correlation between plasma mtDNA copy numbers and each necroptosis-
related marker was as follows: mtDNA and RIPK3 (Pearson’s r = 0.803), MLKL (r = 0.897),
and HMGB1 (r = 0.603) (p < 0.001 for all) (Figure 4).
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4. Discussion

In this observational study, plasma mtDNA satisfactorily predicted in-hospital mor-
tality in critically ill patients with sepsis. Furthermore, the mtDNA copy number showed
excellent correlations with those of necroptosis mediators, including RIPK3, MLKL, and
HMGB1, which implies a link between plasma mtDNA and necroptosis in sepsis.

This study revealed that the mtDNA copy number was significantly higher in non-
survivors than in survivors among critically ill patients with sepsis, although no intergroup
differences were noted in CRP and lactate levels. In agreement with our results, previous
studies found that the mtDNA copy number was elevated in patients with sepsis [7–9]
and was associated with mortality [9,10]. In this regard, plasma mtDNA may be a suitable
biomarker for diagnosing sepsis and predicting mortality in patients with sepsis. However,
mtDNA copy number was not significantly associated with mortality in some sepsis
studies [8,24]. This discrepancy might be explained by differences in terms of the protocols
used to measure mtDNA copy numbers across previous studies, thus warranting the
standardization of mtDNA protocols to firmly establish the clinical usefulness of mtDNA
in sepsis [25].

In order to serve as a DAMP driving the inflammatory response in sepsis, mtDNA
needs to be released from the mitochondria into the cytosol and extracellular compart-
ments [6]. The underlying mechanisms of the phenomenon include the generation of
mitochondrial reactive oxygen species [26,27] and destabilized mtDNA packaging [28]. In
addition to these two potential mechanisms, necroptosis can translocate mtDNA to the
extracellular space, which was then suggested in a mouse study [18]. Excellent correlations
between mtDNA level and necroptosis mediators (RIPK3, MLKL, and HMGB1) in this
study show that a large proportion of plasma mtDNA may be released by necroptosis
in sepsis.

Necroptosis is often induced by specific ligand binding, including the binding of
tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) to several
death receptors, including TNF receptor 1 and TRAIL receptors [29]. Subsequently, the
necroptosis pathway is regulated by distinct proteins, such as RIPK1 and RIPK3, and down-
stream substrate MLKL [14,30]. The ruptured, dying cell induces the release of several
necrosis-associated DAMPs, including HMGB1 [31,32]. Previous animal and clinical studies
demonstrated the crucial role of necroptosis in driving mortality during sepsis [15,17,33,34].
In the same vein, this study also showed that plasma RIPK3, MLKL, and HMGB1 levels
were significantly higher in non-survivors than in survivors among critically ill patients
with sepsis. Furthermore, considering the correlation between plasma mtDNA and necrop-
tosis mediators, mtDNA as a DAMP may propagate a proinflammatory response and
consequent necroptosis pathway activation, which may be followed by mortality in pa-
tients with sepsis. Overall, mtDNA and necroptosis affect each other, and these interactions
could increase mortality in patients with sepsis.

This study has several limitations that should be acknowledged. First, although excel-
lent correlations were observed between plasma mtDNA copy number and necroptosis
mediators, this study could not evaluate the causal relationships among them. Future
studies are thus warranted to elucidate the mechanistic link between mtDNA and necrop-
tosis. Second, no protocol for measuring mtDNA copy numbers was established. Hence,
measuring the mtDNA copy number in serum, not in plasma, or using a different protocol
might lead to different results. Third, this study was conducted at a single center in Korea,
which might limit the generalization of our findings to other institutions or ethnic groups.

5. Conclusions

Plasma mtDNA copy number was determined to be a predictive factor of mortality
in critically ill patients with sepsis and was strongly correlated with essential necroptosis
mediators, suggesting that mtDNA propagates necroptosis and increases sepsis mortality.
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