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Abstract 

Magnetic Particle Imaging (MPI) is a new imaging modality based on the visualization of 
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) using magnetic fields. The potential of MPI 
was recently evaluated in numerous ex vivo and in vivo studies and the technique can now be 
considered as an established preclinical imaging modality with a promising perspective of clinical 
applications. 
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Introduction 
More than 10 years ago Magnetic Particle 

Imaging (MPI) emerged as a completely new imaging 
modality. The basic principle of MPI - the 
visualization of the spatial distribution of 
Superparamagnetic Iron Oxide Nanoparticles 
(SPIONs) using oscillating magnetic fields - was first 
described by Gleich and Weizenecker in 2005 [1]. The 
technique provides a high temporal and spatial 
resolution combined with a high sensitivity and due 
to its electro-magnetic properties, the MPI signal 
penetrates tissue unrestrictedly. MPI acquires 
quantitative, hot-spot images with positive contrast 
similar to PET and SPECT, except that MPI avoids the 
use of radiochemicals. The sensitivity of MPI to an 
optimal iron oxide contrast agent is predicted to be 
two to three orders of magnitude greater than that of 
MRI. Furthermore, MPI is much faster than MRI, 
because the signal can be detected immediately after 
the excitation, whereas the MRI signal (echo) occurs 
after a considerable waiting time in the range of 1 to 
100 ms. MPI therefore opens the way to new 
radiation-free applications in real-time imaging, 
molecular diagnostics and therapy-monitoring.   

Especially the field of cardiovascular imaging 
was intensely evaluated in several proof-of-principle 

studies in the last decade. The quantification of 
stenosis, vascular flow-measurements and 
MPI-guided catheter interventions have been 
successfully performed in several preclinical studies 
[2–5]. Safety limits of interventional devices were 
evaluated and recently first real-time experiments 
were published [6–9]. Additionally, the detection of 
bleeding and ischemic events were taken into account 
in small animal studies [10–12].  

As cardiovascular applications take advantage of 
the high temporal resolution of MPI, it is the excellent 
sensitivity which predisposes MPI for molecular 
imaging applications. Graeser et al. recently 
demonstrated a detection limit of 5 ng iron in MPI 
using a gradiometric receive coil [13]. In 2009, first 
preclinical experiments on MPI guided sentinel 
lymph node biopsies have been published [14]. 
Additionally, it is possible to load erythrocytes with 
SPIOs [16] and  Zheng et al. depicted neuronal cells for 
87 days in rat brains [17]. Furthermore, stem cells 
[15,18] as well as cancer cells [19] can be tracked by 
MPI.  Another interesting application is the 
conjugation of SPIONs with molecules, which bind to 
specific cell surfaces. Thus, the conjugation of 
lactoferrin with SPIONs to detect glioma cells is an 
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impressive example for a new approach of MPI based 
cancer imaging [20].  

In this issue of Theranostics an excellent article 
titled “In Vivo Tracking and Quantification of Inhaled 
Aerosol using Magnetic Particle Imaging towards 
Inhaled Therapeutic Monitoring” was published by 
Tay et al. [21]. In a well-designed and innovative study 
the authors showed that inhaled nanoparticles can be 
visualized by MPI in mice with accuracy comparable 
to radiolabeled aerosols. The inhalation parameters 
such as aerosol particle size have major impact on the 
particle distribution, and due to quantitative MPI 
measurements the described method can be applied 
for MPI-based drug monitoring. This concept was 
first described in the article and the authors validated 
their results by means of fluorescence imaging. 
Another interesting aspect of the study is the in vivo 
visualization of the mucociliary clearance. The 
clearance pathway of SPIONs in mice was shown for 
13 days and the transport function of the alveolar cells 
was successfully demonstrated with MPI. Last but not 
least, the authors addressed potential safety concerns 
and pointed out options for human applications.   

Taken together with recent results from Zhou et 
al. [22], demonstrating the possibility of lung 
perfusion imaging with MPI, the authors completed 
the proof of concept of an MPI-based 
perfusion-ventilation mapping [21]. 
Perfusion-ventilation mapping is widely used in 
clinical routine for the diagnosis of pulmonary 
embolism and the preoperative evaluation of the 
lungs. Without the use of ionizing radiation, MPI may 
overcome important disadvantages of nuclear 
medicine techniques.  

In conclusion, the article by Tay et al. shows the 
huge potential of MPI for basic research in a very 
illustrative way. The quantitative in vivo visualization 
of inhaled particle aerosols as well as SPION labeled 
drugs combined with the analysis of the mucociliary 
clearance provides an effective tool for the 
investigation of numerous scientific questions. 
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