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Abstract: The deformation behavior of semi-crystalline polymers is strongly dependent on the
morphology formed during processing. In this study, in-situ synchrotron X-ray was firstly used
to identify the morphological distributions of injection-molded isotactic polypropylene (iPP) with
different concentrations of β-nucleating agent. It was found that under relatively high concentration
of β-nucleating agent (i.e., ≥0.03 wt.%), the outer region (skin and shear region) of the iPP was
dominated by mainly highly oriented α-phase as well as certain amount γ-phase, while the core
region was rich in β-crystals with little if any orientation. The addition of the β-nucleating agent was
beneficial for the formation of lamellae with large lamellar stacking distance in the shear layer. Then
the synchrotron X-ray was applied to study the structure variation of those morphology-identified
samples under tensile deformation. It was found that voids and cavities along the stretching direction
existed in the deformed iPP samples and their volume increased with increasing concentration
of β-nucleating agent. The increased volume of void and cavity was associated with the β to α
phase transition, which mainly occurred at the core region. In addition, upon stretching crystalline
fragmentation and rearrangement took place following the formation of thinner lamellae.

Keywords: β-nucleated polypropylene; morphological distribution; deformation; structure variation;
synchrotron X-ray

1. Introduction

Isotactic polypropylene (iPP), as one of the most utilized thermoplastic polymers,
has been identified as a polymorphic material including mainly monoclinic (α), pseudo-
hexagonal (β) and orthorhombic (γ) types. The α type is thermodynamically stable and
is by far most common [1]. The β type has been termed as metastable one with high
degree of disorder and can be fabricated by crystallizing (i) in a temperature gradient,
(ii) under strong shear and (iii) through epitaxial growth on the specific heterogeneous
nucleating agents. The γ-iPP is relatively rare, however, it is favored when iPP crystallizes
under elevated pressure or the isotactic sequence length is interrupted [2–5]. Different
crystal forms may endow iPP products with significantly varied properties. α-iPP usually
exhibits good mechanical strength, however, poor impact toughness at low temperatures.
Compared to α-iPP, the β-iPP has a low E-modulus and yield stress, but high elongation at
break and ultimate tensile strength, which may be attributed to the β to α transition taking
place during the necking, resulting in the formation of α-phase with enhanced strength.
The impact strength and toughness of β-iPP are also superior to α-iPP [6,7]. Up to now,
the most effective and convenient way to obtain iPP with high β-content is adding certain
β-nucleating agent.
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In common industrial production, iPP plastic is usually shaped by various processing
operations, such as injection molding, extrusion, fiber spinning, etc., and the molten iPP is
often exposed to complicated flow fields and temperature gradient, which strongly affect
its crystallization kinetics and final morphology [8–12]. Taking injection molding as an
example, 3 distinct layers exist in the iPP sheet, i.e., a highly oriented nonspherulitic skin,
a shear-nucleated intermediate layer, and a core layer [13,14]. The very thin skin layer
is mainly composed of amorphous phase due to the rapid cooling, while the core layer
consists predominantly of spherulitic structure associated with the experienced low cooling
and shear rate, which allow for a good relaxation of molecular chains. The shear zone
or shear layer, which undergoes extremely high shear rate, separates the skin and core
layer, and it is the most important layer determining the shear-induced properties. The
introduction of β-nucleating agent would further complicate the crystallization process and
change the morphology of the layers. It is known that the addition of β-nucleating agent
may lead to the competitive growth of α- and β-crystals under flow field. The increase
of shear rate would result in the decrease of β-crystallinity of sample [15–18]. However,
the morphology changes in the above-described three layers as a function of β-nucleating
agent concentration have not been studied and described in detail yet [3,19].

During stretching deformation of semi-crystalline polymers with various crystalline
structures, crystal transition between different structures often occurs. For example, during
drawing of nylon 6 fibers an apparent transition from γ-phase crystals to α-phase crystals
takes place, which is explained by that the γ-phase crystals were destroyed during the
drawing process and then converted into fiber structure of the α-phase form [20]. Such
strain-induced phase transition has also been widely reported in poly(ω-pentadecalactone)
(PPDL), poly(L-lactic acid) (PLA), iPP and polyethylene (PE) [21–30]. During tensile
drawing, the deformation-induced cavitation also plays a crucial role in the structure
transformation of polymers [24,31–34]. The cavitation often appears at suitable stretching
conditions and is visible as whitening at macroscopic scale during tensile deformation
of polymers. The formation and growth of cavities are primarily responsible for the
volume change during tensile drawing [35]. Pawlak et al. reported that there was a
competition between cavitation and activation of crystal plasticity during deformation.
The cavitation occurred in polymers with crystals of higher plastic resistance, whereas
the plastic deformation dominated in polymers with lower plastic resistance [31]. The
appearance of cavitation generally led to a variation of mechanical properties of polymers.

Different initial structures and morphologies may also strongly influence the material
properties and the structure evolution during the deformation. To better understand the
deformation mechanism of β-nucleated iPP prepared by common injection molding, it is
necessary to understand the morphological distributions in different layers. Conventional
X-ray scattering cannot be used to investigate the morphological distribution across the
thickness direction since its beam size is so big that both the shear layer and core layer are
simultaneously illuminated. Thanks to the microbeam with beam size of 20 × 20 µm2 at
MINAXS beamline, Petra III in Hamburg Germany, the beam can be precisely positioned to
characterize the crystalline structures in different layers allowing us obtain the morphology-
identified injection-molded samples.

In the current study, injection-molded iPP samples with different concentrations of
β-nucleating agent will be firstly scanned by the synchrotron X-ray microbeam to identify
their overall morphological distributions in thickness direction, including distributions of
crystallinity, long period and orientation, etc. Then those morphology-identified samples
will be stretched to strain of about 300%. The strain of 300% is selected, since morphology
at this strain may reflect the key features of plastic deformation. The structure variation,
involving the changes of crystallinity, crystal transition, orientation, and cavitation, etc.,
will be discussed and connected with their original morphological structure determined by
the processing.
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2. Materials and Methods
2.1. Materials and Sample Preparation

In this study, we used a commercial iPP homopolymer (grade HD 120 MO) man-
ufactured by Borealis (Linz, Austria) with a melt flow index of 8 g/10 min (at 230 ◦C
and 2.16 kg), Mw = 365 kg/mol and Mw/Mn = 5.4 [36]. The β-nucleating agent, N,N′-
dicyclohexyl-2,6-naphthalenedicarboxamide (NJS), was produced by Rika International
Limited (Oldham, UK).

The following processing was employed to prepare the β-nucleated iPP. Firstly, iPP
was melt mixed with 0.5 wt.% NJS at 220 ◦C to obtain a master batch through a single screw
extruder (Brabender, Duisburg, Germany, L/D ratio of the screw is 25 and D = 19 mm). The
master batch was then further melt compounded with iPP pellets using a co-rotating twin
screw extruder (Leistritz, ZSE 27, Nürnberg, Germany, D = 27 mm and L/D = 36). In this
process, a temperature program within 200–220 ◦C from hopper to die and a screw speed
of 200 rpm were adjusted, under which a throughput of 10 kg/h was generated. After
pelletizing and drying, the samples were injection molded into rectangular sheets of dimen-
sion 80 × 80 × 1 mm3 by an injection molding machine (Demag, Ergotech 100/420-310,
Schwaig, Germany) under a barrel temperature of 225 ◦C and a mold temperature of 40 ◦C.
Three β-nucleated iPP samples with the NJS concentrations of 0.01, 0.03, and 0.1 wt.% were
prepared and named as Bpp01, Bpp03 and Bpp10, respectively. For comparison, neat iPP
without NJS was also prepared under the same processing conditions and designated as
Bpp0. It is worth noting that during the processing, the β-nucleating agent in Bpp01 was
totally dissolved while in Bpp03 and Bpp10; certain insoluble β-nucleating agent particles
existed due to the relatively large concentration [17,37,38].

For tensile experiment, mini-dumbbell specimens were cut from the 1 mm thick
sheets by CNC milling [39]. The specimens with their length along the injection direction
were taken from the position near the inlet with the distance of sample center to the inlet
being about 18 mm (Figure 1). For the morphological scan experiment, specimens with
dimensions of 16 × 1 × 1 mm3 were prepared from the 1 mm thick sheets. The specimens
are located at the same position as tensile specimens with their length along the injection
direction (Figure 1).
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2.2. X-ray Measurements

The synchrotron X-ray measurements were carried out at beamline P03 of Petra
III, DESY, Hamburg, Germany. The beam size was 20 × 20 µm2 and the wavelength
was 0.1069 nm. The exposure time was 0.5 s and the sampling rate was 0.33 s−1. Two-
dimensional WAXS and SAXS patterns were collected using two separate detectors Pilatus
300 K and Pilatus 1 M (Paul Scherrer Institute, Villigen, Switzerland), respectively, with
a readout time of 3 ms. The sample to detector distance was 2600 mm for SAXS and
129.5 mm for WAXS. All of the X-ray patterns were corrected for background scattering,
air scattering, and beam fluctuations.

2.3. Morphological Scan Measurement

The morphological scanning measurement was carried out with the primary X-ray
beam along the TD direction of sample by vertically shifting the sample (Figure 1).

2.4. Tensile Deformation Measurement

Uniaxial tensile deformation was performed on a custom-made miniature tensile
machine equipped with a heating device, which contained a porous ceramic material al-
lowing generation of a homogenous heat convection [39]. The samples were symmetrically
stretched at elevated temperature of 90 ◦C under stretching rate of 0.1 mm/s. A digital
camera was used to in-situ follow the deformation process of the sample without hindering
the X-ray path. The strain ε of the stretched sample was measured optically by observing
the deformation of a grid pattern on the sample surface, with a mesh size of 0.35 mm,
printed by using a self-made flexible ink. The center of the specimen, which was irradiated
by X-ray beam, was left blank [40].

2.5. Data Evaluation for X-ray Scattering
2.5.1. Overall Crystallinity Index and Individual Crystallinity Index

Linear WAXS profiles were obtained by circular integration of the 2D-WAXS patterns.
Subsequently, the peaks in the linear WAXS profiles were separated via Gaussian fit by
means of a self-written peak-fitting procedure in PV-wave from Visual Numerics (Texas
Houston, TX, USA) [41]. The overall crystallinity index was then calculated by using the
following Equation (1) [32,42]:

Xc =
∑ Acryst

∑ Acryst + Aamorph
(1)

where ∑ Acryst is the total crystalline peak areas and Aamorph is the amorphous peak area.
Certain γ-phase was found in the outer layer of the injection molding sheets and cannot

be neglected in the morphological scan experiment. In this case, 3 kinds of crystal modifica-
tions usually coexisted in the samples. The relative amount of the γ-crystals Kγ and β-crystals
Kβ were estimated using the Turner-Jones method [43] in Equations (2) and (3), respectively:

Kγ =
Aγ(117)

Aγ(117) + Aα(130)
(2)

Kβ =
Aβ(300)× (1− Kγ)

Aβ(300) + (Aα(110) + Aα(040) + Aα(130))× (1− Kγ)
(3)

where Aγ(117), Aβ(300), Aα(130), Aα(110) and Aα(040) are the areas of the (117) reflection
peak of the γ-iPP, (300) reflection peak of the β-iPP, (130), (110) and (040) reflection peaks
of the α-iPP, respectively.

The individual crystallinity index of the γ-form crystals Xγ, β-form crystals Xβ and
α-form crystals Xα, respectively, were then given by:

Xγ = Xc·Kγ (4)
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Xβ = Xc·Kβ (5)

Xα = Xc − Xβ − Xγ (6)

2.5.2. Crystal Size

The crystal size was calculated from the full width at half-maximum (FWHM) of the
fitted crystalline peaks according to the Debye-Scherrer equation [44]:

Lhkl =
Kλ

β1/2 cosΘ
(7)

where Lhkl represents the mean crystallite size in the normal direction of the (h k l) reflection
plane and β1/2 is the FWHM of the diffraction peak (h k l) in radians. The shape factor K
was set as 0.9 for polymer systems [20,22,45].

2.5.3. Long Period

The long period, spacing between adjacent crystalline lamellae layers, was calculated
from circular averaged 1-D SAXS data by Equation (8) [25,46]:

LB =
2π

qmax
(8)

where qmax represents the peak position in Lorentz corrected scattering intensity plot.

2.5.4. Orientation Degree

The crystalline orientation was estimated from the WAXS pattern through Hermans’
orientation function [47] defined as follows:

fH =
3< cos2∅ >− 1

2
(9)

where ∅ is the angle between the normal to the (040) reflection plane and the reference
axis (a direction perpendicular to the machine direction in 2D-WAXS pattern). The term
<cos2∅> is defined as

< cos2∅ >=

∫ π/2
0 I(θ)cos2(θ)sin(θ)dθ∫ π/2

0 I(θ)sin(θ)dθ
(10)

with I(θ) obtained from the scattering intensity at the azimuthal angle θ of the (040) reflec-
tion ring in 2D-WAXS pattern. The fH = 1 means that the reflection plane is parallel to the
machine direction (∅ = 0◦), fH = −0.5 means that the reflection plane is perpendicular to
the machine or stretching direction (∅ = 90◦) and fH = 0 means that the reflection plane has
no preferred orientation.

3. Results and Discussion
3.1. Morphological Distributions

The distributions of overall crystallinity, different crystalline phases, long period as
well as orientation degree through the depth of the β-nucleated iPP sheets are shown in
Figure 2a–g. It can be seen in Figure 2a that at the surface area all of the samples exhibited
low overall crystallinity, i.e., from 0.32 to 0.47, which was attributed to the quick cooling
rate restricting the formation of crystallites. Apart from the surface, the values of overall
crystallinity were higher than that at surface and though fluctuated a little, remained
relatively constant at around 0.53. The corresponding individual α-, β-, and γ-crystallinity
distributions are presented in Figure 2b–d. It can be found that the β-crystallinity at the
region between surface and 0.3 mm apart from surface was very low, even in Bpp10 with
highest β-nucleating agent concentration (Figure 2c). This was reasonable since the shear
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rate at this region was extremely high, which induced a large amount of oriented α-crystals
and thus inhibited the formation of β-crystals [15–17]. For Bpp0 and Bpp01 the core was
solely composed of α-crystals. The absence of β-crystals in core layer of Bpp01 indicated
that the few amount of β-nucleating agent did not induce the formation of β-crystals during
the injection-molding process. Our previous results showed that the NJS with the same
concentration of 0.01 wt.% exhibited relatively high β-nucleating ability (β crystallinity of
final solid sample reached above 0.31 after shear-induced or quiescent crystallization at
isothermal temperature of 138 ◦C for 5 min) [17]. The declined effectiveness of the NJS in
Bpp01 can be associated with the injection molding processing history. Due to the relatively
high barrel temperature of 225 ◦C, the few β-nucleating agent was totally dissolved in
Bpp01 [17,37,48] and during the subsequent rapid cooling process the formation of fine
crystals of NJS, which served as the precursor to induce the formation of β-crystals, may
be strongly restricted, resulting in the inactivity of NJS. With increasing NJS concentration,
the β-crystallinity increased at the expense of α-phase in the core layer (Bpp03 and Bpp10
in Figure 2b,c). The β-crystallinity gradually increased from around 0.3 mm apart from
the surface and reached maximum at the core center, indicating that the molecular chains
changed to coiled state due to the lower shear and cooling rates allowing a good relaxation
of molecular chains in the core region.
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In addition, the very high shear effect at the region between surface and 0.35 mm
apart from the surface also led to formation of highly oriented γ-crystals (Figure 2c inset
and Figure 2d). This result is consistent with results of Kalay et al., who reported that
the occurrence of γ-crystals in injection moldings was associated with high molecular
alignment [13]. Compared with pure iPP, the addition of β-nucleating agent resulted in a
higher content of γ-form crystals in this region and made the γ-crystallites locate at the
position farther to the surface. According to the results of Housmans et al., the occurrence
area of γ-phase may be roughly associated with the position of shear layer [3].

The long period distributions are shown in Figure 2e. All samples exhibited a low
value of long period at the surface, where fewer crystallites were formed due to fast cooling
rate. The long period gradually increased to a maximum in the region around 0.1–0.2 mm
apart from surface and then decreased in the region about 0.2–0.3 mm apart from surface.
The long period of Bpp03 and Bpp10 were larger than that of pure iPP and Bpp01 in
the highly sheared region, indicating that the presence of nucleating agent particles was
beneficial for formation of lamellae with increased stacks distance. This can be explained
by the idea that the particles may promote the alignment of molecular chains and induce
more oriented nuclei [17,49]. The long period increased with increasing concentration of
β-nucleating agent at the core region. This was reasonable since the β-nucleating agent may
promote the formation of β-crystals leading to the increase of lamellar stacking distance [16].
In addition, it can be observed that the distribution of long period was relatively flat for iPP
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without or with little nucleating agent (Bpp0 and Bpp01) at the core region indicating that
the molecular chains of α-crystals in these two samples shared similar thermomechanical
history at this region. On the other hand, for iPP with high concentration of β-nucleating
agent (Bpp03 and Bpp10), the distributions of long period exhibited inverted U-shape at
the core region, which can be mainly attributed to the change of β-content as shown in the
Figure 2c, noting that β-lamellae usually exhibited a larger long period compared with
α-lamellae under the same crystallization temperature [16].

Figure 2f shows the distributions of orientation functions for iPP nucleated with
various concentrations of β-nucleating agent. In all of the samples, the orientation degree
increased, starting at a low value at the surface, where fewer ordered crystallites were
formed due to fast cooling, to a maximum close to 1 in the region around 0.05–0.3 mm
apart from surface, after which it generally decreased to a low value close to 0 in the core
region. Special attention was paid to the region around 0.05–0.3 mm apart from surface,
where the orientation degree was very high. Combining with the Figure 2b–d, it can be
concluded that the outer region (mainly skin + shear region) in the all of samples prepared
by traditional injection molding was dominated by mainly highly oriented α-crystals and
certain amount of γ-crystals. However, for the core region, the samples with relatively high
concentration of NJS (Bpp03 and Bpp10) were rich in β-crystals with little if any orientation,
while the samples without or with few NJS (Bpp0 and Bpp01) were still mainly composed
of little if any oriented α-form crystals.

3.2. Structure Variation under Tensile Deformation

Figure 3 displays the 2D-WAXS patterns and the corresponding 1D-WAXS intensity
curves of undeformed injection-molded iPP samples with different concentrations of β-
nucleating agent. As can be seen, all of the samples exhibited highly oriented structure
(Figure 3a). In addition, with increasing concentration of β-nucleating agent, the scattering
of (300) reflection enhanced (Figure 3a,b), indicating the increase of β-crystallinity.

Polymers 2021, 13, x 8 of 18 
 

 

flat for iPP without or with little nucleating agent (Bpp0 and Bpp01) at the core region 
indicating that the molecular chains of α-crystals in these two samples shared similar ther-
momechanical history at this region. On the other hand, for iPP with high concentration 
of β-nucleating agent (Bpp03 and Bpp10), the distributions of long period exhibited in-
verted U-shape at the core region, which can be mainly attributed to the change of β-
content as shown in the Figure 2c, noting that β-lamellae usually exhibited a larger long 
period compared with α-lamellae under the same crystallization temperature [16]. 

Figure 2f shows the distributions of orientation functions for iPP nucleated with var-
ious concentrations of β-nucleating agent. In all of the samples, the orientation degree 
increased, starting at a low value at the surface, where fewer ordered crystallites were 
formed due to fast cooling, to a maximum close to 1 in the region around 0.05–0.3 mm 
apart from surface, after which it generally decreased to a low value close to 0 in the core 
region. Special attention was paid to the region around 0.05–0.3 mm apart from surface, 
where the orientation degree was very high. Combining with the Figure 2b–d, it can be 
concluded that the outer region (mainly skin + shear region) in the all of samples prepared 
by traditional injection molding was dominated by mainly highly oriented α-crystals and 
certain amount of γ-crystals. However, for the core region, the samples with relatively 
high concentration of NJS (Bpp03 and Bpp10) were rich in β-crystals with little if any ori-
entation, while the samples without or with few NJS (Bpp0 and Bpp01) were still mainly 
composed of little if any oriented α-form crystals. 

3.2. Structure Variation under Tensile Deformation 
Figure 3 displays the 2D-WAXS patterns and the corresponding 1D-WAXS intensity 

curves of undeformed injection-molded iPP samples with different concentrations of β-
nucleating agent. As can be seen, all of the samples exhibited highly oriented structure 
(Figure 3a). In addition, with increasing concentration of β-nucleating agent, the scattering 
of (300) reflection enhanced (Figure 3a,b), indicating the increase of β-crystallinity. 

  

(a) (b) 

Figure 3. 2D-WAXS patterns of different undeformed injection-molded iPP samples (a), note: injection direction is vertical) 
and the corresponding 1-D WAXS intensity profiles (b). 

  

Figure 3. 2D-WAXS patterns of different undeformed injection-molded iPP samples (a), note: injection direction is vertical)
and the corresponding 1-D WAXS intensity profiles (b).

Figure 4 displays the SAXS patterns of undeformed injection-molded iPP samples
with different concentrations of β-nucleating agent and Figure 5 shows the integrated
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intensities in meridional and equatorial direction for the SAXS-patterns shown in Figure 4
using the following expressions:

Iequator =
∫ q2

q1

∫ 10◦

−10◦
I(q, φ)dφdq (11)

and

Imeridian =
∫ q2

q1

∫ 100◦

80◦
I(q, φ)dφdq (12)

where I(q, ϕ) represents the scattered intensity at angle ϕ and scattering vector q (here,
q1 = 0.084 nm−1 and q2 = 1.43 nm−1, the corresponding integral area can be seen in the
Figure 5). The SAXS scattering intensities are related to the electronic density contrast and
to the volume fraction of the objects. It can be seen that the intensity at the meridian was
much higher than that at equator. The intensity at equator was almost independent of
the concentration of β-nucleating agent, while the intensity at meridian increased with
increasing concentration of β-nucleating agent, indicating that lamellar structure became
more perfect as the concentration of the nucleating agent increased.
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Figure 6 shows the 2D-SAXS patterns of iPP samples nucleated with various con-
centrations of β-nucleating agent stretched to strain of about 300%. It can be observed
that with increasing concentration of β-nucleating agent, the scattering intensity tended to
increase. This can also be clearly seen in Figure 7. Combining with the strong equatorial
streaks in the SAXS patterns, it can be inferred that the shape of voids and cavities was
elongated along the stretching direction and their volume increased with increasing con-
centration of β-nucleating agent. To elucidate this phenomenon, the SAXS and WAXS data
are further analyzed.
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Figure 8 shows the change of long period of deformed and undeformed injection-
molded samples as a function of β-nucleating agent concentrations. It can be seen that
the long period increased with increasing NJS concentration for undeformed samples,
ranging from about 13.3 nm to 14.3 nm. As discussed above, the increased long period can
be mainly attributed to the following two reasons: 1, high molecular alignment in shear
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region promoted by NJS particles; 2, increased β-content in core region with relatively
thick lamellae thickness compared to α-lamellae. After stretching to 300%, the long period
of β-nucleated iPP samples decreases to a constant value of 13.3 nm. This indicates that
the deformation process promotes the fragmentation and rearrangement of crystallites fol-
lowed the formation of thinner lamellae [23]. In addition, it is expected that the destruction
of the thicker lamellae, which are more stable, may need higher stress, and thus, higher
stress concentration was generated around the lamellae leading to formation of more voids
and cavities.
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Figure 9 displays the 2D-WAXS patterns of iPP samples nucleated with various
concentrations of β-nucleating agent stretched to strain of about 300%. It is seen that those
patterns were more or less identical regardless of the presence of weak β-(3 0 0) reflection
in Bpp03 and Bpp10. Figure 10 shows the corresponding overall crystallinity indices of
those undeformed and deformed samples. It can be seen that the overall crystallinity of
undeformed samples was more or less similar with values of around 0.53. After stretching
to 300%, it decreased to a value of around 0.45, indicating that the destruction of crystals
occurred during the deformation process. To further elucidate this phenomenon, individual
crystallinity was analyzed as follows.
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It can be seen in Figures 3 and 9 that there are little if any (117) reflections in the
2D-WAXS patterns indicating the presence of few amount of γ-phase. The variation of
γ-phase during deformation has been debated controversially. For example, Kalay et al.
found that the γ-phase was stable and did not transform into α or any other phase during
deformation [13], while Auriemma et al. pointed out that the γ form may gradually
transform into α form upon stretching [50]. Since the scattering of γ-(117) reflection in our
study is too weak to be further investigated, the following work will mainly concern the
variation of β and α phases. Figure 11 shows individual crystallinity indices (Xα and Xβ)
of those iPP samples calculated based on 2D-WAXS patterns in Figures 3 and 9. It is found
that the β-crystallinity increased with increasing NJS concentration for the undeformed
samples. After stretching to the strain of 300%, the β-crystallinity decreased in all of the
samples. At the same time, the α-crystallinity increased for Bpp03 and Bpp10, indicating
the occurrence of transformation from β- to α-crystals [51,52]. However, α-crystallinity
decreased for Bpp0 and Bpp01. Noting that the original β-crystallinity for the undeformed
Bpp0 and Bpp01 is too small (<0.01), the above-mentioned overall crystal destruction was
mainly associated with the destruction of the α-crystals in these two samples. Still, it is
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reasonable to infer that such β-α transformation may take place during the deformation
process of Bpp0 and Bpp01. In addition, it seems that such β-α transformation in Bpp10
with higher β-content was more pronounced than that in Bpp03 with relatively lower
β-crystallinity. It is known that there is a density difference between α- and β-crystals
with the density of α-crystals being higher than that of β-crystals [53]. Upon deformation,
volume contraction is a nature result of β to α transformation [54]. The above increased
volume of void and cavity is thus possibly associated with the β to α phase transition
mainly occurred at the core region.
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Figure 12 shows the change of crystal size for those deformed and undeformed iPP
samples. It can be seen that the crystal size increased with increasing NJS concentration for
the undeformed samples. The addition of NJS may raise the crystallization temperature
leading to the formation of stable and large crystals. After stretching to 300%, the crystal
size markedly decreased, indicating that destruction of crystals occurred followed by the
formation of smaller crystals during the deformation process.

Figure 13 shows the change of orientation degree, based on the α-(0 4 0) lattice plane,
of those deformed and undeformed iPP samples. It is found that the orientation degree
increased with increasing NJS concentration for the undeformed iPP samples, ranging
from 0.31 to 0.64. The orientation degree of sample was averaged from core to skin. As
discussed above, highly oriented α-crystals are dominant in the shear layer of all the
iPP samples. However, the core region of pure iPP and Bpp01 is mainly composed of
α-crystals with little orientation which results in the decrease of their overall orientation
degree. By contrast, with increasing NJS concentration (Bpp03 and Bpp10), the core region
is gradually occupied by the β-crystals (Figure 2c) instead of α-crystals (Figure 2b). Thus
the overall orientation degree is less influenced by the few α-crystals with little orientation
in the core region and may keep at relatively high level. Furthermore, the flow intensity in
shear layer may be strongly increased due to the interaction between flow and nucleating
agent particles [55,56] leading to the more pronounced molecular alignment as well as
the further increase of overall orientation degree. After stretching to 300%, all samples
exhibit similar orientation degree with values of around 0.55. The increase of orientation
degree in Bpp0, Bpp01 and Bpp03 may be attributed to the alignment of crystals including
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the original and new formed small crystals to the stretching direction, while the slight
decrease of orientation degree in Bpp10 may be mainly associated with the destruction
and rearrangement of crystals in shear layer as well as the formation of more α-crystals
with possibly relatively less orientation degree in the core region due to the β to α phase
transition as shown in Figure 11.
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4. Conclusions

The synchrotron X-ray microbeam was used to identify the overall morphological
distributions of injection-molded β-nucleated iPP, including distributions of crystallinity,
long period and orientation, etc. It was found that the outer region (skin and shear region)
of injection-molded iPP with relatively high concentration of NJS (i.e., ≥0.03 wt.%) was
dominated by mainly highly oriented α-phase and certain amount γ-phase, while the core
layer was rich in β-crystals with little if any orientation. The presence of nucleating agent
particles promoted the alignment of molecular chains and induced more oriented nuclei,
which was beneficial for the formation of lamellae with increased stacks distance in the
shear layer. The long period increased with increasing concentration of β-nucleating agent
in the core layer, since the β-nucleating agent may promote the formation of β-crystals
with relatively large lamellar stacking distance.

Mini-dumbbell samples, of which the center coincided with the scanned position of the
above morphology-identified samples, were further investigated by the in-situ synchrotron
X-ray measurements coupled with mechanical testing to follow the structure variations
upon deformation at strain of around 300%. It was found that voids and cavities along
the stretching direction existed in the deformed iPP samples and their volume increased
with increasing concentration of β-nucleating agent. The increased volume of void and
cavity was associated with the β to α phase transition, which mainly occurred at the core
region. The higher the concentration of β-nucleating agent used, the more the β-crystals
transformed into the α-crystals during the deformation, thus the more the cavities were
generated due to the density difference between α- and β-crystals. Upon deformation
the fragmentation and rearrangement of crystallites occurred following the formation of
thinner lamellae.
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