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Abstract: Electromagnetic field sensors are widely used in various areas. In recent years, great
progress has been made in the optical sensing technique for electromagnetic field measurement, and
varieties of corresponding sensors have been proposed. Types of magnetic field optical sensors were
presented, including probes-based Faraday effect, magnetostrictive materials, and magnetic fluid. The
sensing system-based Faraday effect is complex, and the sensors are mostly used in intensive magnetic
field measurement. Magnetic field optical sensors based on magnetic fluid have high sensitivity
compared to that based on magnetostrictive materials. Three types of electric field optical sensors
are presented, including the sensor probes based on electric-optic crystal, piezoelectric materials,
and electrostatic attraction. The majority of sensors are developed using the sensing scheme of
combining the LiNbO3 crystal and optical fiber interferometer due to the good electro-optic properties
of the crystal. The piezoelectric materials-based electric field sensors have simple structure and easy
fabrication, but it is not suitable for weak electric field measurement. The sensing principle based
on electrostatic attraction is less commonly-used sensing methods. This review aims at presenting
the advances in optical sensing technology for electromagnetic field measurement, analyzing the
principles of different types of sensors and discussing each advantage and disadvantage, as well as
the future outlook on the performance improvement of sensors.

Keywords: electromagnetic field measurement; optical sensors; Faraday effect; magnetostriction;
magnetic fluid; electro-optic effect; piezoelectric effect; electrostatic attraction

1. Introduction

Electromagnetic field (EMF) sensors have been drawing attention in recent years because of these
wide usages in various areas, including navigation and medical instruments, and the power industry.
For example, in magnetic resonance imaging diagnostics, magnetic field sensors are used for magnetic
resonance data acquisition and assessment of magnetic radiation risk to protect workers from heavy
occupational exposure [1–3]. Electromagnetic sensors are an effective tool to diagnose the troubles and
ensure electronic equipment safety and stable operation in the power grid [4,5].

One type of conventional magnetic field sensors, a common tesla meter, consists of a hall sensor
probe and a dashboard, which is not sensitive enough to measure the weak magnetic field (<1 mT) [6,7].
Another type of sensors consists of a coil with hundreds of fine-gage wires. When placed in an
alternating magnetic field, an induced current is proportional to the strength of the applied magnetic
field, which is not applicable to a static magnetic field. A commonly-used method for electric field
measurement is based on a displacement current sensor which consists of two thinly-conductive plates
connected together electrically. Another type of electric sensor is composed of a shield sector sheet and
a fixed induction metal sheet. In the presence of an electric field, the shield sector sheet rotating the
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fixed metal sheet generates an induced current. The induced current is measured to derive electric
field strength. The above methods have to use the metal antennas or probes to induce the electric
field [8,9]. The metallic structures are susceptible to electromagnetic noise and can only measure EMF
at a single point.

Optical sensors have a number of advantages over conventional sensing techniques, such as
compact size, strong adaptability to harsh environments, and immunity to electromagnetic interference,
so lots of work has focused on EMF optical sensors in the decades at the end of last century [10–12].
One type of optical sensors are bulk sensors, which are integrated by a fiber with the field transducers,
such as magneto-optic crystal, magnetostrictive materials, magnetic fluid, electro-optic crystals, and
piezoelectric ceramics. The other type of sensor is an all-fiber sensor, where the fiber is not only used
for light guiding but the sensing element. The all-fiber sensors for magnetic field measurement are
based on the Faraday effect of magneto-optic fiber. The electric field all-fiber sensors are based on
the electrostrictive effect of silica fiber, which is rarely used due to the low-sensitivity to electric field.
Over the past decades, as the advances of new functional materials, such as magneto optic fiber, giant
magnetostrictive materials, and magnetic fluid, the optical sensing technology for EMF has made great
progress. The optical sensing technology also has a rapid development, especially the optical fiber
sensing technique. There is a report about the optic fiber magnetic field sensor based on MF [13], but
to our knowledge, no reviews specifically pay attention to the development of EMF optical sensors in
the past ten years. Therefore, this paper aims to provide a summarized overview of the various types
of EMF optical sensors.

2. Magnetic Field Optical Sensors

2.1. Probes Based on the Faraday Effect

The Faraday effect is a magneto-optical phenomenon—that is, an interaction between light and a
magnetic field in a medium. The Faraday effect causes a rotation for the plane of polarization when
plane-polarized light passes through a substance placed in a magnetic field. For a given substance,
the rotation angle is proportional to the length traversed by the light and the magnetic field strength,
which can be expressed as in [14]:

θ = V
∫ l

0
B(l)dl (1)

where, θ is the rotation angle, V is the Verdet constant of a given substance or a function of concentration,
temperature, and frequency, B is the magnetic flux density (B = µ·H, H the magnetic field strength),
and l is the length over which the magnetic field and light interact.

Sun et al. proposed an all-fiber optical magnetic-field sensor based on the Faraday rotation in
terbium-doped (Tb) fiber. The Verdet constant of the Tb fiber is about 20 times larger than that of silica
fiber, so this sensor probe has a higher sensitivity. Linear-polarized light is transmitted to the Tb fiber
through polarization-maintaining fiber (PMF). The polarization of light rotates when the Tb fiber is
placed in a magnetic field. The polarization rotation angle is related to the magnetic field strength, so
the magnetic field can be measured by monitoring the output light intensity. The probe configuration
and sensing system are shown in Figure 1a [15]. Some magnetic field sensors were designed using
a heterodyning fiber grating laser. When a magnetic field is applied to the fiber grating laser, the
birefringence in the fiber grating laser cavity becomes an elliptical birefringence. The Faraday rotation
effect induces the circular birefringence into the cavity. The beat frequency of signal generated by
two orthogonally polarized laser outputs is related to the magnetic field intensity [16–18]. In order to
enhance the sensitivity of these magnetic sensors, Cheng et al. achieved the sensitivity enhancement
by transverse force action or CO2-laser treatment to change the linear birefringence, as illustrated in
Figure 1b [19]. Han et al. positioned a silicon steel sheet close to the fiber grating laser to strengthen
the magnetic field intensity around the fiber grating laser cavity, wherein the silicon steel sheet worked
as a magnetic field concentrator [20].
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Figure 1. (a) Sensing system of a magneto-optic fiber magnetic-field sensor [15] (Copyright © 2010 
OSA, Reprinted with permission) and (b) sensing system based on the heterodyning fiber grating 
laser [19] (Copyright © 2013 OSA, Reprinted with permission). 

Descamps et al. proposed a magnetic field sensing method through detection of the circular 
birefringence of optical fiber induced by the Faraday effect. In an applied magnetic field, the FBG 
polarization properties, such as polarization dependent loss (PDL) and differential group delay 
(DGD), are changed. The magnetic field strength can be obtained by computing the diattenuation 
vector. It is a new demodulation technique allowing the use of a FBG written in common single-mode 
fiber (SMF) [21]. Amirsolaimani et al. developed a high sensitivity magnetometer using 
nanocomposite polymers, as shown in Figure 2. The Faraday rotation inside the nanocomposite 
generates the phase shift between two orthogonal polarization lights. The nanocomposite polymers 
were fabricated by encapsulating the Dy3+-doped magnetite and cobalt ferrite nanoparticles within 
polymethylmethacrylate matrix. The nanocomposite has a high Verdet constants (6.6 × 106 °/T·m), 
which is about 105 times larger than that of common silica fiber. Additionally, the design of a double 
optical path through the magneto-optic polymer enhances the Faraday rotation. In the contribution 
of the magneto-optic polymer with high Verdet constants and the double optical path design, the 
sensor can achieve a high sensitivity of 20 fT/√Hz. This sensing scheme can be used for detecting 
neuronal activity inside the brain [22]. 

Some distributed magnetic field sensors were presented based on the Faraday rotation. The 
magnetic field can be obtained by analyzing the state of polarization of the Rayleigh backscattered 
light. The polarization-sensitive optical frequency domain reflectometer (OFDR) is adopted to 
measure the state of polarization. Due to the faintness of the Faraday rotation in a common optical 
fiber, the sensors are most suited for intense magnetic fields, such as the application of magnetic 
resonance imaging [23,24]. 

Figure 1. (a) Sensing system of a magneto-optic fiber magnetic-field sensor [15] (Copyright © 2010
OSA, Reprinted with permission) and (b) sensing system based on the heterodyning fiber grating
laser [19] (Copyright© 2013 OSA, Reprinted with permission).

Descamps et al. proposed a magnetic field sensing method through detection of the circular
birefringence of optical fiber induced by the Faraday effect. In an applied magnetic field, the FBG
polarization properties, such as polarization dependent loss (PDL) and differential group delay (DGD),
are changed. The magnetic field strength can be obtained by computing the diattenuation vector. It is a
new demodulation technique allowing the use of a FBG written in common single-mode fiber (SMF) [21].
Amirsolaimani et al. developed a high sensitivity magnetometer using nanocomposite polymers, as
shown in Figure 2. The Faraday rotation inside the nanocomposite generates the phase shift between
two orthogonal polarization lights. The nanocomposite polymers were fabricated by encapsulating the
Dy3+-doped magnetite and cobalt ferrite nanoparticles within polymethylmethacrylate matrix. The
nanocomposite has a high Verdet constants (6.6 × 106 ◦/T·m), which is about 105 times larger than that
of common silica fiber. Additionally, the design of a double optical path through the magneto-optic
polymer enhances the Faraday rotation. In the contribution of the magneto-optic polymer with high
Verdet constants and the double optical path design, the sensor can achieve a high sensitivity of
20 fT/

√
Hz. This sensing scheme can be used for detecting neuronal activity inside the brain [22].

Some distributed magnetic field sensors were presented based on the Faraday rotation. The
magnetic field can be obtained by analyzing the state of polarization of the Rayleigh backscattered
light. The polarization-sensitive optical frequency domain reflectometer (OFDR) is adopted to measure
the state of polarization. Due to the faintness of the Faraday rotation in a common optical fiber, the
sensors are most suited for intense magnetic fields, such as the application of magnetic resonance
imaging [23,24].
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Figure 2. Magnetic field sensor prototype based on nanocomposite polymers and the sensing  
system [22] (Copyright © 2018 OSA, Reprinted with permission). 

2.2. Probes Based on Magnetostriction 

Magnetostriction is a unique property of ferromagnetic substance. The energy of a ferromagnetic 
substance comprises three parts, the exchange, anisotropy and magnetostatic energies. The three 
magnetic energies variation induce the variation in volume, linear length, and shape, respectively. 
When a ferromagnet is magnetized in a magnetic field, a deformation will be generated [25]. At the 
end of last century, there was a great advance in ferromagnetic materials. Giant magnetostrictive 
materials (GMM) were discovered, such as Terfenol-D and Galfenol, which have larger deformation 
in a given magnetic field [26–28]. Lots of sensors exploit GMM as a magnetic field transducer. The 
fiber Bragg gratings (FBG) are attached to GMM, and then the stress induced by the magnetic field 
applies on the FBG. The magnetic field can be measured by detecting the Bragg wavelength shifts.  

The first type of sensors are designed by using GMM rods as the magnetic field transducer, and 
FBGs are bonded to the rod, which consist of a magnetic field probe. In [29], a magnetic field sensor 
was designed using a GMM rod and a FBG. The FBG is bonded to a Terfenol-D rod, as a sensor probe 
(Figure 3a). The magnetic field deforms the Terfenol-D rod, which stretches FBG to generate strain. 
The magnetic field can be detected by demodulating the wavelength of FBG. They also designed a 
compensation algorithm to achieve a linear response of this sensor. Nascimento et al. proposed a 
magnetic field sensor using an erbium-doped fiber optic laser and a Terfenol-D rod. A pair of FBGs 
are glued on the Terfenol-D rod to tune the laser wavelength (Figure 3b). The change in magnetic 
field can cause a laser wavelength shift. In their results, the wavelength shift is nonlinear to magnetic 
field intensity [30].  

 

Figure 2. Magnetic field sensor prototype based on nanocomposite polymers and the sensing system [22]
(Copyright© 2018 OSA, Reprinted with permission).

2.2. Probes Based on Magnetostriction

Magnetostriction is a unique property of ferromagnetic substance. The energy of a ferromagnetic
substance comprises three parts, the exchange, anisotropy and magnetostatic energies. The three
magnetic energies variation induce the variation in volume, linear length, and shape, respectively.
When a ferromagnet is magnetized in a magnetic field, a deformation will be generated [25]. At the end
of last century, there was a great advance in ferromagnetic materials. Giant magnetostrictive materials
(GMM) were discovered, such as Terfenol-D and Galfenol, which have larger deformation in a given
magnetic field [26–28]. Lots of sensors exploit GMM as a magnetic field transducer. The fiber Bragg
gratings (FBG) are attached to GMM, and then the stress induced by the magnetic field applies on the
FBG. The magnetic field can be measured by detecting the Bragg wavelength shifts.

The first type of sensors are designed by using GMM rods as the magnetic field transducer, and
FBGs are bonded to the rod, which consist of a magnetic field probe. In [29], a magnetic field sensor
was designed using a GMM rod and a FBG. The FBG is bonded to a Terfenol-D rod, as a sensor probe
(Figure 3a). The magnetic field deforms the Terfenol-D rod, which stretches FBG to generate strain.
The magnetic field can be detected by demodulating the wavelength of FBG. They also designed a
compensation algorithm to achieve a linear response of this sensor. Nascimento et al. proposed a
magnetic field sensor using an erbium-doped fiber optic laser and a Terfenol-D rod. A pair of FBGs are
glued on the Terfenol-D rod to tune the laser wavelength (Figure 3b). The change in magnetic field
can cause a laser wavelength shift. In their results, the wavelength shift is nonlinear to magnetic field
intensity [30].
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A compact fiber magnetic field sensor was developed based on a phase-shifted fiber Bragg 
grating (PS-FBG) and a Terfenol-D bar. The PS-FBG is bonded to the Terfenol-D bar by epoxy resin 
as the sensing probe (Figure 4a). In the presence of a magnetic field, deformation of the Terfenol-D 
bar induces the Bragg wavelength shift of PS-FBG. The magnetic field strength can be measured by 
detecting the intensity variations of the reflected spectrum [31]. Filograno et al. designed a three-axis 
fiber optic magnetic field sensor for magnetic resonance imaging applications (Figure 4b). The 
uniaxial element of sensor is a FBG fixed on a block of Terfenol-D. The tri-axial sensor consists of 
three mutually perpendicular uniaxial elements. They tested the performance of the sensor and 
studied the effect of prestress on the wavelength shift. The results demonstrate that the slope of the 
wavelength shift is maximum in the range from −100 mT to 100 mT when the preload is 375 N [32].  

 

 

Figure 3. (a) Magnetic field sensor probe based on fiber Bragg gratings (FBG) and Terfenol-D rod and
the performance of sensor [29] and (b) sensor sensing system based on FBG laser and Terfenol-D rod
the test results [30]; permission conveyed through the Copyright Clearance Center, Inc.

A compact fiber magnetic field sensor was developed based on a phase-shifted fiber Bragg grating
(PS-FBG) and a Terfenol-D bar. The PS-FBG is bonded to the Terfenol-D bar by epoxy resin as the
sensing probe (Figure 4a). In the presence of a magnetic field, deformation of the Terfenol-D bar induces
the Bragg wavelength shift of PS-FBG. The magnetic field strength can be measured by detecting
the intensity variations of the reflected spectrum [31]. Filograno et al. designed a three-axis fiber
optic magnetic field sensor for magnetic resonance imaging applications (Figure 4b). The uniaxial
element of sensor is a FBG fixed on a block of Terfenol-D. The tri-axial sensor consists of three mutually
perpendicular uniaxial elements. They tested the performance of the sensor and studied the effect of
prestress on the wavelength shift. The results demonstrate that the slope of the wavelength shift is
maximum in the range from −100 mT to 100 mT when the preload is 375 N [32].
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The second type of magnetic field sensors are integrated with magnetostrictive composite and
FBGs. The magnetostrictive composite consists of Terfenol-D particles and an epoxy resin matrix.
Liu et al. proposed a magnetic field sensor using magnetostrictive composite and FBG. The FBG is
bonded to the surface of the composite, as illustrated in Figure 5a. Their results demonstrate that the
peak wavelength of the sensor increases appropriately linearly with the increase of the magnetic field
strength [33]. Quintero et al. presented a sensor composed of FBG and magnetostrictive composite.
The FBG is coated by a thick layer of a magnetostrictive composite (Figure 5b). Terfenol-D particles are
dispersed in an epoxy resin matrix. They tested the effect of volume fraction of Terfenol-D particles and
particle size on sensor performance. The results show that the sensor has a resolution of 0.3 mT when
the volume fraction of Terfenol-D particles (212~300 µm) is 30% [34]. They also designed a magnetic
field sensor using photonic crystal fiber (PCF) coated by magnetostrictive composite (Figure 5c). The
optical phase variation is a function of the change in magnetic field strength. The sensor can measure
the magnetic field through detecting the wavelength shift [35]. He et al. embedded a heterodyning
fiber-grating laser into magnetostrictive composite (Figure 5d). When a magnetic field is applied, the
deformation stress of magnetostrictive composite acts on the heterodyning fiber laser to change the
beat frequency. The response of this sensor shows a good directivity, a sensitivity of 10.5 Hz/µT, and a
large measurable range up to about 0.3 T [36,37].
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The third type of sensors were developed based on FBGs coated with a thin film of 
magnetostrictive materials. Yang et al. designed a sensor using corroded FBG coated with a layer of 
Terfenol-D (Figure 6a). The FBG was immersed in hydrofluoric acid solution to remove the cladding, 
and thin films of Terfenol-D were coated on the etched FBG through a sputtering system. They 
studied the effect of the etched diameter of FBG on the sensor sensitivity [38]. Chen and Li presented 
a magnetic field sensor based on FBG Fabry–Perot (FP) cavity ring-down technique. Two identical 
FBGs are written on a single mode fiber (SMF), as illustrated in Figure 6b. The section between two 
FBGs works as a FBG-FP cavity, which is coated by magnetostrictive material. In the presence of a 
magnetic field, the cavity is elongated by the magnetostriction, which causes the increase of cavity 

Figure 5. (a) Sensor head based on FBG bonded to magnetostritive composite [33], (b) senor probe
consisting of FBG coated by magnetostritive composite [34], (c) sensing area photonic crystal fiber (PCF)
coated by magnetostrictive composite [35], (d) configuration of sensor area based on the fiber-gratings
laser embedded to the composite [36].

The third type of sensors were developed based on FBGs coated with a thin film of magnetostrictive
materials. Yang et al. designed a sensor using corroded FBG coated with a layer of Terfenol-D (Figure 6a).
The FBG was immersed in hydrofluoric acid solution to remove the cladding, and thin films of Terfenol-D
were coated on the etched FBG through a sputtering system. They studied the effect of the etched
diameter of FBG on the sensor sensitivity [38]. Chen and Li presented a magnetic field sensor based on
FBG Fabry–Perot (FP) cavity ring-down technique. Two identical FBGs are written on a single mode
fiber (SMF), as illustrated in Figure 6b. The section between two FBGs works as a FBG-FP cavity, which
is coated by magnetostrictive material. In the presence of a magnetic field, the cavity is elongated by
the magnetostriction, which causes the increase of cavity losses. The power transmission of the FBG-FP
cavity is related to the magnetic field [39]. Silva et al. proposed a magnetic field sensor with thermal
compensation. The sensing probe has a functional FBG coated with Terfenol-D and an uncoated FBG
as a temperature compensation element, as shown in Figure 6c [40]. Schukar et al. developed a FBG



Sensors 2019, 19, 2860 7 of 28

sensor for magnetic field measurement. The FBG is coated by a magnetostrictive iron-nickel layer
with an iron concentration of 50% [41]. A femtosecond laser-inscribed FBG sensor was proposed for
detection of the magnetic field. A micro-machined groove is created in the fiber and then the grooved
section is filled with Terfenol-D by RF sputter, as shown in Figure 6d [42].
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Figure 6. (a) Sensing head and system based on etched FBG coated by Terfenol-D film [38], (b) sensor
probe composed of FBG Fabry–Perot cavity [39], (c) Thermal compensated magnetic-field sensor with
coated and uncoated FBGs [40], (d) sensor head structure of FBG with micro-machined groove filed
with Terfenol-D [42].

Another type is distributed magnetic field sensors based on magnetostriction. Masoudi and
Newson proposed a distributed optical fiber magnetic field sensor by measuring the strain on the
fiber which was induced by a nickel wire bonded to the fiber. The sensing principle is based on the
distributed dynamic strain measurement technique—optical time-domain reflectometry (OTDR). The
fiber strain is induced by the magnetostriction of the nickel wire in the presence of a magnetic field.
The phase difference between the backscattered light from the two sections of fiber is a function of the
magnetic field. This sensor can detect multiple magnetic fields along a 1 km sensing fiber with a spatial
resolution of 1 m [43]. Du et al. also presented a distributed magnetic field sensor based on the same
principle. The magnetostrictive Fe–Co–V alloy film is attached to a 51 m-long SMF. The minimum
detectable magnetic field variation is 12.9 mT, and the spatial resolution is 4 cm in the operating range
from 12.9 mT to 143.3 Mt [44,45].

2.3. Probes Based on Refractive Index Tunability of Magnetic Fluid

Magnetic fluid (MF), commonly called ferrofluid, is a stable colloidal solution of single domain
magnetic nanoparticles. The MFs have a unique combination of normal liquid behavior and the
ability to interact with the magnetic field. It has many remarkable properties, such as refractive index
tenability, birefringence effect, dichroism effect, thermal effect, etc. [46]. The refractive index tenability
of MF has been widely used in the design of optical sensors [47–49].

One type of optical fiber magnetic field sensors is proposed by using MF as the cladding of
optical fiber structures. For example, the MF works as the cladding of FBG. Etched FBG is placed
into a container filled with MF, and the sensing system is shown in Figure 7a. The effective refractive
index of FBG is related to the refractive index of cladding (i.e., MF). The refractive index of inside
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MF is tuned by the external magnetic field. The magnetic field can be measured by detecting the
reflected wavelength shifts. They tested the interaction between the etched FBG diameter and the
sensitivity of the sensor. The results demonstrate that the sensor has a sensitivity of 2.3 pm/mT and
3.44 pm/mT [50,51]. Zhang et al. placed the Long period fiber grating (LFBG) into a cavity filled with
MF as a magnetic field sensor probe, as illustrated in Figure 7b. The resonance wavelength of LFBG
is related to the refractive indices of the core mode and the cladding mode, wherein the core mode
does not change in a magnetic field. The magnetic field can be measured through detecting the power
of the transmission spectrum [52]. Gao et al. used D-shape fiber with LPBG surrounded by MF as a
sensing probe for magnetic field measurement [53]. Luo et al. proposed a magnetic field sensor using
a hybrid LFBG encapsulated in a capillary tube filled in MF. The hybrid LFBG is fabricated by splicing
the microstructure optical fiber to SMF [54]. Zheng et al. proposed a magnetic field sensor based on
the interaction between tilted fiber Bragg grating (TFBG) and MF. The TFBG and MF are packaged in a
capillary tube as a sensing probe. The transmission spectrum of TFBG correlates to the magnetic field
strength [55]. Narasimman et al. demonstrated a magnetic field sensor combining the etched fiber and
MF composed of Co-doped ZnO nanorods. They studied the effect of ZnO nanorods of different Co
concentrations on the sensor sensitivity. The results show that the sensor has a maximum sensitivity of
~18% for Co-doped ZnO nanorods in the range from 17.2 mT to 180.8 mT [56].
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Figure 7. (a) Magnetic field sensing system based on etched FBG immersed into magnetic fluid (MF)
and the responses of sensors with different FBG diameters to magnetic intensity [51] and (b) Sensing
system based on Long period fiber grating (LFBG) and the relationship between output power of
transmission light and magnetic field strength [52]; permission conveyed through the Copyright
Clearance Center, Inc.

Another type of optical magnetic field sensor is based on MF and an optical fiber interferometer.
Deng et al. developed a fiber magnetic field sensor using MF and a tapered optical fiber structure
(Figure 8a). This structure works as a core-cladding-mode interferometer (CCMI). The fiber taper
and MF are encapsulated in a capillary tube as the sensing probe. When the probe is immersed in
the magnetic field, the wavelength of the output spectrum will shift. Their results demonstrate that
this sensor has good optical properties and a high sensitivity of 162.06 pm/mT in the range from 0
to 21.4 mT [57]. They also proposed a sensor based on MF and a tapered microstructured optical
fiber (TMOF) structure. The structure is a section of micro-structured optical fiber with six holes filled
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with MF, and the two ends are spliced to SMFs. The refractive index variation of MF induced by
the magnetic field contributes to effective refractive index differences between the core and cladding
modes. The magnetic field can be measured by detecting the interference spectrum shift induced
by refractive index variation. The sensor has a sensitivity of 117.9 pm/mT with a linear range from
0 mT to 30 mT [58]. The optical fiber magnetic field sensors were developed using the similar sensing
principle. The probe is a section of tapered thin-core fiber encapsulated in capillary tube filled with
MF [59,60]. There are reported sensors based on nonadiabatic tapered optical fiber (NATOF) and MF.
The nonadiabatic tapered optical fiber has a high sensitivity to the refractive index, so the sensor is more
sensitive to the magnetic field. The sensor proposed by Layeghi et al. has a sensitivity of −74.4 pm/mT,
and a good linearity to magnetic field strength in the range from 0 to 44 mT [61]. Luo et al. adopted
a non-adiabatically tapered microfiber (NATMF) to design a sensor, which has a high sensitivity of
1744 pm/mT, as shown in Figure 8b [62].
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There are magnetic field sensors proposed by combining fiber spherical structure interferometer
and MF. The sensing arm consists of two special up-tapered joints on a SMF. MF is used as the
cladding of the sensing arm (Figure 9a). The valley wavelength of the interference spectrum may shift
as the refractive index changes. The magnetic field can be detected by monitoring the wavelength
shift [63,64]. Tong et al. proposed a sensor based on another spherical structure fiber interferometer. The
interferometer consists of down-taper and spherical structure, which is coated by MF identically [65].
Magnetic field sensors were developed based on a hybrid structure of SMF-no-core fiber-SMF (Figure 9b).
A section of no-core fiber (NCF) is spliced between two pieces of SMFs and the structure is immersed
in a capillary tube filled with MF. The coupling wavelength dip is related to the refractive index of MF
dominantly. The external magnetic field generates the wavelength dip shift, and the magnetic field
strength measurement can be achieved by observing the wavelength shift [66,67]. Jia et al. proposed a
temperature self-compensative magnetic field sensor based on NCF cascaded with FBGs. The NCF
is also sandwiched between two pieces of SMFs, which is coated with MF. The Bragg wavelengths
of FBG do not change with the magnetic field, so the transmission intensity is determined by the
SMF-NCF-SMF spectral shift. Due to the similar thermal effect of NCF and FBG, the cross-talk between
temperature and the magnetic field is greatly reduced [68]. Pu et al. proposed a magnetic field
sensor by combining the microfiber coupling structures with MF. They studied two different coupling
configurations (Sagnac loop and knot resonator), and the sensing structure based on the Sagnac loop
is shown in Figure 9c. The coupling area is encapsulated in a capillary tube, which is filed with MF.
The sensor based on the knot resonator structure can achieve a high sensitivity of 1718 pm/mT [69].
Xia et al. adopted a FP-FBG structure to design a magnetic field sensor. Two SMFs are inserted into a
capillary tube and a gap is kept between the two ends. A FBG is written on one end of SMF and the
gap is filled with MF (Figure 9d). The sensor has a sensitivity of 530 pm/mT and the measurement
resolution can reach 37.7 µT [70].



Sensors 2019, 19, 2860 10 of 28

Sensors 2019, 19, x FOR PEER REVIEW 10 of 28 

10 
 

a high sensitivity of 1,718 pm/mT [69]. Xia et al. adopted a FP-FBG structure to design a magnetic 
field sensor. Two SMFs are inserted into a capillary tube and a gap is kept between the two ends. A 
FBG is written on one end of SMF and the gap is filled with MF (Figure 9d). The sensor has a 
sensitivity of 530 pm/mT and the measurement resolution can reach 37.7 µT [70].  

  

  

Figure 9. (a) Sensing arm of sensor based on fiber spherical-structure interferometer and MF [63],  
(b) sensor probe structure of single mode fiber (SMF)- no-core fiber (NCF)-SMF encapsulated in 
capillary tube filled with MF [67], (c) sensor probe based on the Sagnac loop with microfiber coupling 
structure [69], (d) sensing head based on F-P interferometer and MF [70]. 

Ji et al. proposed a magnetic field sensor, of which the probe is based on the capillary tube filled 
with MF. The capillary is similar to a cylindrical lens. When a magnetic field is applied, the focal line 
position of the cylindrical lens changes. The magnetic field can be measured through detecting the 
position of the focal line (Figure 10a) [71]. Wang developed a magnetic field sensor consisting of MF 
and a singlemode-multimode-singlemode (SMS) fiber structure. They spliced the SMFs to a two-ends 
of 12-mm-long multimode fiber, and then positioned the SMS structure into a HF acid to decrease the 
cladding diameter. The corroded SMS fiber structure is immersed into the MF, which works as a 
magnetic field sensor probe (Figure 10b). The sensor has a sensitivity of −168.6 pm/mT in the range 
from 12 mT to 32.5 mT [72]. Lei et al. reported a magnetic field sensor based on a D-shaped fiber and 
MF. The D-shaped slot is created in a common SMF, and then filled with MF. The demodulation 
system is based on a Sagnac interferometer (Figure 10c). The sensitivity of this sensor can reach  
82.3 pm/mT in the range of 0.1–30.4 mT [73]. Jiang et al. designed a magnetic field sensor by using  
D-shaped fiber and MF. They deposited a gold film onto the side-polished region of the fiber to realize 
surface plasmon resonance. The sensitivity has a significant enhancement (up to 5,987 pm/mT) due 
the high refractive-index sensitivity of the surface plasmon resonance (SPR) [74]. Mahmood et al. 
demonstrated a magnetic field sensor using a PCF infiltrated with MF. A piece of PCF is infiltrated 
with MF as a cylindrical whispering-gallery-mode micro-resonator. In the presence of a magnetic 
field, the whispering-gallery-mode resonances shift to a longer wavelength. The sensing system is 
shown in Figure 10d. The results illustrate that the sensor sensitivity is 110 pm/mT in the range from 
0 to 38.7 mT [75].  

A few distributed magnetic field sensors based on MF have been covered. There are a few studies 
on the distributed refractive index sensing [76]. Du et al. detected the refractive index of the external 
medium surrounding the fiber by analyzing the Rayleigh backscattering signals, wherein the OFDR 
technique is adopted. This concept can be used as a reference for the distributed measurement of the 
magnetic field based on MF. 

Figure 9. (a) Sensing arm of sensor based on fiber spherical-structure interferometer and MF [63],
(b) sensor probe structure of single mode fiber (SMF)- no-core fiber (NCF)-SMF encapsulated in
capillary tube filled with MF [67], (c) sensor probe based on the Sagnac loop with microfiber coupling
structure [69], (d) sensing head based on F-P interferometer and MF [70].

Ji et al. proposed a magnetic field sensor, of which the probe is based on the capillary tube filled
with MF. The capillary is similar to a cylindrical lens. When a magnetic field is applied, the focal line
position of the cylindrical lens changes. The magnetic field can be measured through detecting the
position of the focal line (Figure 10a) [71]. Wang developed a magnetic field sensor consisting of MF
and a singlemode-multimode-singlemode (SMS) fiber structure. They spliced the SMFs to a two-ends
of 12-mm-long multimode fiber, and then positioned the SMS structure into a HF acid to decrease
the cladding diameter. The corroded SMS fiber structure is immersed into the MF, which works as a
magnetic field sensor probe (Figure 10b). The sensor has a sensitivity of −168.6 pm/mT in the range
from 12 mT to 32.5 mT [72]. Lei et al. reported a magnetic field sensor based on a D-shaped fiber
and MF. The D-shaped slot is created in a common SMF, and then filled with MF. The demodulation
system is based on a Sagnac interferometer (Figure 10c). The sensitivity of this sensor can reach
82.3 pm/mT in the range of 0.1–30.4 mT [73]. Jiang et al. designed a magnetic field sensor by using
D-shaped fiber and MF. They deposited a gold film onto the side-polished region of the fiber to realize
surface plasmon resonance. The sensitivity has a significant enhancement (up to 5987 pm/mT) due
the high refractive-index sensitivity of the surface plasmon resonance (SPR) [74]. Mahmood et al.
demonstrated a magnetic field sensor using a PCF infiltrated with MF. A piece of PCF is infiltrated
with MF as a cylindrical whispering-gallery-mode micro-resonator. In the presence of a magnetic field,
the whispering-gallery-mode resonances shift to a longer wavelength. The sensing system is shown
in Figure 10d. The results illustrate that the sensor sensitivity is 110 pm/mT in the range from 0 to
38.7 mT [75].
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Figure 10. (a) Magnetic field sensing system based on a capillary tube filled with MF [71], (b) schematic
of sensing system based on MF and a singlemode-multimode-singlemode (SMS) fiber structure [72],
(c) sensor head and sensing system based on an optical fiber Sagnac interference effect [73], (d) sensing
system configuration of photonic crystal fibers (PCF) infiltrated with MF [75]; permission conveyed
through the Copyright Clearance Center, Inc.

A few distributed magnetic field sensors based on MF have been covered. There are a few studies
on the distributed refractive index sensing [76]. Du et al. detected the refractive index of the external
medium surrounding the fiber by analyzing the Rayleigh backscattering signals, wherein the OFDR
technique is adopted. This concept can be used as a reference for the distributed measurement of the
magnetic field based on MF.

3. Electric field Optical Sensors

3.1. Probes Based on the Electro-Optic Effect of Crystal

An electro-optic effect is a change in optical properties of a substance in response to an electric
field. These property changes can be classified into two types: variation in absorption and refractive
index. The application of electro-optic crystals in electric field measurement has drawn attention over
recent years [77–79].

One type of optical electric field sensor is developed using electro-optic crystal as a waveguide
to sense an electric field. The refractive index of crystal is changed in the presence of an electric
field. Zeng et al. used LiNbO3 crystals to design an integrated electro-optic sensor for electric field
measurement. The sensor area is a Mach-Zehnder interferometer (MZI), as shown in Figure 11a. Two
parts of light interfere with each other by passing through the right coupling. Electrodes with an
antenna are around one arm of the interferometer. When an electric field is applied to the antenna,
a voltage is induced across the electrodes of the modulator. Then the change in refractive index of
LiNbO3 crystal causes the change in phase of transmission light. The power of the sensor output signal
is proportional to the applied electric field strength. They analyzed the performance of sensors with
different electrodes. The results show that the mono-shield electrode sensor without an antenna is
more efficient than those with antennas in measurable amplitudes [80–82]. Toney et al. designed an
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integrated optical electric field sensor by using a LiNbO3 crystal waveguide and a Mach–Zehnder
interferometer. This sensor can achieve a minimum detectable field of 20 mV/m/

√
Hz at 100 MHz in the

electric fields from 20 mV/m to 30 kV/m [83]. Yang et al. proposed an optical electric field sensor using
a LiNbO3 crystal. The sensing unit is shown in Figure 11b. The phase shift of light transmitted in the
crystal changes in an applied electric field. The sensor output is linear to the electric field strength in
the range from −801 kV to 801 kV with a wide frequency band (10 Hz–10 MHz) [84].

Han et al. proposed an all-fiber electric field sensor based on tapered fiber and a LiNbO3 slab
waveguide coupler (Figure 11c). The evanescent is coupled between a tapered fiber and a slab
waveguide. The shift of the resonance wavelength is related to electric field intensity. The minimal
resolution of this sensor is approximately 15 kV/m [85]. Seng et al demonstrated an electric field sensor
based on a slab of LiNbO3 and D-shaped fiber. The D-fiber is etched to be a taper, and the slab is
positioned closed to the tapered core, as shown in Figure 11d. Light couples between the D-fiber and
the slab waveguide to generate a resonance wavelength. The change in the refractive index induced by
the electric field causes the resonance wavelength shift. The electric field strength can be measured by
detecting the wavelength shift [86–89]. Chadderdon et al. presented an electric field sensor using a
coupling configuration between D-fiber and a waveguide slab. They chose an electro-optic polymer as
the waveguide slab because the materials have the lowest RF permittivity and strong electro-optic
effect. The sensor has a sensitivity of 0.147 pm/ kV [90].
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Faraday rotator, a collimating lens, a ferrule, and a piece of PMF, as shown in Figure 12a. Polarized 
light is transmitted to the CdTe crystal through PMF and reflected by the dielectric mirror. When an 
electric field is applied to the CdTe crystal, birefringence is induced and the polarization of light 
changes. The polarization change is proportional to the electric field intensity. The performance tests 
show that the response of the sensor is stable with a fluctuation of less than 0.3 dB [91]. Gaeremynck 
et al. proposed an electro-optic sensor based on a ZnTe crystal, which can measure two orthogonal 
components of the electric field simultaneously (Figure 12b). The sensing area consists of a ZnTe 
crystal and a laser probe beam. An elliptically polarized light is split into two beams, and the 
polarization states of the two beams of light are characterized by the refractive index. In the presence 
of an electric field, the change in the refractive index of ZnTe crystal will induce the variation of  
phase [92]. Barbieri et al used a Barium-Borate (BBO) crystal as a part of the electric field sensing unit. 
The birefringence of BBO crystal is proportional to the electric field strength. This sensor can measure 
two components of the electric field by a single anisotropic crystal [93].  

Figure 11. (a) Sensing area of electric field sensor based on Mach-Zehnder interferometer and
LiNbO3 [80], (b) sensing unit based on Pockels effect of LiNbO3 [84], (c) sensor probe structure of
tapered fiber and waveguide [85], (d) sensor head configuration of D-shaped fiber and LiNbO3 slab [89];
permission conveyed through the Copyright Clearance Center, Inc.

Togo et al. designed an electric field sensor, which consists of an electro-optic crystal (CdTe), a
Faraday rotator, a collimating lens, a ferrule, and a piece of PMF, as shown in Figure 12a. Polarized light
is transmitted to the CdTe crystal through PMF and reflected by the dielectric mirror. When an electric
field is applied to the CdTe crystal, birefringence is induced and the polarization of light changes. The
polarization change is proportional to the electric field intensity. The performance tests show that the
response of the sensor is stable with a fluctuation of less than 0.3 dB [91]. Gaeremynck et al. proposed
an electro-optic sensor based on a ZnTe crystal, which can measure two orthogonal components of
the electric field simultaneously (Figure 12b). The sensing area consists of a ZnTe crystal and a laser
probe beam. An elliptically polarized light is split into two beams, and the polarization states of the
two beams of light are characterized by the refractive index. In the presence of an electric field, the



Sensors 2019, 19, 2860 13 of 28

change in the refractive index of ZnTe crystal will induce the variation of phase [92]. Barbieri et al.
used a Barium-Borate (BBO) crystal as a part of the electric field sensing unit. The birefringence of BBO
crystal is proportional to the electric field strength. This sensor can measure two components of the
electric field by a single anisotropic crystal [93].
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The other type of electro-optic electric field sensor is proposed using the liquid crystal (LC)
as the electric field sensing element. Mathews et al. developed an electric field sensor using a
polarization-maintaining photonic crystal fiber (PMPCF) infiltrated nematic liquid crystal (NLC), as
shown in Figure 13a. They studied the transmission properties for different lengths of the infiltrated
section of PCF. The results demonstrate that the sensor has a sensitivity of 50 V/m in the range of
3.4–4.1 MV/m [94–96]. Zhao et al. developed an electric field sensor using a photonic crystal cavity
infiltrated with LC (Figure 13b). An electric field applied can induce the resonance wavelength of a
photonic crystal cavity shift. This wavelength shift is monitored by a MZI. Their results illustrate that
the sensor can achieve a high sensitivity of 7 nW/(V/m) and a maximum resolution of 0.143 V/m [97].
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Center, Inc.

Zhu et al. designed a compact electric field sensor using an optical fiber interferometer. A short
section of SMF is spliced between two sections of SMF with a large lateral offset of 62.5 µm, which can
work as a MZI, as shown in Figure 14a. The open arm of the interferometer is filled with propylene
carbonate. In the presence of an electric field, the refractive index of propylene carbonate will change,
which causes interferometric fringe shifts. The electrical field can be acquired by monitoring the fringe
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shift [98]. Han et al. also presented an electric field sensor based on propylene carbonate and MZI
(Figure 14b). The interferometer is composed of silica micro-wire. One arm of the interferometer is
coated by propylene carbonate. The sensor can detect an electric field with a frequency of 50 Hz and
an impulse electric field. The sensor can detect a minimum strength of 59 V/m for a 50 Hz electric
field [99].

Fiber-optic electric field sensors were proposed using a NLC FP etalon-based
multiwavelength-swept laser. The NLC FP etalon can be looked at as a wavelength filter by applying
the electric field (Figure 14c). The transmission wavelengths change according to the electric field
applied to the NLC FP etalon [100–102]. Tabassum et al. presented a sensitivity-enhanced electric
field sensor based on the SPR. The sensing area is a section of corroded optical fiber immersed in a
liquid dielectric medium, and the corroded region is coated by metal film. They analyzed the effect
of coating metal materials on the performance of the sensor. The result illustrates that the sensor
with bimetallic layers is better than the single metal layer ones [103]. Chen et al. proposed an electric
field sensor based on TFBG immersed in liquid crystal. They embedded a TFBG into a NLC cell
as a sensing probe (Figure 14d). In an electric field applied, NLC orientation change will cause the
variation of its refractive index. The surrounding refractive index can be sensed by the TFBG. Their
results demonstrate that the sensor can measure an electric field over a range of 100–480 kV/m with a
sensitivity of 0.287 dB/kV/cm [104].
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3.2. Probes Based on the Converse Piezoelectric Effect

The piezoelectric effect is a unique property of materials where they will generate an electric
field or current if subjected to physical stress. Commonly, piezoelectric materials include piezoelectric
ceramic (PZT) and polyvinylidene fluoride (PVDF). The same effect can also be observed in reverse,
where an imposed electric field on the crystal will put stress on its structure, which is the converse
piezoelectric effect. The converse piezoelectric effect has been widely used for the design of electric
field sensors.

Marignetti et al. developed a FBG sensor to detect the electric field for the end windings of
high-voltage electric machines. The working principle relies on the electrostrictive effect of silica. When
an electric field is applied, a mechanical force generates a strain resulting in a wavelength shift of FBG.
The field strength can be measured by demodulating the wavelength shift [105]. Zhao et al. presented
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an alternating current (AC) electric field sensor based on electrostrictive ceramics and FBG. The sensor
head is composed of FBG attached to ceramics, two metal spherical shells, and a signal conversion
circuit (Figure 15a). When an electric field acting on the metal spherical, the metal spherical shell
induces an electric signal, and the signals are transformed and amplified. Then the transformed DC
voltage signals apply on the ceramics and the stress induces a wavelength shift of FBG. Electric field
strength can be measured through the detection of a wavelength shift [106]. Anirudh et al. proposed
a FBG sensor for DC electric fields measurement. The electric field transducer is a PZT crystal, and
the FBG is boned to PZT crystal. In presence of an electric field, PZT crystal deformation induces
the wavelength shift of FBG. They also designed a wavelength interrogation system, as shown in
Figure 15b [107].
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Figure 15. (a) Electric field sensor probe based on electrostrictive ceramics [106], (b) sensing system
based on FBG bonded to a piezoelectric ceramic (PZT) cylinder [107], (c) sensing probe configuration of
two FBGs and piezoceramics [108], (d) sensing system with high sensitivity using two FBGs glued on
piezoceramics with different direction [109].

Liu et al. demonstrated a FBG electric field sensor with two of the same piezoceramics blocks
glued together with opposite directions. Two rods are fixed on the two ends of piezoceramics blocks
respectively, and two FBGs are glued to the rods (Figure 15c). When an electric field is applied to
the piezoceramics, the two piezoceramics blocks will deform inversely and bend to the same side,
which induces the wavelength shift of two FBGs [108]. Yao et al. developed an electric field sensor
based on two FBGs adhered to a piezoelectric ceramic block (Figure 15d). FBG1 is glued on the surface
of the piezoceramics along the d33 polarized direction, and FBG2 is glued along the d31 polarized
direction. The difference of the Bragg wavelength of FBG1 and FBG2 is regarded as the output, which
can enhance the sensor sensitivity and reduce the cross-talk of temperature [109]. Floridia et al. used a
similar method to propose a temperature-independent FBG sensor for electrical field measurement.
The sensing probe is a FBG bonded to piezoelectric substrate, and another FBG is attached to an
identical piezoelectric substrate as temperature compensation [110].

3.3. Probes Based on Electrostatic Attraction

A conductor is placed in an electric field, the free charge carriers inside the conductor redistribute,
in contrast with the lattice-bound opposite charges. Two surfaces with opposite charges will generate
an attractive electric force. Zhang et al. designed a high voltage electrostatic sensor based on the
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Fabry–Perot interferometer (FPI) (Figure 16a). The FP cavity of the sensor is formed by an optical
collimator and polyester film aluminized outside. When a high voltage is applied on the electrode, an
electric field will be generated. The polyester film is deformed by an electrostatic force, which causes
the change in length of the F-P cavity and the output spectrum shift of the sensor [111]. Javernik and
Donlagic proposed a fiber-optic voltage sensor based on the principle of electric charge attraction. The
sensor head consists of a SMF fiber, a section of NCF, a micro-cantilever, and a force-asserting body,
as illustrated in Figure 16b. The force-asserting body is coated by conductive transparent material.
When the sensor is connected to the voltage/potential, an attractive electric force will deflect the
micro-cantilever. The deflection causes the change in length of the F-P cavity and induces the F-P peak
wavelength shift. They claimed that this sensor could be used for DC and AC power-grid frequency
voltage measurements [112].
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Roncin et al. developed an electric field sensor using a micro-spring supported copper membrane
(Figure 17a). The sensing principle is based on the electrostatic force to deflect the copper membrane
and an optical sensor to detect the membrane movement. Their result shows that the sensor can detect
a minimum AC field of 0.3 V/m at 97 Hz when a 17 kV/m DC bias field is applied [113]. Andreas
Kainz et al. developed an optical microelectromechanical system (MEMS) sensor for electric field
measurement. The sensor structure is a silicon microstructure, as shown in Figure 17b. The sensor
configuration is composed of a fixed layer and a movable layer. The fixed layer is a glass plate with
Cr film, which works as an optical shutter. The movable layer is a spring-suspended Si plate, and
the moving mass part could be displaced by the electrostatic force when an electric field is applied.
A beam of light passes through the fixed layer and the moving layer successively, and then is detected
by a photodiode. The displacement of the moving mass part can be read out by detecting the light
flux. The electric field strength is related to the output of photodiode. The sensor has an electric field
resolution of 100 V/m/

√
Hz with a measurement range of tens of kilovolts per meter [114].
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4. Conclusions and Outlook

In this review, a variety of sensing configurations of electromagnetic field sensors were
demonstrated. The performance parameters of these sensors are shown in Tables A1 and A2 in
the Appendix A. Magnetic field sensors were summarized into three types according to the sensing
methodology of sensor probes. Wherein, the probes based on the Faraday effect originates earliest,
and have a complex sensing system, including lots of optical elements, such as the Faraday rotator,
polarizer, PMF, etc. The sensor sensitivity is determined by the Verdet constant. The Verdet constant of
common silica fiber is very small, which makes it not suitable for weak magnetic field strength. The
detection variable is the rotation angle of polarization light, it has strong resistance to interference, and
can work in unshielded environments. Because the Verdet constant is almost the only limitation to the
sensitivity, the sensitivity can be enhanced easily through selecting the magneto-optic materials with
large Verdet constant. Therefore, it can achieve a large detecting range for magnetic field.

The sensing method based on magnetostriction developed with the rising of giant magnetostrictive
materials. The sensor element has merits of easy fabrication, compact size and strong environment
adaptability. The magneto-elastic materials have intrinsic hysteresis phenomena, meaning these
sensors cannot monitor the field with high frequency. The deformation of GMM is relatively small
under a small applied magnetic field, and the deformation has a definite linear range. This sensing
scheme is suitable for the measurement of stationary and large magnetic fields (<500 mT).

The sensing principle based on refractive index tunability of magnetic fluids has become a hotspot
for magnetic field measurement in recent years, because of its high sensitivity, compact size, and
flexibility in combination with various optical fiber structures, such as etched fiber gratings (FBG,
LFBG, TFBG), fiber taper, F-P cavity, and other fiber structures. However, the detecting range is limited
by the tunable range of the refractive index of magnetic fluid. The operating range of this type of
sensor is relatively small (<100 mT). There is cross-talk between temperature and the magnetic field, so
the thermal compensation should be taken into consideration in real applications.
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The electric field sensors are classified into three types according to the sensing principles. The
principle, based on the electric-optic effect of crystal, is the mainstream sensing scheme due to the
good electro-optic properties of the crystal. These sensors usually have integrated probes, which
is a combination of electro-optic crystals with fiber interferometric structures. The interferometric
structure-based probe is highly sensitive to the electric field, but susceptible to external interference.
The sensing method based on piezoelectric ceramics has a simple structure and easy fabrication, but
it has low sensitivity due to small deformation in the presence of a weak electric field. The sensing
principle based on electrostatic attraction is a less commonly-used sensing method, but this is a
promising alternative to optical MEMS sensors for electric field measurement.

Most of the above-discussed sensors are single point measurement, seldom involving distributed
measurement. Further work can focus on the distributed measurement because of the intrinsic
advantages of optic fiber sensing technology. Fully distributed electric or magnetic field measurement
could have a huge impact on many applications, such as the power industry. Currently, there are no
reported optical sensors on the simultaneous sensing of electric and magnetic fields. In the future, the
optical sensors for simultaneous measurement of electromagnetic fields can be taken in consideration,
because both fields exist simultaneously sometimes.
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Appendix A

Aimed to give a clear performance comparison, this appendix demonstrates a table of the main
sensing parameters of the above-discussed sensors.
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Table A1. Performance parameters of optical fiber magnetic field sensors.

Detection Mechanism Sensor Probe Configuration Field Transducer Probe Size/mm Detecting Range Sensitivity/Resolution Ref

Transmission intensity Tb Fiber-PZF Tb Fiber 20 long 0.02–3.2 T 0.49 rad/T [15]

Beat frequency shift DBR Fiber grating 20 long — 32.5 kHz/mT [19]

Frequency response QWP-MO-mirror MO polymer 15 long — 20 fT/
√

Hz [22]

State of polarization Silica Fiber Silica Fiber — 0–1.5 T 100 mT [23]

Wavelength shift Terfenol-D-FBG Terfenol-D Φ 4.7 × 20 — — [29]

Wavelength shift Terfenol-D-FBG Terfenol-D Φ 5 × 10 0–16.47 mT 4.88 mT [30]

Wavelength shift Terfenol-D-PS-FBG Terfenol-D 20 × 3 × 3 2.43–22.54 mT 0.023 mT [31]

Wavelength shift Terfenol-D-FBG Terfenol-D 60 × 60 × 60 0–350 mT — [32]

Wavelength shift Terfenol-D composite-FBG Terfenol-D composite 25 × 4 × 4 0–183 mT 3.71 pm/mT [33]

Wavelength shift Terfenol-D composite-FBG Terfenol-D composite Φ 1.5 × 7 0–750 mT 3.3 pm/mT [34]

Wavelength shift Terfenol-D composite-FBG Terfenol-D composite 50 long 0–300 mT 6 pm/mT [35]

Beat frequency shift Terfenol-D composite-HiBi-PCF Terfenol-D composite 50 × 10 × 10 0–300 mT 10.5 kHz/mT [36]

Wavelength shift Terfenol-D film- FBG Terfenol-D films Φ 0.085 × 15 0–50 mT 0.9 pm/mT [38]

Ring-down time
spectroscopy Terfenol-D film-FBG-FPI Terfenol-D film Φ 0.125 × 500 0–28.8 mT 0.485 ns/mT [39]

Wavelength shift Terfenol-D film-FBG Terfenol-D film 1.6 um 20–100 mT 0.4 mT [40]

Wavelength shift Iron-nickel-FBG Iron-nickel Φ 0.185 × 22 0–6 mT 0.75 mT [41]

Wavelength shift Terfenol-D-FBG Terfenol-D 30 long 0–20 mT 0.3 pm/mT [42]

RBS spectral shift FeCoV film-fiber FeCoV films — 0–143.3 mT 5.3 mT [45]

Wavelength shift FBG-MF MF(Fe3O4) — 0–25 mT 3.44 pm/mT [51]

Transmission spectrum
intensity LFBG-MF MF(EMG605) Φ 0.45 × 30 0–11 mT 1.54 dB/mT [52]

Resonance wavelength shift LPFG MF(EMG605) Φ 1 × 100 0–189.7 mT 176.4 pm/mT [53]

Resonance wavelength shift MOF-LFBG-MF MF(Fe3O4) Φ 0.5 × 100 0–72.5 mT −520 pm/mT [54]

Extinction ratio TFBG MF(EMG605) — 0–19.6 mT — [55]

Transmission spectrum
intensity Etched fiber-MF MF(Co-ZnO

nanorods) Φ 1 × 420 17–180 mT — [56]
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Table A1. Cont.

Detection Mechanism Sensor Probe Configuration Field Transducer Probe Size/mm Detecting Range Sensitivity/Resolution Ref

Wavelength shift TMOF-MF MF (Fe3O4) — 0–30 mT 117.9 pm/mT [58]

Wavelength shift CCMI-MF MF (Fe3O4) Φ 0.3 × 100 0–21.4 mT 162.06 pm/mT [57]

Transmission spectrum
intensity TTCF-MF MF Φ 1 × 80 4–16 mT −1.039 dB/mT [59]

Wavelength shift MMI-MF MF (EMG607) Φ 1 × 30 0–22 mT −2.93 nm/mT [60]

Wavelength shift NATOF-MF MF (Fe3O4) — 0–44 mT −71.7 pm/mT [61]

Wavelength shift NATMF-MF MF — 10–22.5 mT 1744 pm/mT [62]

Transmission spectrum
intensity Up-tapered joints-MF MF (Fe3O4) — 2–30 mT −0.2121 dB/mT [63]

Transmission spectrum
intensity IMI-MF MF (EMG605) — 0–12 mT 0.106 dB/mT [65]

Wavelength shift SNS fiber-MF MF(EXP08103) 35 long 0–6 mT 6.33 nm/mT [67]

Wavelength shift MFC-MF MF — 0–240 mT 1718 pm/mT [69]

Wavelength shift FPI-FBG-MF MF (EMG605) — 20–60 mT 0.53 nm/mT [70]

Focal line position Tube filed with MF MF — - - [71]

Wavelength shift SMS fiber-MF MF (Fe3O4) — 12–32.5 mT −168.6 pm/mT [72]

Wavelength shift D-shaped fiber-MF MF (APGS12n) — 0.1–30.4 mT 82.3 pm/mT [73]

Wavelength shift D-shaped fiber with gold film-MF MF (EMG 605) — 0–22.5 mT 5987 pm/mT [74]

Wavelength shift PCF-MF MF — 0–38.7 mT 110 pm/mT [75]
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Table A2. Performance parameters of optical fiber electric field sensors.

Detected Variable Sensor Probe Configuration Field Transducer Probe Size/mm Detecting Range Sensitivity/Resolution Ref

Output light intensity MZI-LiNbO3 LiNbO3 55 × 2 × 1 0–250 kV/m 2 mV/(kV/m) [80]

Output light intensity MZI-LiNbO3 LiNbO3 50 × 10 × 9 0.02–30 kV/m 20 mV/m/
√

Hz [83]

Output light intensity SMF-LiNbO3 LiNbO3 65 × 15 × 15 ±801 kV/m — [84]

Resonance
wavelength shift Tapered fiber-LiNbO3 LiNbO3 — <13.16 MV/m 15 kV/m [85]

Resonance
wavelength shift D-shaped fiber-LiNbO3 LiNbO3 3900 × 27 × 20 <18 MV/m 50 pm/(MV/m) [85]

Output light intensity CdTe crystal-Faraday rotator CdTe — — — [91]

Output light intensity ZnTe-Bragg mirror ZnTe — — — [92]

Output light intensity PMPCF-NLC NLC 30 long 3.4–4.1 MV/m 50 V/m [94]

Output light intensity PC cavity-LC LC — 2–10 MV/m 0.143 V/m [97]

Transmission
spectrum intensity MZI-Propylene carbonate Propylene carbonate — 5–15 MV/m ∼0.1 W/(V/m) [98]

Output light intensity MZI-Propylene carbonate Propylene carbonate — <1400 kV/m ∼89 V/m [99]

Wavelength shift FP etalon-NLC NLC — 4.494–7.865 kV/m 121 V/m [100]

Transmission
spectrum intensity TFBG-NLC NLC — 100~400 kV/m 2.87 dB/(MV/m) [104]

Wavelength shift FBG-PLZT PLZT — 0–200 kV/m - [106]

Wavelength shift FBG-PZT PZT — 0–400 V/mm 0.45 pm/(kV/m) [107]

Wavelength shift FBG-PZT PZT — ±30 kV/m −27 nW/V [108]

Resonance
wavelength shift FPI-polyester film polyester film — 500–1600 kV/m — [111]

Membrane
movement. Membrane-photodetector Coper membrane — 0–17 kV/m 3 3 µV /(V/m) [113]

Light flux intensity MEMS chip Si plate 6 × 6 <10 kV/m 100 V/m/
√

Hz [114]
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Appendix B

This appendix contains the acronyms list used in this manuscript.

Acronym Definition
AC Alternating Current
BBO Barium-Borate
CCMI Core–Cladding–Mode Interferometer
CdTe Electro-Optic Crystal
DBR Distributed Bragg Reflector
DC Direct Current
DGD Differential Group Delay
EMF Electromagnetic Field
FBG Fiber Bragg Grating
FP Fabry-Perot
GMM Giant Magnetostrictive Material
HF Hydrofluoric
HiBi PCF Highly Birefringent Photonic Crystal Fiber
IMI Intermodal Interferometer
LC Liquid crystal
LFBG Long-period Fiber Grating
MEMS Micro Electro Mechanical Systems
MF Magnetic Fluid
MFC Microfiber Coupler
MMI Microfiber Mode Interferometer
MOF Microstructured Optical Fiber
MZI Mach-Zehnder Interferometer
NATMF Nonadiabatic Tapered Microfiber
NATOF Nonadiabatic Tapered Optical Fiber
NCF No-Core Fiber
NLC Nematic Liquid Crystal
OFDR Optical Frequency Domain Reflectometer
OTDR Optical Time-Domain Reflectometry
PCF Photonic Crystal Fiber
PDL Polarization Dependent Loss
PLZT Lead lanthanum zirconate titanate
PMF Polarization Maintaining Fiber
PS-FBG Phase-Shifted Fiber Bragg Grating
PVDF Polyvinylidene Fluoride
PZF Polarization Fiber
PZT Piezoelectric ceramics
RBS Rayleigh Backscattering Spectra
SMF Single-Mode Fiber
SMS Singlemode–Multimode–Singlemode
SNS Singlemode-No-core-Singlemode
Tb Terbium
TFBG Tilted Fiber Bragg Grating
TMOF Tapered Microstructured Optical Fiber
TTCF Tapered thin-core fiber
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