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ABSTRACT The microscopic alga Picocystis sp. strain ML is responsible for recurrent
algal blooms in Mono Lake, CA. This organism was characterized by only very little
molecular data, despite its prominence as a primary producer in saline environ-
ments. Here, we report the draft genome sequence for Picocystis sp. strain ML based
on long-read sequencing.

Mono Lake, a hypersaline soda lake in eastern California, sustains a population of
the oxygenic alga Picocystis sp. strain ML. Previous studies have described this

strain, a close relative to Picocystis salinarum (1), as a major primary producer in the
lake (2). Members of the genus Picocystis have also been cultivated from East Africa
(3, 4), Inner Mongolia, China (5), and, more recently, Peru (6). Despite its role as a
primary producer and its global distribution, nothing is known of its genomic
potential. A recent study characterized a bloom using metagenomic and transcrip-
tomic approaches and suggested that Picocystis sp. strain ML produced photosyn-
thetic transcripts, potentially producing oxygen, at low-light depths (7). Here, we
report the draft genome sequence of Picocystis sp. strain ML, which was previously
estimated to be 23 Mbp (8).

A sample collected from 20-m depth in Mono Lake (7) was inoculated into L1 liquid
medium (product number MKL150L; National Center for Marine Algae). Upon visual-
ization of growth, a sample was spread onto L1 agar (1.0% [wt/vol]) for isolation, and
a single colony was used to inoculate L1 medium for DNA extraction. Axenic status was
determined by a lack of growth in marine purity broth (9) and using scanning electron
microscopy (SEM) (Fig. 1). Volumes of 250 �l were passed through 0.1-�m polycarbon-
ate filters, and the retained cells were fixed (0.75% ruthenium red, 50% glutaraldehyde,
1 M HEPES) and sputter coated (5 nm AuPd) with a Hummer V1 sputtering system
(Anatech USA). Samples were viewed for axenic status on a Zeiss NEON field emission
gun-SEM (FEG-SEM) dual-beam high-resolution system with an energy selective back-
scatter (EsB) detector (Zeiss). High-molecular-weight DNA was extracted via a modified
cetyltrimethylammonium bromide (CTAB) extraction, purified with Sera-Mag Speed-
Beads (GE) via the AMPure XP protocol (Agencourt), and quantified using a Qubit fluo-
rometer (final concentration, 166 �g/ml). A genomic library was prepared using the PacBio
SMRTbell template prep kit 1.0-SPv3 (Pacific Biosciences). The final library was size selected
at 10 kb (Blue Pippin; Sage Science) and sequenced on a PacBio Sequel (Pacific Biosciences)
using 4 single-molecule real-time (SMRT) cells via 2.0 chemistry, with a 10-h movie. To
remove any contaminating bacterial sequences, reads were filtered with custom scripts for
those that taxonomically matched the phylum Chlorophyta based on Kaiju version 1.6.2
classification (10). After quality control, a total of 251,086 reads were assembled using Canu
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version 1.6, generating 318 contigs, with a coverage of 40.77�, a total assembly length of
29.6 Mbp, a GC content of 53.6%, and an N50 value of 154 kbp (11).

A total of 14 small subunit (SSU) rRNA regions were found using RNAmmer version
1.2, closely matching (99.7% � 0.67%) that of P. salinarum L7 (GenBank accession
number AF153313) or matching (99%) the chloroplast of P. salinarum CCMP:1897
(GenBank accession number KJ746599) based on BLAST alignment (12, 13). Repeat-
Masker version 4.0.7 was used to mask repetitive elements (0.11%) with RMBlast version
2.6.0 (14) before gene prediction using AUGUSTUS trained to Chlamydomonas rein-
hardtii, the most closely related green algal model (15). A total of 5,613 coding regions
were detected, of which 40.4% were characterized using BLASTKoala version 2.1 (16).
The final assembly represents the first publicly available draft genome sequence of
Picocystis sp. strain ML.

During the recent bloom, no genes were observed for ammonium oxidation from
ammonia-oxidizing bacteria (AOB), unlike in previous years (17), and it was speculated
that Picocystis sp. strain ML was assimilating these compounds (7). This genome
revealed the presence of solute carrier family (commonly referred to as SLC) ammo-
nium transporters, illustrating the genetic potential for Picocystis sp. strain ML to take
in ammonium ions, perhaps explaining the lack of ammonium oxidation transcripts in
the water column and the lack of AOB in such a monoculture environment. Overall, this
genome sheds light on a primary producer’s genetic potential in a unique aquatic
ecosystem.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number QYZS00000000. The version de-
scribed in this paper is version QYZS01000000. Raw sequence reads have been depos-
ited in the SRA database under BioProject number PRJNA490491. Custom scripts and
software settings are available on GitHub at https://github.com/emilyjunkins/PicoML/
tree/v1.0 and https://doi.org/10.5281/zenodo.2366252.
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FIG 1 Scanning electron microscopy (SEM) image of Picocystis sp. strain ML on a polycarbonate filter.
Scale bar � 2 �m.
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