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Abstract
In analogy to chemical reaction networks, I demonstrate the utility of expressing the govern-

ing equations of an arbitrary dynamical system (interaction network) as sums of real func-

tions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for
analysis of its stability. The reaction stoichiometries and first derivatives define the net-

work’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the in-

fluence topology permits simplified expression of the principal minors (sums of products of

non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the princi-

pal minors or the bipartite cycles directly) for assessing the network’s steady state stability.

Visualization of the Hurwitz determinants over the reduced parameters defines the net-

work’s stability phase space, delimiting the range of its dynamics (specifically, the possible

numbers of unstable roots at each steady state solution). Any further explicit algebraic spec-

ification of the network will project onto this stability phase space. Stability analysis via this

hierarchical approach is demonstrated on classical networks from multiple fields.

Introduction
In this manuscript, I introduce a hierarchical approach (topology-then-algebra) to the bifurca-
tion analysis of arbitrary dynamical systems (those definable by an autonomous set of ordinary
differential equations, ODEs). Specifically, I show how a network’s bipartite “influence topolo-
gy”—elsewhere referred to as its Directed Species Reaction (DSR) graph, first introduced by
Banaji & Craciun in 2009 [1, 2]—provides a tool for systematic exploration of the fundamental
Routh-Hurwitz conditions for local steady state stability [3–11].

The outline of my manuscript is as follows. I first introduce a topological interpretation of
the Routh-Hurwitz conditions as products of non-overlapping and overlapping unipartite cy-
cles in the network (§1). I then establish that these expressions can be immediately reinter-
preted in terms of the bipartite cycles of the influence topology (§2). The graph of a particular
network’s influence topology will contain J Jacobian (derivatives of each reaction with respect
to each relevant species) and S stoichiometric edges, giving at most J+S parameters that deter-
mine the Routh-Hurwitz conditions. Reductions of these J+S parameters to often far fewer pa-
rameters is demonstrated through stoichiometric scaling, “cycle compaction”, and temporal
scaling. Such reductions will be referred to as “parameter reductions” in order to avoid any
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confusion that might stem from use of the term “dimensional reductions”, which more con-
ventionally pertains to reductions in the dimensionality of the original set of governing ODEs
for the network. Stoichiometric reduction refers to the setting to unity of a single stoichiometric
edge at each reaction node, amounting to a trivial rescaling of the expressions defining each re-
action. What I refer to as “cycle compaction” is less trivial. Cycles in the bipartite graph of the
influence topology are defined as products of sequential (alternating) Jacobian and stoichio-
metric edges. As already mentioned above, the Routh-Hurwitz conditions depend only on
these bipartite cycles, which are generally highly overlapping. For each particular type of over-
lap between some exact number of bipartite cycles, the product of the edges that define the
overlap can be reduced to a single cycle compaction parameter. Instead of its full product of Ja-
cobian and stoichiometric edges, any bipartite cycle in the network can be defined in terms of
the relevant cycle compaction parameters. Following stoichiometric scaling and cycle compac-
tion, a single temporal parameter (either a Jacobian edge itself or a cycle compaction parameter
containing at least one Jacobian edge) can be scaled to unity, amounting to a trivial rescaling of
the time axis. These three forms of parameter reduction allow expression of the Routh-Hurwitz
conditions using often far fewer parameters. The negativity of individual Hurwitz determinants
(indicating instability) can be displayed over the entire domain of these reduced parameters al-
lowing visualization of the network’s “stability phase space”. This permits rapid evaluation of
the particular regions of stability and instability for the network (§3). A given stability phase
space will be dissected into distinct instability zones over which one or more Hurwitz determi-
nants are negative, with the Routh array allowing determination of the exact number of unsta-
ble eigenvalues in each zone or zone overlap. Significantly, the potential for a Hopf bifurcation
can be immediately assessed through examination of the stability phase space for the possibility
of a transition from a stable zone to one in which the last and penultimate Hurwitz determi-
nants simultaneously go negative. Several important networks are examined using this overall
approach, including networks comprised of a single n-cycle (§4) and classical networks studied
in various fields (§5). A starting point for the analysis of more general networks is introduced
involving the upstream/downstream partitioning of a given network’s influence topology (§6),
with isolated sets of overlapping cycles (or, in graph theory parlance, “strongly connected com-
ponents”) used to demarcate the distinct levels in the graph. Based on the utility of this up-
stream/downstream partitioning, the notion of a fundamental set of influence topologies
constructed solely from overlapping cycles is presented with important degeneracies within
this set identified (§7). In the final Discussion section, a broader perspective is explored within
the context of multiple open questions.

Results

1 Expression of the Routh-Hurwitz Conditions for a Network in Terms of
its Unipartite Cycles
In this section, it is shown that the Routh-Hurwitz conditions for a given dynamical system
(interaction network) can be written solely in terms of products of its unipartite (species-only)
cycles. Consider the following arbitrary system of autonomous first-order ODEs:

dxj
dt

¼ fjðx1; . . . ; xnÞ; ð1Þ

with j ranging from 1 to n. The fj(x1, . . ., xn) denote real-valued functions of the real variables
xj (species). This general definition encompasses many important interaction networks studied
in control theory, biology, chemistry, physics, and electronics [12]. Upon setting all _xj to zero,

the one or more steady state solutions of the system can be found through solution of the
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system of equations: fj(x1, . . ., xn) = 0. Perturbation about a particular steady state solution
ðxs1; . . . ; xsnÞ yields to first order:

dDxj
dt

’
X

i

DxiHij; ð2Þ

withHij � (@fj/@xi)s the “transition rate constants” from i to j defined at the steady state s. In
matrix form, this can be written as:

d
dt

Dx ’ Dx �H; ð3Þ

with Δx a row vector. The stability of the steady state is determined by the signs of the real
parts of the eigenvalues λi of the associated eigenvectors (Δx)i � Li ofH, which are defined by
the equation λi Li = Li �H or

Li � ðliI�HÞ ¼ 0: ð4Þ

For a steady state to be stable, the real parts of all eigenvalues should be negative. For non-zero
eigenvectors (Li 6¼ 0), Equation 4 will only be true for singular (non-invertible) (λiI−H) having

jlI�Hj ¼ rðlÞ ¼ 0: ð5Þ

The roots of the characteristic polynomial ρ(λ) determine the eigenvalues and therefore the sta-
bility of the steady state:

rðlÞ ¼ a0l
n þ a1l

n�1 þ a2l
n�2 þ � � � þ an�1lþ an ¼ 0: ð6Þ

While the first coefficient is equal to 1 by the above definition (Equation 5), we will retain the
notation a0 below for clarity and generality. The coefficients ak can be expressed as:

ak ¼
1

ðn� kÞ!
@n�kr

@ln�k

� �
l¼0

¼ 1

ðn� kÞ!
@n�k

@ln�k jlI�Hj
� �

l¼0

: ð7Þ

It is clear that an = j−Hj = (−1)njHj. With a bit more effort [13], Equation 7 can be shown to
entail:

aq ¼ ð�1Þqbq; ð8Þ

with bq representing the q×q principal minor ofH (with b0 � a0). Using the Leibniz rule, the
principal minors ofH can be written as:

bq ¼
X

i1<���<iq

X
pðj1 ;...;jqÞ

�j1...jqHi1 j1
� � �Hiqjq

; ð9Þ

with π(j1, . . ., jq) denoting the permutations of the ordered set {i1, . . ., iq} and �j1. . .jq the Levi-
Civita permutation symbol (equal to +1 for j1 = i1, . . ., jq = iq and otherwise equal to −1 for odd
permutations or +1 for even permutations). While the above material can be found in standard
references [6, 13], it is nevertheless presented here for completeness and for establishing impor-
tant and slightly different notational conventions that will be used throughout this manuscript.
For example, my unconventional expression of the network perturbation (Equation 3) as a per-
turbed species row vector multiplied on the right by the first-order transition matrixH was
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chosen to permit a convenient reading of the unipartite (species-only) cycles of the network
from the (properly ordered) indices of the products of theHij (with i as usual denoting the row
and j the column ofH): for example, H12H23H31 corresponds to a 3-cycle from 1! 2 then
2! 3 then 3! 1.

The principal minors have a simple topological interpretation as sums of (signed) products
of all possible non-overlapping cyclic permutations. This is Sachs’ theorem, which was first de-
rived in the early 1960’s (see [14] and references therein; see also Clarke’s simpler presentation
of this elementary result [6]). Each principal minor, bq, corresponds to the sum of the product
of all unique non-overlapping combinations of cycles, cl (with cycle lengths l summing to q) in
the network:

b1 ¼
P

i

Hii ¼ c1;

b2 ¼ 1

2!

X
i 6¼j

HiiHjj � HijHji ¼ c1c1� c2;

b3 ¼ 1

3!

X
i 6¼j;i 6¼k;j6¼k

HiiHjjHkk

�HiiHjkHkj � HikHjjHki � HijHjiHkk

þHijHjkHki þ HikHjiHki ¼ c1c1c1� c1c2þ c3;

..

.

bq ¼ P
0 � p1 � . . . � pqP

i pi ¼ q

ð�1Þsðp1;...;pqÞcp1cp2 . . . cpq:

ð10Þ

The cycle term, cl, when appearing alone in the above expressions (i.e. without an overline),
simply corresponds to the sum of all l-cycles in the network. The bar on top of a particular col-
lection of cycle terms indicates the non-overlapping nature of the unipartite cycles in the prod-
uct, i.e. each species can only appear at most once in a particular cycle product. For example,
c1c2 represents the sum of all unique, non-overlapping combinations of a 1-cycle and a 2-cycle
in the network. In the final line, the c0 � 1 are simply placeholders and s(p1, . . ., pq) is a func-
tion that returns the number of (non-zero) even length cycles (odd transpositions [6, 14]) pres-
ent in the list {p1, . . ., pq}. In simpler terms, the principal minor bq is the sum of all possible
(cycle-based) partitions of q, with a negative sign accompanying each even cycle (odd transpo-
sition) in a given partition product. This topological definition of the principal minors is far
more elegant and intuitive than the increasingly cumbersome index-based notation also dis-
played in the above for b1, b2 and b3.

While aq > 0 for all q is necessary for stability, it is not sufficient [5]. The Routh-Hurwitz
conditions [3–5], which are mathematically equivalent to the original criteria formulated by
Hermite and the related criteria embodied in Lyapunov’s second method [9, 15–19], provide
both necessary and sufficient conditions for steady-state stability. While these conditions have
traditionally been obtained through the use of arcane mathematics, a remarkably simple proof
has been found more recently requiring only basic algebra and continuity arguments [8]. The
Routh-Hurwitz conditions for a stable steady state can be defined as:

Dq > 0 ð11Þ
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for q = 1, . . ., n, with Δq denoting the Hurwitz determinant of the following matrix of the coeffi-
cients of the characteristic polynomial, ai, or the principal minors, bi (see Equation 8):

Dq ¼

�����
a1 a0 0 0 � � � 0

a3 a2 a1 a0 � � � 0

a5 a4 a3 a2 � � � 0

a7 a6 a5 a4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

a2q�1 a2q�2 a2q�3 a2q�4 � � � aq

�����
¼

�b1 b0 0 0 � � � 0

�b3 b2 �b1 b0 � � � 0

�b5 b4 �b3 b2 � � � 0

�b7 b6 �b5 b4 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

�b2q�1 b2q�2 �b2q�3 b2q�4 � � � ð�1Þqbq

����������������

����������������

:

ð12Þ

The first few Hurwitz determinants in terms of the principal minors bq are:

D1 ¼ �b1 ð13Þ

D2 ¼ �b1b2 þ b0b3 ð14Þ

D3 ¼ b1b2b3 � b0b3b3 þ b0b1b5 � b1b1b4 ð15Þ

D4 ¼ b1b2b3b4 � b0b
2
3b4 � b21b

2
4 � b1b

2
2b5 þ b0b2b3b5 þ 2b0b1b4b5

� b20b
2
5 þ b21b2b6 � b0b1b3b6 � b0b1b2b7 þ b20b3b7:

ð16Þ

While the Liénard-Chipart conditions [5, 9, 20] are indeed simpler for determining the stability
of a network steady state, the full Hurwitz determinants are more informative as they allow
counting of the exact number of unstable roots via the Routh array (discussed below). Upon
use of the purely cycle-based expressions for the principal minors (Equation 10), we obtain for
the first two determinants:

D1 ¼ �c1 ð17Þ

D2 ¼ �c1 � c1c1þ c0 � c1c1c1
þ c1 � c2 � c0 � c1c2
þ c0 � c3:

ð18Þ
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For a network with n� 3 species, the terms that potentially contribute to the third determinant
(corresponding to the first two terms of Equation 15) are:

D3 ¼ c1 � c1c1 � c1c1c1� c0 � c1c1c1 � c1c1c1
� c1 � c1c1 � c1c2� c1 � c1c1c1 � c2 þ 2c0 � c1c1c1 � c1c2
þ c1 � c2 � c1c2� c0 � c1c2 � c1c2
þ c1 � c1c1 � c3 � 2c0 � c1c1c1 � c3
� c1 � c2 � c3 þ 2c0 � c1c2 � c3
� c0 � c3 � c3:

ð19Þ

In these expressions, c0 = b0 = 1 (c0, as used here, should not to be confused with the less mean-
ingful “placeholder” c0 used to compute the cycle partitions in Equation 10). The raised dot in-
dicates normal multiplication. Terms containing the same suite of cycle lengths are shown in
the same line to indicate where cancellations can occur (e.g. in the top line of Equation 18 it is
clear that the second term corresponding to the positive product of three non-overlapping
1-cycles, c1c1c1 , will be canceled by the first term). Finding an appropriate topological notation
that allows removal of all such potential cancellations, thereby reducing these expressions even
further, remains an open problem [6, 7] (see as well the Discussion section below). Orlando’s
formulas [5, 21] allow expression of the penultimate and ultimate Hurwitz determinants for a
network with species dimensionality n as:

Dn�1 ¼ ð�1Þ
nðn� 1Þ

2 an�1
0

Y
1�i<k�n

ðli þ lkÞ ð20Þ

Dn ¼ ð�1Þ
nðn� 1Þ

2 an0l1 . . . ln

Y
1�i<k�n

ðli þ lkÞ: ð21Þ

These formulas importantly indicate that Δn−1 = Δn = 0 upon appearance of a pair of purely
complex roots, representing a necessary condition for a Poincaré-Andronov-Hopf bifurcation
[12] (referred to throughout this manuscript as a Hopf bifurcation). More generally, the num-
ber of unstable roots, k, with positive real part is equal to the number of sign changes in the
first column of the Routh array, which appears below in the ordered arguments of the function
V() [5]:

k ¼ V a0;D1;
D2

D1

;
D3

D2

; . . . ;
Dn

Dn�1

� �
: ð22Þ

Here, V() merely returns the number of sign changes in the list contained within the parenthe-
ses when read from left to right. In the below, the arguments of V() will be expressed using only
‘+’ or ‘−’ signs. For example, V(+, −, +) has two sign changes and therefore two unstable eigen-
values. The above criterion clearly fails, or is ambiguous, if any of the Hurwitz determinants
equals 0. For these cases, the following generalization must be taken [5]. Consider a consecutive
string of pHurwitz determinants that are all zero. If this string terminates at Δn, then one can
truncate the Routh array, applying the above criterion for the determinants Δ1, . . ., Δn−p. If,
however, Δn 6¼ 0 (and therefore Δn−1 6¼ 0, see Equations 20 and 21), with the string extending
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from Δs+1, . . ., Δs+p (Δs 6¼ 0 and Δs+p+1 6¼ 0), then

k ¼ V a0;D1;
D2

D1

; . . . ;
Ds

Ds�1

� �

þ pþ 1

2
þ 1

2
1� ð�1Þðpþ1Þ=2 sign

Ds

Ds�1

Dsþpþ2

Dsþpþ1

 ! !

þV
Dsþpþ2

Dsþpþ1

; . . . ;
Dn

Dn�1

 !
:

ð23Þ

The second line of the above is equal to (p+1)/2 if (−1)(p+1)/2 times the “sign” term yields +1, or
(p+3)/2 if this product yields −1 (p will always be odd). For s = 0, the above formula should be
modified to:

k ¼ pþ 1

2
þ 1

2
1� ð�1Þðpþ1Þ=2 sign a0

Dpþ2

Dpþ1

 ! !

þV
Dpþ2

Dpþ1

; . . . ;
Dn

Dn�1

 !
:

ð24Þ

2 Expression of the Routh-Hurwitz Conditions Using the Influence
Topology
Chemistry presents the interesting notion of a reaction, for which I give the following mathe-
matical generalization (see also [1]). The fj(x1, . . ., xn) in Equation 1 can be expressed as the
sum overm real reaction functions vk multiplied by species-specific stoichiometric scalars skj :

fjðx1; . . . ; xnÞ ¼
Xm
k¼1

vks
k
j ; ð25Þ

with

Hij ¼
@fj
@xi

� �
s

¼
Xm
k¼1

@vk
@xi

skj : ð26Þ

The transition elements therefore represent sums over products of reaction derivatives and
stoichiometric scalars. While completely general, the above expression is of course not unique
as it depends on the particular choice of definition of the network reactions (e.g. one could take
the trivial, and not particularly helpful, choice of the reactions as corresponding directly to the
fj, i.e. fj = vj for each j). The vk represent completely arbitrary real functions of a subset of the xi.
For the reaction derivatives @vk/@xi in the above definition of Hij, explicit reference to the par-
ticular steady state s has been dropped for notational convenience (both here and in all subse-
quent expressions and figures). The intrinsic bipartite nature of the reaction network topology
has its fundamental basis in the separability of theHij transition elements into distinct input
Jacobian terms (i) and output stoichiometry terms (j) for each reaction k, which serve as the
basis of the network’s influence topology [1, 2] (see Fig. 1A and its further discussion below). It
is clear from Equation 26 that the transition matrix can be expressed as the product of a
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Jacobian matrix and a stoichiometry matrix, yielding the following alternative form for Equa-
tion 3 of:

d
dt

ðDx1; . . . ;DxnÞ ’ ðDx1; . . . ;DxnÞ

P
k

@vk
@x1

sk1 � � � P
k

@vk
@x1

skn

..

. . .
. ..

.

P
k

@vk
@xn

sk1 � � � P
k

@vk
@xn

skn

0
BBB@

1
CCCA

d
dt

ðDx1; . . . ;DxnÞ ’ ðDx1; . . . ;DxnÞ

@v1
@x1

� � � @vm
@x1

..

. . .
. ..

.

@v1
@xn

� � � @vm
@xn

0
BBB@

1
CCCA

s11 � � � s1n

..

. . .
. ..

.

sm1 � � � smn

0
BB@

1
CCA:

ð27Þ

Fig 1. Unipartite versus bipartite representations. (A) Unipartite graph of a network comprised of a single 3-cycle; edges are labeled with the
corresponding transition matrix elements of unspecified sign (left). The bipartite representation (influence topology) of this network is also displayed (right);
here, species-to-reaction node edges correspond to the Jacobian elements (@v/@x) and reaction-to-species node edges correspond to the stoichiometries
(s). (B) Unipartite versus bipartite depiction of a branching influence of one species on two immediately downstream species. See §2 for further details.

doi:10.1371/journal.pone.0122150.g001
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Banaji & Craciun [1, 2] consider the further generalization of the fj as completely arbitrary
functions of the reactions vk (not simply a sum) through use of the chain rule, now with

skj �
@fj
@vk

ð28Þ

in Equation 26. In this case, the stoichiometry coefficients are now no longer global constants,
but must be determined (along with the Jacobian reaction terms) at each particular steady
state s. While mathematically interesting, the practical value of such further generalization re-
mains unclear and is not further explored in the current manuscript where I will assume
throughout the above definition of each fj as a sum of reactions (Equation 25). It should never-
theless be noted though that the hierarchical algorithm for stability analysis developed in this
manuscript carries over in a straightforward manner to this more general definition.

The principal minors ofH (Equation 9) can now be rewritten as:

bq ¼
X

i1<���<iq

X
pðj1 ;...;jqÞ

�j1...jqHi1 j1
� � �Hiqjq

¼
X

i1<���<iq

X
pðj1 ;...;jqÞ

�j1...jq

X
k1

@vk1
@xi1

sk1j1

 !
� � �

X
kq

@vkq
@xiq

s
kq
jq

0
@

1
A

¼
X

i1<���<iq

X
k1 ;...;kq

@vk1
@xi1

� � �
@vkq
@xiq

X
pðj1 ;...;jqÞ

�j1...jq s
k1
j1
� � � skqjq ; ð29Þ

or, equivalently:

bq ¼
X

j1<���<jq

X
pði1 ;...;iqÞ

�i1...iqHi1 j1
� � �Hiqjq

¼
X

j1<���<jq

X
k1 ;...;kq

sk1j1 � � � s
kq
jq

X
pði1 ;...;iqÞ

�i1...iq
@vk1
@xi1

� � �
@vkq
@xiq

: ð30Þ

In both cases, it is clear that k1, . . ., kq should all be distinct, otherwise they will cancel with re-
lated terms under the permutation, implying that each reaction will only appear once in each
“surviving” product term defining a particular principal minor. As each term corresponds to a
product of cycles, this leads to the following important topological generalization of the “non-
overlapping” cycle products in Equation 10 to bipartite graphs (see also [1]): To avoid cancella-
tions among the terms that comprise a particular principal minor, each bipartite cycle product
should contain each species no more than once and each reaction no more than once. This is
equivalent to the topological specification of non-overlapping bipartite cycles in the full bipar-
tite graph of the network corresponding to its influence topology (discussed in greater detail
below).

In Equation 29, specific stoichiometric subnetworks (defined by a particular species subset
i1, . . ., iq and reaction subset k1, . . ., kq) will not contribute if their determinant is zero (indicat-
ing that the basis vectors of the subnetwork span a volume of dimension lower than q). Mass
conservation in only a partial graph of the subnetwork is sufficient to generate a zero determi-
nant for the stoichiometric terms [22, 23]; however, there are many other ways that a zero de-
terminant of the stoichiometry (indicating a conserved quantity) can be obtained. For example,
for a chemical network with governing equations for the species concentrations of _x1 ¼ v1 and
_x2 ¼ 2v1, a zero determinant is obtained, with the difference in concentrations conserved
(2x1−x2) not the total mass (e.g., x1+x2).
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A zero determinant for the Jacobian matrix is also possible, but in practice rarer to obtain
and very difficult to recognize based only on cursory inspection of the governing equations, as
the values of the Jacobian reaction derivatives (for nonlinear reactions anyway) will generally
differ at each steady state (unlike the constant stoichiometric matrix), with the exact locations
of the steady states therefore also necessary to know.

We are now ready to more formally define the influence topology. Consider, in isolation, a
cycle of length l that contributes to one of the cycle products indicated in Equation 10 and that
connects in an ordered fashion the species xi1 xi2 xi3. . .xil xi1:

cl ¼ Hi1 i2
� � �Hili1

¼
P

k1

@vk1
@xi1

sk1i2

 !
� � �
P

kl

@vkl
@xil

skli1

 !

¼
P
k1 ;...;kl

@vk1
@xi1

sk1i2 � � �
@vkl
@xil

skli1

 !
:

ð31Þ

The last version constitutes a sum over all unique bipartite cycles over the ordered species. This
is made explicit for a network comprised of a single 3-cycle in Fig. 1A, where the positive/nega-
tive (non-zero) effect of one species on another is illustrated by the superposition of an arrow
(positive) and a blunt arrow (negative), the graphical equivalent of ‘±’. The 3-cycle defined by
the unipartite productH12H23H31 in Fig. 1A is equivalent to the sum over all unique bipartite
cycles (e.g. the bipartite cycles x1 va1 x2 vb1 x3 vc1 x1 and x1 va2 x2 vb1 x3 vc1 x1 provide distinct con-
tributions due to their paths through the different reactions va1 and va2). That the bipartite
graph conveys more complete information about the network than the corresponding unipar-
tite graph is illustrated in Fig. 1B, in which the direct influence of one species on two other
downstream species is depicted. For the unipartite graph, the branches to each individual spe-
cies appear independent. For the bipartite version, a single reaction can affect both species. It is
useful to restrict the notion of a single influence topology to one with fixed positive or negative
signs at each edge, not the superposed positive/negative edges used in Fig. 1 (which implies a
collection of influence topologies). As reaction-like terms provide a useful level of description
of network dynamics in many different fields (see the below analysis of multiple classical net-
works), the signed directed bipartite graph corresponding to the influence topology provides
the most complete representation of how a network of reactions communicates the influence
of one species on its immediately downstream species in the important vicinity of a steady
state solution.

3 Parameter Reduction of the Stability Phase Space
Reduction of the parameters required to describe a network’s stability not only represents a
useful simplification, but also helps to reveal the truly important properties of a particular net-
work that underlie its stability. In this section, three different possibilities for parameter reduc-
tion are presented: stoichiometric scaling, cycle compaction, and temporal scaling.

Stoichiometric scaling is best explained using the above expression of the transition matrix
H as the product of the Jacobian matrix with the stoichiometric matrix (Equation 27). Without
loss of generality, the rows of the stoichiometry matrix in Equation 27 can be scaled, with a
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corresponding inverse scaling of the Jacobian matrix columns, to obtain:

d
dt

ðDx1; . . . ;DxnÞ ’ ðDx1; . . . ;DxnÞ
a1

@v1
@x1

� � � am
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. ..

.
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d
dt

ðDx1; . . . ;DxnÞ ’ ðDx1; . . . ;DxnÞ
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1 � � � s1

n

..

. . .
. ..

.

sm
1 � � � sm
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1
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ð32Þ

with

ak ¼ jskjk j ð33Þ

sk
j ¼ 1

ak
jskj j ð34Þ

rki ¼ ak
@vk
@xi

: ð35Þ

In the above, the jk refer to a particular non-zero stoichiometry of reaction k. Scaling of the stoi-
chiometry matrix merely amounts to a redefinition of the reactions such that at least one of the
scaled stoichiometries of each reaction is ±1. For typical networks of interest, the σmatrix will
be sparsely filled with elements that are either simply ±1 or the positive/negative (non-zero)
real constants σ1, . . ., σg. Similarly, the rmatrix will be sparsely filled with elements equal to the
positive/negative (non-zero) real numbers r1, . . ., rf (r0 may also appear; see the discussion
below). If the reaction has a strict monotonicity over the entire phase space, then we can assign
this edge either an arrow (positive-definite monotonicity) or a blunt arrow (negative-definite)
corresponding to a single fixed influence topology. If the monotonicity is not strict, this uncer-
tainty in sign will be conveyed through the superposition of an arrow and a blunt arrow as dis-
cussed already above (see Fig. 1). The complete set of possible connections between two species
using the above parameters is given in graphical terms in Fig. 2A with the related set of all pos-
sible 1-cycles given in Fig. 2B (discussed in greater detail in §4).

Individual ri and σj terms appear in the Routh-Hurwitz conditions only through their con-
tribution to complete cycles in the graph. Each cycle is simply the product of individual Jacobi-
an and stoichiometric edges (see Equation 31 and Fig. 3). Additional parameter reduction can
often be achieved through cycle compaction, which consists of the expression of a particular
product of multiple ri and/or σj terms as a single cycle compaction term qk. Cycle compaction
can be easily understood from either an algebraic or a topological perspective (see Fig. 3). From
an algebraic perspective, write down all cycles in the graph in terms of their products of Jacobi-
an and stoichiometric edges. Certain combinations of these factors may always appear together,
allowing their replacement by a single qk variable (q1, q2, . . .). From a topological perspective,
draw all directed cycles in the network: Each edge will be present in one or more cycles. For a
particular overlap of a certain set of cycles (and no other cycles), the multiple edges that define
this overlap can be compacted into a single parameter qk. Consider the following binary “bar
code” for defining a particular region of overlap among several cycles, with the first entry of 0
or 1 corresponding to the presence/absence of an overlap with cycle 1, the second entry of 0 or
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1 to cycle 2, etc. There are clearly 2c−1 possible types of overlap among c cycles, providing an
important upper limit to the dimensionality of the set of parameters that govern the network’s
steady-state stability. This list of overlaps includes the non-overlapping portions of each cycle;
the −1 in the above removes the trivial bar code of all zeroes corresponding to the empty set.
As shown in Fig. 3B, compacted regions of overlap (or non-overlap) in the influence topology
need not be contiguous. At a deeper level, cycle compaction terms provide a fundamental basis
for expression of the cycles of the network, implying that these are the underlying variables
upon which the Hurwitz determinants ultimately depend (see the Discussion section).

A final degree of freedom can always be removed by temporal scaling, τ = βt, with β = jr0j
(scaling to a particular Jacobian element r0) or β = jq0j1/z (scaling to a particular cycle compac-
tion term q0 containing z� 1 Jacobian elements):

d
dt

ðDx1; . . . ;DxnÞ ’ ðDx1; . . . ;DxnÞ
r1
1 � � � rm

1

..

. . .
. ..

.

r1
n � � � rm

n

0
BB@

1
CCA

s1
1 � � � s1

n

..

. . .
. ..

.

sm
1 � � � sm

n

0
BB@

1
CCA; ð36Þ

with rk
i ¼ rki =b. The subscript 0 on r0 or q0 will be used in all of the below graphs of the influ-

ence topology to indicate which term is used for temporal scaling (itself contributing ±1); this
term is retained in the graph to stress the arbitrary nature of this choice. The above ρmatrix
will therefore be sparsely filled with one ±1 and ρ1, . . ., ρf−1 (scaling to r0) or ρ1, . . ., ρf (scaling
to q0). Again, each ρi should be considered strictly positive (arrow) or strictly negative (blunt
arrow) for the definition of a single influence topology.

The first-order stability of a network of n species andm reactions at a particular steady state
is determined by the d = S+J parameters that respectively define its total number of stoichio-
metric edges, S, and Jacobian edges, J. As already discussed above, stoichiometric scaling
allows one stoichiometric factor for each reaction to be set to ±1, with the others labeled as
σ1, . . ., σS−m. Cycle compaction, which should be performed in concert with stoichiometric
scaling, can provide an additional reduction of c dimensions. While stoichiometric reduction
and cycle compaction are often redundant, the potential independence of stoichiometric

Fig 2. Species connectivity and 1-cycles. (A) All possible signed directed bipartite connections between two species. (B) All possible 1-cycle networks.

doi:10.1371/journal.pone.0122150.g002
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reduction and cycle compaction for certain networks is demonstrated in Fig. 4. Finally, tempo-
ral scaling generically allows removal of an additional degree of freedom, giving a final di-
mensionality of d = (S−m)+J−c−1. It is worth emphasizing that all of these parameter
reductions were achieved purely through examination of the network’s influence topology.
Based on the reduced parameters of the influence topology (with fixed sign), the zones over
which each of the Hurwitz determinants are negative (indicating instability) can be plotted
over the entire parameter domain. This permits lower dimensional visualization of the com-
plete stability phase space entailed by a particular influence topology. The stability phase space
importantly delimits the set of possible dynamical solutions of networks sharing a particular
influence topology, providing the exact number of unstable roots (eigenvalues) via the Routh
array in each zone (and zone overlap) pertaining to the individual Hurwitz determinants. The

Fig 3. Cycle compaction. (A) For a network composed of two overlapping cycles, the possible cycle compaction terms (q0 and q1) are listed. (B) Upon slight
modification of A, a network composed of four unique overlapping cycles is obtained, with now three possible compaction terms (q0, q1, and q2). The
collection of edges that contribute to the non-overlapping and overlapping parts of the influence topology cycles for each network are shown as Venn
diagrams at the bottom of each panel. See §3 for further details.

doi:10.1371/journal.pone.0122150.g003
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utility of the stability phase space for the quantitative assessment of the stability of several clas-
sical networks is demonstrated below (see §5).

Other potentially useful forms of parameter reduction are possible through symmetries in
the influence topology graph. Exchanges of certain subsets of the ri and σj can be topologically
shown to generate an identical set of non-overlapping cycle products that define the principal
minors (topological symmetry), allowing redefinition of multiple parameters into a single pa-
rameter,C, which is symmetric with respect to the ri and/or σj parameters that define it. As
well, the complex algebraic structure of the Hurwitz determinant inequalities can allow for the
algebraic gathering of multiple parameters into one parameter (Hurwitz reduction), often al-
lowing expression of the stability of an entire network in terms of an inequality involving a sin-
gle parameter, Γ. It is possible that these Hurwitz reductions also have a topological
explanation, but not one as simple as all of the others described above. Examples of networks
containing topological symmetries or Hurwitz reductions will be encountered below.

The following generic graphical features, which I refer to as orphan/childless species and or-
phan/childless reactions, appear upon consideration of arbitrary directed bipartite graphs (see
also [1]). These features will appear again in the more general discussion of network analysis
presented below in §6.

“Orphan species” are those that do not have any reactions as parents, i.e. they do not lie
downstream of any reaction node in the influence topology. They often appear explicitly in

Fig 4. Non-redundancy of stoichiometric reduction and cycle compaction. The displayed network (top) provides a concrete example of the non-
redundancy of stoichiometric reduction and cycle compaction. At the top, all Jacobian parameters (r0 = 1, r1, r2, r3) and stoichiometric parameters (s1, s2, s3)
of the network are labeled. Stoichiometric reduction of reaction v1 allows the setting of either s1 (bottom left) or s2 (bottom right) to unity. The choice of s1 = 1
followed by cycle compaction leads to three final parameters (3D stability phase space), whereas the better choice of s2 = 1 leads to only two final parameters
(2D stability phase space).

doi:10.1371/journal.pone.0122150.g004
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chemical reaction networks as species buffered by an infinite bath (clamped species). Orphan
species have the same mathematical status as a change in the coefficients governing the de-
scription of the reactions and can therefore be safely removed from the graph of the
influence topology.

“Childless species” are those that are not the parent of any reaction, i.e. they do not lie up-
stream of any reaction node in the influence topology. Such species play only a “bookkeeping”
role (e.g. to account for mass conservation), with no effect on the network’s dynamics and can
therefore be neglected in the graph of the influence topology: The species j that comprise the
relevant set of ODE’s in Equation 1 should be restricted to only those that affect other species
in the network.

“Orphan reactions” are reactions that have no species as their parents, i.e. they do not lie
downstream of any species node in the influence topology and therefore have no functional de-
pendence on any of the species. Orphan reactions are mathematically equivalent to the addi-
tion of a (possibly different) constant term to one or more of the governing the network (see
Equations 1 and 25). While they have no effect on the influence topology (as they are removed
upon taking the first derivatives of the governing equations fj(x1, . . ., xn)), orphan reactions can
nevertheless shift the location of the steady states within the stability phase space defined by
the influence topology, potentially generating bifurcations in the network’s dynamics (e.g.
Hopf bifurcation). For this reason, they will be retained in the graphs of specific networks con-
sidered below as a single V0 node with one or more dashed lines (having possibly different stoi-
chiometries) connected to the relevant species.

“Childless reactions” are reactions that have no species as children in the network under
consideration. While they will never appear when defining the influence topology correspond-
ing to a given set of ODEs, they nevertheless appear in the list of all possible directed bipartite
graphs. Such reactions, while possibly controlled by a subset of the species of the network
under consideration (with which they would share a Jacobian edge), can have no possible effect
on the dynamics of these species and can therefore be removed from the influence topology
graph. They can nevertheless affect other purely downstream species not under direct consider-
ation. Such upstream/downstream partitioning of a network will take on a broader meaning in
the discussion of general network analysis given below (see §6).

4 n-cycle networks
The simplest networks to analyze are those comprised of a single cycle of length n. For odd n, I
show below that the Routh array allows determination of the exact number of unstable roots.

The simplest possible networks are constructed from a single 1-cycle. The four possible
1-cycle networks are:

I : _x1 ¼ �V0 þ V1
1 ð37Þ

II : _x1 ¼ �V0 � V1
1 ð38Þ

III : _x1 ¼ �V0 þ V
1

1 ð39Þ

IV : _x1 ¼ �V0 � V
1

1
; ð40Þ

with the different reaction functions considered as positive definite and the reduced topological
representation for these networks given in Fig. 2B (stoichiometric scaling leads to a ±1 stoichio-
metric edge with temporal scaling by jr0j implies a ±1 Jacobian edge; alternatively, and more
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fundamentally, cycle compaction and temporal scaling allows assigning the single number
q0 = ±1 to the network). In the above, I introduce the following useful shorthand notation
Vk

i1...ih
� vkðxi1 ; . . . ; xihÞ. The subscripts in Vk

i1...ih
indicate a monotically increasing (normal sub-

script) or decreasing (overlined subscript) dependence on the h different species that control
the reaction; an underlined subscript will be used to indicate an uncertain sign of the monoto-
nicity. Due to the n = 1 dimensionality, only the first Routh-Hurwitz condition, Δ1 = −b1 = −c1,
is necessary to consider for the above 1-cycle networks, giving for networks I-IV, respectively,
b1 = 1, −1, −1, 1 and Δ1 = −1, 1, 1, −1. Networks I and IV are therefore unstable and networks
II and III are stable. Note that only the signs of the reaction stoichiometry and its monotonicity
with respect to x1 are necessary to specify to ascertain the network’s stability. Addition of the
static terms ±V0 can shift the steady-state solution but cannot otherwise affect the dynamics.
For a reaction function V1

1
¼ v1ðx1Þ that does not have a strict monotonicity (either increasing

or decreasing with respect to x1), the x1 phase space can be partitioned into regions over which
either V1

1 or V1

1 holds, corresponding to a single influence topology in each region (this can of

course be generalized to higher dimensional phase spaces as well). A simple explicit example of
networks I–IV is given below:

I : _x1 ¼ �1þ x1 ð41Þ

II : _x1 ¼ 1� x1 ð42Þ

III : _x1 ¼ �1þ 1=x1 ð43Þ

IV : _x1 ¼ 1� 1=x1: ð44Þ

For all of these networks, additional constant terms have been added to position the single
steady state solution at the positive value of xs1 ¼ 1. Networks I and II correspond to the famil-
iar examples of exponential growth and decay, respectively. Networks III and IV are perhaps
more exotic, but, from the perspective of the influence topology, are equally fundamental. For
these examples, I have chosen the particularly simple reaction functions proportional to x1 and
1/x1, but any functions having the same stoichiometric sign and reaction monotonicity will
have the same stability/instability (e.g. one could replace x1 with ex1 in network I or 1/x1 with 1/
arctan x1 in network III).

All possible 2-cycle networks are schematically represented in the single graph shown in
Fig. 5 (the degeneracy of these networks will be addressed further below). After cycle compac-

tion (defining q0 = r1 r2) and temporal scaling (r1 ¼ r1=
ffiffiffiffiffiffiffijq0j

p
and r2 ¼ r2=

ffiffiffiffiffiffiffijq0j
p

), it is clear
that b1 = 0 and b2 = −c2 =�1. For all of these topologies, it is obvious that Δ1 = −b1 = 0 and Δ2
= −b1b2+b0b3 = 0 due to the absence of 1-cycles in the network. That all Routh-Hurwitz condi-
tions are equal to 0 implies that no information can be obtained from first-order perturbations
about the steady state; higher order perturbations must be assessed to establish the stability of a
given steady state. An important example of a 2-cycle network is:

_x1 ¼ �k1x2 ð45Þ

_x2 ¼ k2x1; ð46Þ

which, for k1 = k2, corresponds to constant rotational motion at a fixed radius determined by
the initial values (boundary conditions). We can rewrite the rotation network in a more general
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way as:

_x1 ¼ �V1
2 ð47Þ

_x2 ¼ V2
1 : ð48Þ

In the above, I again employ the shorthand notation for the reaction functions explained
above, with Vk

i corresponding to reaction k with positive monotonic dependence on species i.
The principal minors for this generalized network are b1 = 0 and b2 = −c2 = 1, which, as for the
general case, leads to Δ1 = 0 and Δ2 = 0 and no information about steady state stability obtain-
able at first order. For the original rotation network (Equations 45 and 46), the linearity of the
reactions implies that all higher order perturbations are trivially 0. The different solutions of
this network depend on the initial conditions and foliate the x1-x2 phase space as circles of each
possible radius centered on the origin. Inclusion of non-zero constant terms (V0 terms) would
merely shift the origin of these foliated circular trajectories.

According to Equation 10, a network comprised of a single n-cycle will yield bn = cn for odd
n and bn = −cn for even n with all other principal minors equal to 0. For even n, examination of
the non-zero terms in the columns of the Routh-Hurwitz matrix (Equation 12) shows that col-
umns containing b0 = 1 and −bn alternate with all-zero columns, implying that all Hurwitz de-
terminants equal 0, with no further information possible at first-order (the generalization of
the above result obtained for 2-cycles). This result can actually be generalized further: For an
influence topology comprised of only even cycles, all Hurwitz determinants are zero, implying
no information is obtainable at first order. For odd n� 3 cycle networks, column swapping of
the Hurwitz determinants (Equation 12) to place the single non-zero term in each column (ei-
ther b0 = 1 or −bn) along the diagonal can be shown to lead to the following general result:

D1 ¼ 0

..

.

Dn�2 ¼ 0

Dn�1 ¼ ð�1Þ
nþ 1

2 c
n� 1

2
n

ð49Þ

Dn ¼ �ð�1Þ
nþ 1

2 c
nþ 1

2
:

n
ð50Þ

Fig 5. 2-cycle networks. (A) All possible 2-cycle network influence topologies. (B) Rotation network influence topology.

doi:10.1371/journal.pone.0122150.g005
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After cycle compaction and temporal scaling, cn = ±1. For n = 3, Δ2 = ±1 and Δ3 = −1; for n = 5,
Δ4 = −1 and Δ5 = ±1. For n = 7, this pattern repeats with Δ6 = ±1 and Δ7 = −1. From the Routh
array (Equation 24), it can easily be shown that the number of unstable roots for an odd n-
cycle network is:

k ¼ 1

2
nþ ð�1Þðn�1Þ=2cn
� �

: ð51Þ

For n = 3, 7, 11, . . ., this implies k = (n−1)/2 for cn = 1 and k = (n+1)/2 for cn = −1. Oppositely,
for n = 5, 9, 13, . . ., the above implies k = (n−1)/2 for cn = −1 and k = (n+1)/2 for cn = 1.

5 Analysis of classical networks
In the following, I provide detailed examinations of six classical networks from the diverse
fields of control theory (Jenkin-Maxwell [24]), electronics (van der Pol [25]), ecology (Lotka-
Volterra [26–28]), chemistry (Brusselator [29]), biochemistry (Sel’kov [30]), and synthetic biol-
ogy (Repressilator [31–34]). Each network is generalized to its parameter reduced influence to-
pology, with its full stability phase space examined for regions in which one or more Hurwitz
determinants are negative. Particular attention is paid to those regions in which both Hurwitz
determinants Δn−1 and Δn simultaneously go negative, a necessary condition for the presence
of a Hopf bifurcation (see §1). For most of the networks, an explicit expression of the steady
state solution for the original governing equations allows display of the actually accessible re-
gions of the stability phase space. These examples raise several important issues discussed in
greater detail in the Discussion section.

Jenkin-Maxwell network. In Maxwell’s foundational paper on control theory from 1868
entitled “On Governors” [24], he considered several examples of physical devices that worked
to govern—and, importantly, sustain against perturbation—the angular velocity of a core com-
ponent. For one such physical device described by Jenkin, Maxwell derived the following sec-
ond order differential equations:

B
d2y
dt2

¼ F
dx
dt

� V1

� �
� Y

dy
dt

�W ð52Þ

M
d2x
dt2

¼ P � R� F
dx
dt

� V1

� �
� Gy: ð53Þ

In the above, the nine parameters B, F, V1, Y,W,M, P, R, and G are all positive definite. Taking
x1 = dy/dt, x2 = y, and x3 = dx/dt, these two second order equations reduce to the following
three first-order equations:

_x1 ¼ �k0 � k1x1 þ s2k2x3 ð54Þ

_x2 ¼ s1k1x1 ð55Þ

_x3 ¼ �s3k0 � k2x3 � k3x2; ð56Þ

with k0 = (FV1+W)/B, k1 = Y/B, σ2 =M/B, ±σ3 k0 = (FV1+P−R)/M, k2 = F/M, and k3 = G/M.
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The generalized Jenkin-Maxwell network is:

_x1 ¼ �V0 � V1
1 þ s2V

2
3 ð57Þ

_x2 ¼ s1V
1
1 ð58Þ

_x3 ¼ �s3V
0 � V2

3 � V3
2 ; ð59Þ

corresponding to the influence topology shown in Fig. 6A, with principal minors:

b1 ¼ c1 ¼ �r1 � r2 ð60Þ

b2 ¼ c1c1� c2 ¼ r1r2 ð61Þ

b3 ¼ c1c1c1� c1c2þ c3 ¼ �r1r2: ð62Þ

In the above, ρ1 = r1/jq0j and ρ2 = r2/jq0j with q0 = σ1 σ2 r3. The principal minor b1 is given by
the sum of the two 1-cycles: (r1/jq0j)(−1) = −ρ1 and (r2/jq0j)(−1) = −ρ2. For b2, only the first
term (corresponding to two non-overlapping 1-cycles) contributes due to the absence of a
2-cycle in the network. For b3, only the 3-cycle contributes as there are only two non-overlap-
ping 1-cycles (not three) and as there is no 2-cycle in the network. The 3-cycle is (r1/jq0j)σ1(r3/
jq0j)(−1)(r2/jq0j)σ2 = −ρ1 ρ2. The Hurwitz determinants, determined from the above principal

Fig 6. Jenkin-Maxwell network. (A) Influence topology. Cycle compaction allows definition of q0 = σ1 σ2 r3. Temporal scaling of all Jacobian edges to jq0j
leaves only ρ1 = r1/jq0j and ρ2 = r2/jq0j. (B) Stability phase space. Axes correspond to the two parameters, ρ1 and ρ2, that remain after parameter reduction.
For plotting ρ1 and ρ2, the variable transformation zi ¼ 2

p arctanri has been used to allow visualization of the entire range of the ρi from 0 to1 (this arctan
transform also conveniently permits visualization of the range −1< ρi < 0, which would correspond to a different sign for this Jacobian element and
therefore a different influence topology). Flows in the plot map the zones over which Δ1 (black), Δ2 (red), and Δ3 (blue) are negative. Only Δ2 (red) and Δ3

(blue) can go negative (in this case, simultaneously). The green background indicates that ρ1 and ρ2 can independently assume any positive definite values
based on their definitions in terms of the parameters used to define the original Jenkin-Maxwell equations (Equations 54–56).

doi:10.1371/journal.pone.0122150.g006
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minors using Equations 13–15, are:

D1 ¼ r1 þ r2 ð63Þ

D2 ¼ r1r2ðr1 þ r2 � 1Þ ð64Þ

D3 ¼ r2
1r

2
2ðr1 þ r2 � 1Þ: ð65Þ

One can also derive these determinants directly from the cycles in the graph using Equations
17–19, with the particular topology of the Jenkin-Maxwell network (two non-overlapping
1-cycles, no 2-cycles, one 3-cycle) leading to the following reduced form:

D1 ¼ �c1 ð66Þ

D2 ¼ �c1 � c1c1þ c0 � c3 ð67Þ

D3 ¼ c1 � c1c1 � c3 � c0 � c3 � c3: ð68Þ

Upon plugging in for the cycles, the same expressions in Equations 63–65 obtain. The only
negative term in Δ2 is c0�c3 = −ρ1 ρ2. In Δ3, the only negative term is�c3 � c3 ¼ �r2

1r
2
2. These

are the criticalmultiplicative topologies present in the influence topology. A multiplicative to-
pology is simply a product of multiple subgraphs (overlapping or non-overlapping) of the net-
work. The notion of multiplicative topology captures much better the true nature of the
destabilizing structures in the graph than previous notions of critical fragments, which have in
the past been typically based on the non-overlapping cycle products that contribute to the neg-
ativity of a particular principal minor, which constitutes only a sufficient but not necessary
condition for instability.

The stability phase space is displayed in Fig. 6B. As ρ1 and ρ2 are both assumed positive, the
condition for stability can be summarized as:

r1 þ r2 � 1 > 0; ð69Þ

or, forC� ρ1+ρ2 (withC strictly positive), simplyC> 1. This additional reduction of the
problem to a single parameter arises from the symmetric contributions of r1 and r2 to the prin-
cipal minors (swapping of r1 and r2 in Fig. 6A would lead to the same criterion). For
ρ1+ρ2−1< 0, both Δ2 and Δ3 are negative, giving two unstable roots according to the number
of sign changes in the Routh array V(+, +, −, +) (Equation 22).

For the specific Jenkin-Maxwell network defined by the parameters of Equations 52 and
53, ρ1 = Y2/(GB) and ρ2 = FY/(GM), which, due to the simple linear dependence of the reac-
tions on the species in Equations 54–56, are independent of the exact location of the single
steady-state solution, which, at any rate, is located at xs1 ¼ 0, xs2 ¼ ðP � R�WÞ=G, and
xs3 ¼ V1 þW=F. Using the above definitions of ρ1 and ρ2, the condition for steady-state stabili-
ty becomes:

Y2

GB
þ FY
GM

� 1 > 0: ð70Þ

Upon multiplication by the positive constant G/B, this is identical to the stability criterion ob-
tained by Maxwell through explicit solution of the roots of the cubic characteristic polynomial.
Such explicit algebraic solution is impossible for networks (and their associated characteristic
polynomials) that have dimension n> 4; however, due to the remarkable properties of the
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Routh-Hurwitz conditions, in these situations one can still derive similarly strong topological/
algebraic constraints through use of the influence topology. The green background in Fig. 6B
indicates that ρ1 and ρ2, according to the definitions above, can assume any positive definite
values. For ρ1+ρ2−1> 0, all trajectories converge to the single steady state solution. As ρ1+ρ2−1
goes from positive to negative, a Hopf bifurcation appears with oscillatory growth to infinity in
a particular 2D plane (complex pair of roots with positive real part); convergence to this plane
occurs along the third dimension (negative real root). For ρ1+ρ2−1 = 0, oscillations occur in
two dimensions with a fixed radius dependent on the initial conditions (pair of purely imagi-
nary roots, similar to the rotation network); convergence to this 2D plane of rotation occurs
along the third dimension (negative real root).

It is worth emphasizing that the simple two-parameter condition ρ1+ρ2−1> 0 and the cor-
responding stability phase space displayed in Fig. 6B were determined solely from consider-
ation of the influence topology, which is itself completely defined by the graph of nodes and
signed directed edges in Fig. 6A. Aside from the signs of the stoichiometries and monotonici-
ties, no further specification of the exact functional forms of the reactions was required, nor
was the number of steady states necessary to specify (only that they should all lie outside the
unstable domain displayed in Fig. 6B for assurance of the network’s stability).

van der Pol network. The van der Pol network was first proposed in 1926 [25] as a model
for stable oscillations in an electronic circuit:

€x1 � mð1� x21Þ _x1 þ x1 ¼ 0: ð71Þ

This second-order differential equation can be transformed to the following system of
first-order differential equations through use of the Liénard transformation [35],
x2 ¼ x1 � x31=3� _x1=m, to yield:

_x1 ¼ k1x1 � k2x
3
1 � k3x2 ð72Þ

_x2 ¼ s1k1x1: ð73Þ

Its generalized form is:

_x1 ¼ V1
1 � V2

1 � V3
2 ð74Þ

_x2 ¼ s1V
1
1 ; ð75Þ

corresponding to the influence topology displayed in Fig. 7A, with principal minors:

b1 ¼ r1 � r2 ð76Þ

b2 ¼ r1: ð77Þ

For b1 = c1, both 1-cycles in the graph contribute. For b2 ¼ c1c1 � c2, only the 2-cycle (r1/jq0j)
σ1(r3/jq0j)(−1) = −ρ1 contributes as the 1-cycles overlap with each other at the species node
(similar overlap at a reaction node would also not be allowed). The Hurwitz determinants
based on the expressions above for the principal minors are:

D1 ¼ r2 � r1 ð78Þ

D2 ¼ r1ðr2 � r1Þ; ð79Þ

corresponding to the stability phase space displayed in Fig. 7B. These can also be derived di-
rectly from the cycle-based definitions (where I have already removed terms that are clearly
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zero based on the influence topology in Fig. 7A):

D1 ¼ �c1 ð80Þ

D2 ¼ c1 � c2: ð81Þ

The corresponding stability phase space is displayed in Fig. 7B. For ρ2−ρ1 < 0, both Δ1 and Δ2

are negative, giving two unstable roots according to the number of sign changes in the Routh
array V(+, −, +). Using the algebraic redefinition of Γ� ρ2/ρ1 (Γ is strictly positive), the condi-
tion for instability becomes simply Γ< 1 (providing an example of a Hurwitz reduction).

For the original van der Pol network defined in Equations 72 and 73, the unique steady state
solution is xs1 ¼ xs2 ¼ 0 with ρ1 = k1/(σ1 k3) and ρ2 = 0 (this complete set of possible solutions is
indicated by the green line in Fig. 7B). Since ρ2−ρ1 = −k1/(σ1 k3)< 0, this implies two unstable
eigenvalues, which is consistent with the ever-present limit cycle in the network’s phase space.

Instead of the Liénard transformation, one could alternatively apply the more straightfor-
ward transformation of _x1 ¼ x2, which, upon a final swapping of x1 for x2, leads to:

_x1 ¼ k1x1 � k2x1x
2
2 � k3x2 ð82Þ

_x2 ¼ s1k1x1: ð83Þ

These governing equations are identical to Equations 72 and 73 aside from the change of
k2x

3
1 ! k2x1x

2
2 in the second reaction. The generalized form is:

_x1 ¼ V1
1 � V2

12 � V3
2 ð84Þ

_x2 ¼ s1V
1
1 : ð85Þ

Fig 7. Van der Pol network. (A) Influence topology. Cycle compaction allows definition of q0 = σ1 r3. Temporal scaling of all Jacobian edges to jq0j leaves
only ρ1 = r1/jq0j and ρ2 = r2/jq0j. (B) Stability phase space. Flows in the plot map the zones over which Δ1 (black) and Δ2 (red) are negative. The unstable
zones for Δ1 (black) and Δ2 (red) completely overlap; in this region, two unstable eigenvalues obtain according to the Routh array. The green line indicates
the possible set of solutions obtainable for the original van der Pol equations (Equations 72 and 73). See Fig. 6 for further details.

doi:10.1371/journal.pone.0122150.g007
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The influence topology is therefore identical to that shown in Fig. 7A aside from a single extra
Jacobian arrow from x2 to v2. This extra connection, however, prevents the convenient parame-
ter reduction obtained for the Liénard transformed network, with now three Jacobian parame-
ters and one stoichiometric parameter required to specify the stability phase space instead of
the two Jacobian parameters obtained above. This example demonstrates the still important as-
pect of the algebraic form for the governing equations. The specific algebraic structure taken
for the governing equations can be critical in defining the influence topology, with the intrigu-
ing possibility—concretely demonstrated here for the van der Pol network—that transforma-
tions may exist to convert a given algebraically-defined network with complicated influence
topology (requiring many parameters to specify its corresponding stability phase space) to a
transformed version having a much simpler influence topology (lower dimensional stability
phase space). In any case, as both algebraic forms for this network are equivalent, the projec-
tion of the solution set onto the lower or higher dimensional influence topologies following
from these algebraic definitions must of course lead to the same dynamics.

Lotka-Volterra network. Lotka in 1920 [26], and independently Volterra in 1926 [27, 28],
introduced the following network for modeling population oscillations:

_x1 ¼ k1x1 � k2x1x2 ð86Þ

_x2 ¼ s1k2x1x2 � k3x2; ð87Þ

with σ1 = 1 typically assumed. The generalized Lotka-Volterra network is:

_x1 ¼ V1
1 � V2

12 ð88Þ

_x2 ¼ s1V
2
12 � V3

2 ; ð89Þ

corresponding to the influence topology shown in Fig. 8A, with principal minors (Equation
10):

b1 ¼ 1þ r1 � r2 � r3 ð90Þ

b2 ¼ r1 þ r2r3 � r1r3; ð91Þ

and Hurwitz determinants:

D1 ¼ r2 þ r3 � r1 � 1 ð92Þ

D2 ¼ ðr2 þ r3 � r1 � 1Þðr1 þ r2r3 � r1r3Þ: ð93Þ

The above results can also be obtained directly from the cycle product-based expressions of the
Hurwitz determinants (Equations 17 and 18):

D1 ¼ �c1 ð94Þ

D2 ¼ �c1 � c1c1; ð95Þ

where I have already removed terms that are clearly zero based on the influence topology. The
second term in the above product for Δ2 corresponds to pairs of non-overlapping 1-cycles
(c1c1) of which there are clearly three in the graph of the influence topology (yielding the sec-
ond group of terms in Equation 93). The stability phase space over ρ1-ρ2 is displayed for differ-
ent values of ρ3 in Figs. 8B-D.
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Fig 8. Lotka-Volterra network. (A) Influence topology. Cycle compaction allows definition of q0 = σ1 r4. Temporal scaling of all Jacobian edges to jq0j leaves
only ρ1 = r1/jq0j, ρ2 = r2/jq0j, and ρ3 = r3/jq0j. The stability phase space is shown for (B) ρ3 = 1 (σ1 = 1), (C) ρ3 = 1/2 (σ1 = 2), and (D) ρ3 = 2 (σ1 = 1/2). Flows in
the plot map the zones over which Δ1 (black) and Δ2 (red) are negative. See Fig. 6 for further details.

doi:10.1371/journal.pone.0122150.g008
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For the more traditional functional form of the Lotka-Volterra system given in Equations
86 and 87, the unique steady state solution is:

xs1 ¼ k3=ðs1k2Þ ð96Þ

xs2 ¼ k1=k2: ð97Þ

At the steady state, r1 = k1, r2 = k1, r3 = k3, r4 = k3, and q0 = σ1 r4 = σ1k3, giving:

r1 ¼ 1

s1

k1
k3

ð98Þ

r2 ¼ 1

s1

k1
k3

ð99Þ

r3 ¼ 1

s1

: ð100Þ

No matter the value of σ1, the steady-state solution will always lie on the ρ1-ρ2 diagonal in the
stability phase space (green line in Figs. 8B-D). The Hurwitz determinants are:

D1 ¼ r3 � 1 ð101Þ

D2 ¼ ðr3 � 1Þr1: ð102Þ

For the typically assumed value of σ1 = 1, we obtain ρ3 = 1 and ρ1 = ρ2 = k1/k3 and zero for both
Routh-Hurwitz conditions: Δ1 = 0 and Δ2 = 0 (Fig. 8B), which prevents any conclusion about
the stability of the network at first order. For σ1 = 2, ρ3 = 1/2 and ρ1 = ρ2 = k1/(2k3) with Δ1 =
−1/2 and Δ2 = −k1/(4k3), giving two sign changes in the Routh array V(+, −, +) and therefore
two eigenvalues with positive real parts (Fig. 8C), with the dynamical solutions corresponding
to an oscillatory divergence to infinity. For σ1 = 1/2, ρ3 = 2 and ρ1 = ρ2 = 2k1/k3, with Δ1 = 1 and
Δ2 = 2k1/k3 implying a stable network (Fig. 8D), characterized by an oscillatory convergence to
the steady state solution.

As already stated above, the reaction functions defined in Equations 86 and 87 entail the re-
striction of the steady state solution to the ρ1-ρ2 diagonal in the stability phase space. The
steady state solution can be shifted off the diagonal (even for σ = 1 in Fig. 8B) in a way that pre-
serves the influence topology through addition of a constant reaction to one or both of the orig-
inal governing equations (Equations 86 and 87), or through the introduction of more general
reaction functions, for example:

_x1 ¼ k1 exp x1 � k2
ffiffiffiffi
x1

p
arctan x2 ð103Þ

_x2 ¼ s1k2
ffiffiffiffi
x1

p
arctan x2 � k3 log ð1þ x2Þ; ð104Þ

The assumption of other functional forms for the reactions might additionally allow for the ex-
istence of more than one steady state solution.

Brusselator network. The Brusselator was proposed by Prigogine & Lefever in 1968 [29]
to account for oscillations in the Belousov-Zhabotinsky reaction [36, 37]:

_x1 ¼ k0 þ s1k1x
2
1x2 � k2x1 ð105Þ

_x2 ¼ �k1x
2
1x2 þ s2k2x1; ð106Þ
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with σ1 = 1 and σ2 < 1 (by definition of the original Brusselator network). Its generalized ver-
sion is:

_x1 ¼ V0 þ s1V
1
12 � V2

1 ð107Þ

_x2 ¼ �V1
12 þ s2V

2
1 ; ð108Þ

corresponding to the influence topology shown in Fig. 9A, with principal minors:

b1 ¼ s1 � r1 � r2 ð109Þ

b2 ¼ r1r2 � s1s2r1r2; ð110Þ

and Hurwitz determinants:

D1 ¼ r1 þ r2 � s1 ð111Þ

D2 ¼ ðr1 þ r2 � s1Þr1r2ð1� s1s2Þ: ð112Þ

These expressions can also be obtained directly from the cycle-based defitions of Equations 17
and 18 (where I have already removed terms that are zero):

D1 ¼ �c1 ð113Þ

D2 ¼ �c1 � c1c1þ c1 � c2: ð114Þ

The stability phase space is displayed in Figs. 9B-D for σ1 = 1 and different values of σ2. If 1−σ1σ2
is positive, then instability can only occur for ρ1+ρ2−σ1< 0 (Fig. 9B). DefiningC� (ρ1+ρ2) (with
C strictly positive), this amounts toC< σ1 for instability, or, upon the further algebraic redefin-
tion (Hurwitz reduction) Γ�C/σ1 with Γ strictly positive, this becomes simply Γ< 1.

For the original Brusselator, σ1 = 1 and σ2 = (k2−a)/k2 (or 1−σ2 = a/k2). Both σ2 and k2 are
assumed greater than zero, implying the further restrictions of k2 > a and 0< σ2 < 1. These
definitions give:

D1 ¼ r1 þ r2 � 1 ð115Þ

D2 ¼ ðr1 þ r2 � 1Þr1r2

a
k2
: ð116Þ

For ρ1+ρ2−1< 0, both Δ1 and Δ2 are simultaneously negative, corresponding to a transition
from zero to two unstable eigenvalues and therefore the possibility of a Hopf bifurcation and
limit cycle. The single steady state for the Brusselator is located at:

xs1 ¼ k0 ð117Þ

xs2 ¼ k2 � a
k0k1

; ð118Þ
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giving

r1 ¼ k20k1
2ðk2 � aÞ ð119Þ

r2 ¼ k2
2ðk2 � aÞ : ð120Þ

Fig 9. Brusselator network. (A) Influence topology. Temporal scaling of all Jacobian edges to jr0j gives ρ1 = r1/jr0j and ρ2 = r2/jr0j; σ1 and σ2 must be
specified as well. The stability phase space is shown for σ1 = 1 and the following values for σ2: (B) σ2 = 1/2, (C) σ2 = 1, and (D) σ2 = 2. Flows in the plot map
the zones over which Δ1 (black) and Δ2 (red) are negative. See Fig. 6 for further details.

doi:10.1371/journal.pone.0122150.g009
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Upon appropriate choices for a, k0, k1, and k2, both ρ1 and ρ2 can assume any value in the sta-
bility phase space (green region of Figs. 9B-D). The condition for instability to obtain,
ρ1+ρ2−1< 0, becomes:

k20k1
a

� k2
a
þ 2 < 0: ð121Þ

Defining A2 � k20k1=a and B� k2/a−1, this yields the standard result of B> 1+A2.
For 1−σ1σ2 = 0, Δ2 = 0, implying a reduction in dimensionality and therefore only a single

real eigenvalue with sign opposite to that of Δ1 (Fig. 9C). For 1−σ1σ2 < 0, sign(Δ2) = −sign(Δ1),
which for Δ1 6¼ 0 will always generate one stable and one unstable eigenvalue according to the
one sign change in the Routh array (either V(+, −, −) or V(+, +, −)) (Fig. 9D).

Sel’kov network. Sel’kov in 1968 [30] proposed the following simple model to account for
glycolytic oscillations:

_x1 ¼ �k1x1 þ s1k2x
2
1x2 þ s2k3x2 ð122Þ

_x2 ¼ k0 � k2x
2
1x2 � k3x2; ð123Þ

with σ1 and σ2 equal to 1. The generalized version is:

_x1 ¼ �V1
1 þ s1V

2
12 þ s2V

3
2 ð124Þ

_x2 ¼ V0 � V2
12 � V3

2 : ð125Þ

The influence topology is shown in Fig. 10A, with principal minors:

b1 ¼ �1þ s1r1 � r2 � r3 ð126Þ

b2 ¼ r2 þ r3 � s1r1r3 � s2r1r3; ð127Þ

and Hurwitz determinants:

D1 ¼ 1þ r2 þ r3 � s1r1 ð128Þ

D2 ¼ ð1þ r2 þ r3 � s1r1Þðr2 þ r3 � s1r1r3 � s2r1r3Þ: ð129Þ

This result can also be obtained directly from the cycle-based definitions (where I have already
removed terms that are zero):

D1 ¼ �c1 ð130Þ

D2 ¼ �c1 � c1c1þ c1 � c2: ð131Þ

The corresponding stability phase space is displayed in Figs. 10B-D for σ1 = σ2 = 1 and different
values of ρ3.

For the original network (Equations 122 and 123) with σ1 = σ2 = 1, the Hurwitz determi-
nants simplify to:

D1 ¼ 1þ r2 þ r3 � r1 ð132Þ

D2 ¼ ð1þ r2 þ r3 � r1Þ r2 þ r3 � 2r1r3ð Þ: ð133Þ
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The steady state solution is:

xs1 ¼ k0
k1

ð134Þ

xs2 ¼ k0k2
k21

þ k3
k0

� ��1

; ð135Þ

Fig 10. Sel’kov network. (A) Influence topology. Temporal scaling of all Jacobian edges to jr0j gives the parameters ρ1 = r1/jr0j, ρ2 = r2/jr0j, and ρ3 = r3/jr0j.
The positive stoichiometric terms σ1 and σ2 must also be specified independently. The stability phase space is shown for σ1 = σ2 = 1 and (B) ρ3 = 1/10;
(C) ρ3 = 1/4; and (D) ρ3 = 1. Flows in the plot map the zones over which Δ1 (black) and Δ2 (red) are negative. See Fig. 6 for further details.

doi:10.1371/journal.pone.0122150.g010
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at which

r1 ¼ 2 1þ k21k3
k20k2

� ��1

ð136Þ

r2 ¼ k20k2
k31

ð137Þ

r3 ¼ k3
k1
: ð138Þ

The Sel’kov stability phase space shows interesting structure for three different values of ρ3. A
Hopf bifurcation and limit cycle are only possible if ρ3 < 1/4 and ρ1 and ρ2 map the network to
the zone in which both Δ1 and Δ2 are less than zero (small black/red overlap region in
Fig. 10B).

Repressilator network. Several different genetic oscillators have been investigated since
the first proposal of Monod and Jacob in 1961 [38]. One particularly famous example is the
Repressilator [31–34]:

_x1 ¼ k3
1

1þ xc3
� k4x1 ð139Þ

_x2 ¼ k1
1

1þ xa1
� k5x2 ð140Þ

_x3 ¼ k2
1

1þ xb2
� k6x3; ð141Þ

which has the following generalized form (Fig. 11A):

_x1 ¼ V
3

3 � V4
1 ð142Þ

_x2 ¼ V
1

1 � V5
2 ð143Þ

_x3 ¼ V
2

2 � V6
3 ; ð144Þ

with principal minors:

b1 ¼ �r1 � r2 � r3 ð145Þ

b2 ¼ r1r2 þ r1r3 þ r2r3 ð146Þ

b3 ¼ �r1r2r3 � 1; ð147Þ

and Hurwitz determinants:

D1 ¼ r1 þ r2 þ r3 ð148Þ

D2 ¼ ðr1 þ r2 þ r3Þðr1r2 þ r1r3 þ r2r3Þ � r1r2r3 � 1 ð149Þ

D3 ¼ ðr1r2r3 þ 1ÞD2; ð150Þ
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corresponding to the stability phase space displayed in Fig. 11B (for ρ3 = 1). These expressions
can also be obtained directly from the cycle-based forms (where I have already removed terms
that are clearly zero based on the influence topology):

D1 ¼ �c1 ð151Þ

D2 ¼ �c1 � c1c1þ c0 � c1c1c1þ c0 � c3: ð152Þ

D3 ¼ c1 � c1c1 � c1c1c1� c0 � c1c1c1 � c1c1c1
þ c1 � c1c1 � c3 � 2c0 � c1c1c1 � c3
� c0 � c3 � c3:

ð153Þ

After some cancellation in Δ2, instability can be shown to arise for:

r2
1r2 þ r2

1r3 þ r2
2r1 þ r2

2r3 þ r2
3r1 þ r2

3r2 þ 2r1r2r3 < 1: ð154Þ

The transition from positive to negative occurs simulatenously for Δ2 and Δ3, implying the si-
multaneous appearance of two unstable eigenvalues according to the number of sign changes
in the Routh array V(+, +, −, +) (necessary condition for a Hopf bifurcation). The purely posi-
tive sum of terms on the left-hand side is symmetric with respect to exchange of the ρi (ex-
changing the ri in the influence topology has no effect on the cycle definitions or their non-
overlapping contributions to the principal minors). DefiningC as this left-hand-side quantity
(topological reduction) withC strictly positive amounts to the single parameter condition of
C< 1 for instability.

As the number and positions of the steady state solutions depend sensitively on the Hill co-
efficients (yielding complicated expressions even for a = b = c = 1), no simple general

Fig 11. Repressilator network. (A) Influence topology. Cycle compaction leads to definition of q0 = r4r5r6, which is further removed after temporal scaling,
leaving only ρ1 = r1/jq0j1/3, ρ2 = r2/jq0j1/3, and ρ3 = r3/jq0j1/3. (B) Stability phase space for ρ3 = 1. Flows in the plot map the zones over which Δ1 (black), Δ2

(red), and Δ3 (blue) are negative. For ρ3 < 1, the domain of instability will be increased towards the upper right (and oppositely for larger ρ3). No green zone is
indicated here due to the dependence of the exact steady state solution(s) on the choice of Hill coefficients in the definition of the original network in
Equations 139–141. See Fig. 6 for further details.

doi:10.1371/journal.pone.0122150.g011
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expression exists. Whether the complete stability phase space or only a portion is accessible for
a given choice of a, b, and cmay not have a simple answer.

If the 3-cycle is positive rather than negative, the Hurwitz determinants are then:

D1 ¼ r1 þ r2 þ r3 ð155Þ

D2 ¼ ðr1 þ r2 þ r3Þðr1r2 þ r1r3 þ r2r3Þ � r1r2r3 þ 1 ð156Þ

D3 ¼ ðr1r2r3 � 1ÞD2: ð157Þ

The only possibility for instability is now through Δ3, which will be negative ifC� ρ1ρ2ρ3< 1.
In this region of instability, the Routh array isV(+, +, +, −), implying only one unstable eigenval-
ue. It is important to note that while there is no possibility for a Hopf bifurcation to arise at any
steady state solution, this does not by itself rule out the possibility of a limit cycle.

6 Analysis of General Networks
In the above I have treated several examples of networks consisting of a single level of overlap-
ping cycles (in graph theory, “strongly connected components”) and, in some cases, an addi-
tional constant upstream reaction node (orphan reaction). In this section, I show how this
approach can be generalized to serve as a useful starting point for the analysis of more general
networks through upstream/downstream network partitioning. The basic algorithm, illustrated
in the following examples, is simple and intuitive. A given network can be partitioned into its
upstream/downstream levels, with each level consisting of overlapping cycles. Analysis of the
network’s stability through its influence topology then proceeds on a level-by-level basis start-
ing from the most upstream level and then proceeding further downstream.

Consider the simple example shown in Fig. 12A of a network consisting of two such levels.
A specific algebraic form for this network is:

V1
1 V2

123 V3
2 V4

3

_x1 ¼ x1 � ð1þ x3Þx1x2 ð158Þ

_x2 ¼ ð1þ x3Þx1x2 � x2; ð159Þ

_x3 ¼ �0:1x3: ð160Þ

Trajectories of the species in this network for the specific choice of initial conditions of x1(0) =
1, x2(0) = 3, and x3(0) = 1 is shown in Fig. 12B. Here, x1 and x2 exhibit Lotka-Volterra-like os-
cillations that grow in an asymptotic fashion towards a fixed amplitude, with x3 decaying to 0.
Starting from Level 1, the 1-cycle is negative and therefore stable (see §4), with x3 in the vicinity
of the steady state asymptotically approaching a steady value (in this case, to the value of 0, but
any other fixed value would produce the same result). Species x3 then serves effectively as a
constant species input to Level 2, in the same manner as an orphan species (see §3), meaning
we can then proceed to consideration of Level 2. In the vicinity of the steady state, Level 2 can
be considered as an (asymptotically) autonomous subnetwork. This level has an influence to-
pology identical to the Lotka-Volterra network, permitting the possibility for instability.
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Fig 12. Analysis of general networks. (A) Network consisting of two distinct levels of overlapping cycles.
(B) Species trajectories (χ1, cyan; χ2, magenta; χ3, black) of an explicit algebraic version (Equations 158–
160) of a network having the influence topology shown in A (see §6 for details). (C) Similar two-level network
as in A, but with the levels swapped. (D) Species trajectories (χ1, cyan; χ2, magenta; χ3, black) of an explicit
algebraic version (Equations 161–163) of a network having the influence topology shown in C (see §6 for
details). (E) Example of a more complicated multilevel network.

doi:10.1371/journal.pone.0122150.g012
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Now consider a network similar to that shown in Fig. 12A but with the levels interchanged
(Fig. 12C). An explicit algebraic representation of such a network is:

V1
1 V2

12 V3
2 V4

3

_x1 ¼ x1 � x1x2 ð161Þ

_x2 ¼ x1x2 � x2; ð162Þ

_x3 ¼ x1x2 � 0:1x3: ð163Þ
Oscillations can now occur at the Lotka-Volterra-like Level 1. In the presence of such an oscil-
latory input from above, Level 2 is no longer an (asymptotically) autonomous subnetwork (the
approach presented in this manuscript is only valid for autonomous systems). For the initial
conditions of x1(0) = 1, x2(0) = 3, and x3(0) = 1, oscillations generated in Level 1 drive oscilla-
tions at Level 2 (oscillatory x3) as shown in Fig. 12D.

Analysis of more general networks like that shown in Fig. 12E should again proceed from
upstream to downstream with separate consideration of distinct sets of overlapping cycles that
may appear in parallel (within the same level).

7 Defining the Fundamental Set of Influence Topologies
While studying the set of all possible interaction networks (dynamical systems) makes little
sense, the set of all possible influence topologies is denumerable and can therefore be systemati-
cally studied. Based on the above level-by-level analysis, we can restrict our attention to a fun-
damental set of influence topologies corresponding to all possible graphs of overlapping cycles.
How to actually go about algorithmically enumerating all possible signed directed bipartite
graphs comprised purely of overlapping cycles for a fixed number of n species andm reactions
while avoiding repeats presents a significant challenge. Aside from this issue, even a small
number of species and reactions will generate a lengthy list due to the 2J+S different possible
unique sign assignments for the J Jacobian and S stoichiometric edges for a given directed
bipartite graph.

The following node-based sign degeneracy significantly reduces the list of truly unique
fundamental influence topologies. Consider a single influence topology graph displaying
the positive/negative connections between the species x1, . . ., xn and the reactions v1, . . ., vm.
For the species node x1, we can make the variable substitution y1 = −x1. That this leads to
negation of all its associated edges in the influence topology is simple to show. All Jacobian
arrows emanating from node y1 are transformed to @vk/@y1 = −@vk/@x1; all stoichiometric
arrows pointing to node y1 are also negated as the governing equation for species 1 is now
_y1 ¼ � _x1 ¼ �f1 ¼ �Pkvks

k
1 ¼

P
kvkð�sk1Þ. Now consider the reaction node substitution

w1 = −v1. All Jacobian arrows that point to this reaction are negated, @w1/@xi = −@v1/@xi; all stoi-
chiometric arrows that emanate from this reaction will also be negated, as one can see from the
governing equations, _xi ¼ fi ¼ w1s

1
i þ

P
k6¼1vks

k
i ¼ v1ð�s1i Þ þ

P
k 6¼1vks

k
i . Importantly, negation

of either a species or reaction node will not change the sign of the cycles that include this node
(nor, or course, the other cycles in the network), implying no change in the cycle-based Hurwitz
determinants. The presence of this sign degeneracy significantly reduces the list of all possible
unique influence topologies. A trivial example of this sign degeneracy is in the above analysis of
n-cycle networks (see §4), for which only overall positive or negative n-cycles are necessary to
consider: It is easy to show that the directed edges of any n-cycle network can be transformed

Implications of Network Topology on Stability

PLOS ONE | DOI:10.1371/journal.pone.0122150 March 31, 2015 34 / 39



by sign substitutions into either all arrows (cn = 1) or a single blunt arrow and the rest arrows
(cn = −1).

Another important sign degeneracy that may further reduce the list of fundamental influ-
ence topologies arises within cycle compaction terms. Cycle compaction terms are either posi-
tive or negative due to the assumed fixed signs of the edges that comprise a given term. Here, it
is more fundamental to consider the cycle compaction terms as defined by all of the edges that
contribute to the overlap, not just those that contribute an unspecified parameter (as was the
convention in Fig. 3). It is clear that any swapping of the sign of an even number of the edges
that define a particular compaction term will not affect its sign. Sign degeneracy within cycle
compaction terms is clearly related to the node-based sign degeneracy described above (for the
case of n-cycle networks, this relationship is obvious), but the more general nature of this con-
nection appears nontrivial.

Finally, influence topologies with seemingly distinct architectures might nevertheless have a
similar set of cycle-based intersections (returning again to the idea of cycle compaction) and
therefore the same implications for the Routh-Hurwitz conditions, suggesting the additional
presence of architectural degeneracies. For example, imagine graphically swapping the frag-
ment defined by parameters eflm with that defined by gh in Fig. 3B; such a change will have no
impact on the overlapping cycles of the influence topology (the fundamental variables for sta-
bility analysis) or the associated stability phase space.

Proper accounting for these degeneracies would clearly simplify the general problem of con-
necting network topology with stability.

Discussion
I have shown that examination of a network’s influence topology, which is based only on the
signs of the stoichiometries and monotonicities of its reactions, already restricts the spectrum
of its dynamical solutions (i.e. the precise numbers of unstable eigenvalues possible at each
steady state) without having to determine the exact steady state solution(s). The influence to-
pology of a network acts like a skeleton with bones set into joints that already delimit a poten-
tial range of movement; additional algebraic specification of the network acts like the tendons/
ligaments/muscles/tissue that further restrict this range, in some cases still permitting sampling
of the entire range of movement (e.g. the Jenkin-Maxwell and Brusselator networks) but in
other cases significantly resticting this range (e.g. the van der Pol and Lotka-Volterra net-
works). The most striking aspect of the above hierarchical treatment (topology-then-algebra) is
the dramatic reduction in parameters that is often possible, with the many different reaction
constants that define the original algebraic network reduced to only one or a few topological
parameters for analysis of its stability. For example, the nine reaction parameters plus three ini-
tial conditions that define the Jenkin-Maxwell network were immediately reduced to a two-
parameter stability condition that could be further reduced to a single-parameter condition
due to a topological symmetry. It is important to emphasize the solely topological basis of this
parameter reduction.

The influence topology should be especially useful for systems biology and synthetic biolo-
gy, where detailed information about biological reaction functions beyond the signs of their
stoichiometries and monotonicities is often unavailable (e.g. unknown Hill coefficient [39],
complicated transcriptional promoter regulation) or sometimes interesting to ignore (e.g. for
robustness studies [40, 41]). The principal benefit of the influence topology is the readily acces-
sible constraints it provides on a given network’s possible dynamics, revealing the potential to
shift a steady state from stability to instability (or vice versa) as well as what types of bifurcation
may be present (e.g. it provides necessary and fairly stringent conditions for a Hopf
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bifurcation). From a synthetic biology perspective, the influence topology provides an informa-
tive basis for better undestanding how the stability of a particular network could be changed
(e.g., by changing a particular reaction’s cooperativity and therefore the steepness of a given re-
action Jacobian, shifting the location of the steady state within the stability phase space).

Stoichiometry has been heavily emphasized in the past, almost always under the additional
assumption of mass action kinetics [7, 42–44]. While stoichiometry can indeed reduce the di-
mensionality of the original set of ODEs that underlie the network’s dynamics and can play an
important role in probing the possible number of steady states (multistationarity) of certain
classes of networks, stoichiometry alone provides only a limited perspective on the general
problem of network stability. As the above investigations of the influence topology show, the
notions of stoichiometric scaling and especially cycle compaction prove that variables other
than the individual stoichiometric terms are more suitable for examining a given network’s
local steady-state stability. In particular, upon cycle compaction, multiple stoichiometric terms
often end up being degenerate with themselves or, even more interestingly, with co-compacted
Jacobian terms (see Fig. 3 as well as the analysis of the Jenkin-Maxwell, van der Pol, and Lotka-
Volterra influence topologies).

Approaches for determining the number of steady states (multistationarity) of networks
have also traditionally received more attention in the past than methods for testing steady state
stability. It should be noted that the six classical networks considered above have (or can have,
in the case of the Repressilator) only a single steady state solution no matter the values of the
parameters that define the network. Whether this single steady state can become unstable and
exactly how it becomes unstable (e.g. through a Hopf bifurcation) is then the interesting ques-
tion, not steady state multiplicity. It should nevertheless be noted that for more general net-
works that share the same influence topology as the networks considered above (e.g. Sel’kov-
like networks), multiple steady state solutions may be possible depending upon the exact form
that the reaction functions take, but all of these steady states would still have to lie somewhere
on the (unchanged) stability phase space defined by the influence topology. For an in depth
analysis of multistationarity using the influence topology see [1, 2].

Important open questions are enumerated below.
Open Question #1: For each position in the stability phase space of a given influence topol-

ogy, is it always possible to find an explicit algebraic definition of the network that would map
at least one of the network’s steady states to this position? I have shown above that the algebraic
definitions of several classical networks project either onto the entire stability phase space or
only a part of it. The above question approaches this projection from the opposite viewpoint of
the influence topology. A better understanding of this question would clearly be beneficial for
the engineering of networks with desired properties (without requiring alteration of the net-
work’s influence topology).

Open Question #2:What is the most appropriate definition for theminimal influence to-
pology of a particular algebraically-defined network? In attempting to write down the influence
topology for the van der Pol network above, we discovered that it depends on the particular al-
gebraic expression of its governing equations. In this case, two different algebraic versions (the
Liénard-transformed version and a canonical version) led to influence topologies that differed
by only a single link, with the simpler network (Liénard-transformed) entailing significantly
fewer dimensions to describe its complete stability phase space. This example immediately sug-
gests the notion of aminimal influence topology for a given algebraic network (reachable by a
suitable algebraic transformation) with an associated stability phase space having the fewest
possible dimensions. Such a definition should account for possible degeneracy of the minimal
topology; lowest dimensionality is likely insufficient to uniquely identify the mostminimal to-
pology. Potential degeneracies could at least be partially accounted for by adoption of further
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criteria, such as the influence topology with the smallest cycles, least number of cycles, and/or
the least number of each type of edges. Algorithms that allow one to find the unique minimal
influence topology (or degenerate set of minimal influence topologies) for a given algebraic
network would be of great interest.

Open Question #3:What is the most appropriate definition for the fundamental set of in-
fluence topologies? Based on the denumerability of the influence topology, the notion of a fun-
damental set of all possible influence topologies was presented (§7). As argued above, this
fundamental set should consist of influence topologies consisting of only overlapping cycles
and must furthermore take into account the two forms of sign degeneracy identified above
(arising at each node or within each compaction parameter) and any possible architectural de-
generacies. Enumeration and examination of all non-degenerate fundamental influence topolo-
gies and their associated stability phase spaces for low dimensional networks (or low
dimensional influence topologies) should significantly deepen our understanding of the con-
nection between network topology and stability.

Open Question #4: Is it possible to derive the Routh-Hurwitz conditions from a purely to-
pological perspective? In the above, I have shown that it is possible to interpret the Routh-Hur-
witz conditions topologically, but to derive these conditions topologically is a much deeper
challenge. The topological expressions of the Routh-Hurwitz conditions presented above are,
as already pointed out, not “fully reduced” (see §1). Further reduction of these expressions will
require development of a more explicit topological notation capable of accounting for the
many different types of intersection that can potentially take place among the bipartite cycles
of a network’s influence topology. As the notion of cycle compaction introduced above is based
on cycle overlaps (see Fig. 3), it may offer a useful perspective on this problem.
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