

REVIEW

Countering opioid-induced respiratory depression by non-opioids that are respiratory stimulants [version 1; peer review: 2 approved]

Mohammad Zafar Imam, Andy Kuo ២, Maree T Smith ២

School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia

V1 First published: 07 Feb 2020, 9(F1000 Faculty Rev):91 (https://doi.org/10.12688/f1000research.21738.1) Latest published: 07 Feb 2020, 9(F1000 Faculty Rev):91 (

https://doi.org/10.12688/f1000research.21738.1)

Abstract

Strong opioid analgesics are the mainstay of therapy for the relief of moderate to severe acute nociceptive pain that may occur post-operatively or following major trauma, as well as for the management of chronic cancer-related pain. Opioid-related adverse effects include nausea and vomiting, sedation, respiratory depression, constipation, tolerance, and addiction/abuse liability. Of these, respiratory depression is of the most concern to clinicians owing to the potential for fatal consequences. In the broader community, opioid overdose due to either prescription or illicit opioids or co-administration with central nervous system depressants may evoke respiratory depression. To address this problem, there is ongoing interest in the identification of non-opioid respiratory stimulants to reverse opioid-induced respiratory depression but without reversing opioid analgesia. Promising compound classes evaluated to date include those that act on a diverse array of receptors including 5-hydroxytryptamine, D₁ -dopamine, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) receptor antagonists, and nicotinic acetylcholine as well as phosphodiesterase inhibitors and molecules that act on potassium channels on oxygen-sensing cells in the carotid body. The aim of this article is to review recent advances in the development potential of these compounds for countering opioid-induced respiratory depression.

Keywords

opioid, respiratory depression, respiratory stimulant, ampakine, allosteric modulator, NMDA receptor antagonist, 5-HT1a, 5-HT3

Open Peer Review

Reviewer Status 🗹 🗸

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

- 1 Albert Dahan (D), Leiden University Medical Center, Leiden, The Netherlands
- 2 Frances Chung, University Health Network, University of Toronto, Toronto, Canada

Any comments on the article can be found at the end of the article.

Corresponding author: Maree T Smith (maree.smith@uq.edu.au)

Author roles: Imam MZ: Writing - Original Draft Preparation; Kuo A: Writing - Review & Editing; Smith MT: Writing - Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: MZI, AK, and the Centre for Integrated Preclinical Drug Development (CIPDD) were supported financially by Translating Health Discovery Project funding awarded by Therapeutic Innovation Australia (TIA). TIA is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Imam MZ *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Imam MZ, Kuo A and Smith MT. Countering opioid-induced respiratory depression by non-opioids that are respiratory stimulants [version 1; peer review: 2 approved] F1000Research 2020, 9(F1000 Faculty Rev):91 (https://doi.org/10.12688/f1000research.21738.1)

First published: 07 Feb 2020, 9(F1000 Faculty Rev):91 (https://doi.org/10.12688/f1000research.21738.1)

Introduction

Although the incidence of opioid-induced respiratory depression in the post-operative setting is low, it is of major concern to clinicians because of the potential for fatal consequences when clinical monitoring is inadequate. Of additional concern is the large increase in opioid-related deaths over the past decade due to respiratory depression, particularly in overdose and in individuals consuming other central nervous system depressants such as sedatives and alcohol¹. The opioids may have been prescribed for the management of chronic pain or they may have been obtained through diversion of prescribed opioids or by illicit means. Opioid-related deaths due to respiratory depression have risen in parallel with the marked increase in opioid consumption, particularly in the United States of America, over this period². Disturbingly, chronic opioid use accounts for an estimated 24% of central sleep apnea that can go unnoticed and be fatal without appropriate intervention³. Apart from strategies aimed at risk mitigation by reducing clinical opioid administration, drug discovery programs have been aimed at discovering a new generation of opioids that retain potent analgesic activity but with less respiratory depression⁴⁻⁶. Another strategy, which is the subject of this review, is to identify respiratory stimulant molecules for potential co-administration with an opioid analgesic to counter opioid-related respiratory depression whilst sparing opioid analgesia.

Recent advances in countering opioid-induced respiratory depression

Classes of molecules showing promising preclinical and/or clinical results to date include ampakines, 5-hydroxytryptamine (5-HT) receptor agonists, phosphodiesterase-4 inhibitors, D₁-dopamine receptor agonists, nicotinic acetylcholine receptor agonists, acetylcholine esterase inhibitors, bradykinin receptor antagonists, N-methyl-D-aspartate (NMDA) receptor antagonists, protein kinase A inhibitors, G-protein-gated inwardly rectifying potassium channel (GIRK) blockers, α_2 -adrenoceptor antagonists, and chemoreceptor stimulants (see summary in Table 1). For a more detailed discussion, see the excellent review by Dahan and colleagues². Herein, we have focused only on the most recent research on these experimental respiratory stimulants.

Ampakines are positive allosteric modulators of the α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, which has a key role in the maintenance of respiratory drive in the pre-Botzinger complex and other central nervous system sites². In both animals and humans, ampakines stimulate respiratory drive, particularly under hypoventilatory conditions². CX717 is one of two ampakines tested in humans that have been shown to partially reverse alfentanil-induced respiratory depression⁷. The other, CX1739, has been assessed in a phase 2 clinical trial for its capacity to antagonize remifentanil-induced respiratory depression; however, the results are not published as yet (ClinicalTrials.gov; Identifier: NCT02735629). Apart from evoking respiratory stimulation, ampakines augment morphine-induced antinociception in rats, showing the utility of combining an opioid with an ampakine to produce potent pain relief but with a superior respiratory

safety profile compared with an equi-analgesic dose of morphine alone⁸. More recently, single intravenous (i.v.) bolus doses of the ampakine LCX001 prevented and reversed fentanyl-induced respiratory depression in rats by strengthening respiratory frequency and minute ventilation whilst maintaining opioid analgesia⁹. Encouragingly, i.v. LCX001 also produced dose-dependent antinociception in rats⁹.

In other work, i.v. administration of either nicotine or the $\alpha 4\beta 2$ nicotinic acetylcholine receptor agonist A85380, but not the α7 nicotinic acetylcholine receptor agonist PNU282987, rapidly reversed fentanyl-induced respiratory depression and apnea in rats in a manner comparable to i.v. dosing with the opioid receptor antagonist naloxone¹⁰. Additionally, i.v. A85380 potentiated fentanyl-induced antinociception in rats consistent with earlier work showing that agonists of the nicotinic $\alpha 4\beta 2$ receptor evoke antinociception¹⁰. Furthermore, A85380 had a modest effect on fentanyl-induced sedation in rats¹⁰. Remifentanil is a highly potent respiratory depressant that is particularly difficult to reverse by either a low dose of naloxone or an ampakine in a recent clinical trial¹¹. Thus, the finding that i.v. remifentanil-induced apnea was markedly reduced by co-administration of i.v. A85380 is of particular interest¹⁰. The respiratory protective effects of A85380 appear to be underpinned by the fact that the nicotinic acetylcholine receptor subunits $\alpha 4$ and $\beta 2$ are expressed by the medullary respiratory network and activation of $\alpha 4\beta 2$ receptors increases respiratory rhythm¹⁰. Additionally, $\alpha 4\beta 2$ receptors are present in the carotid bodies and so they may also potentially contribute to the respiratory stimulant effects of A85380¹⁰. The water solubility of A85380 like naloxone, together with its much longer half-life at approximately 7 hours compared with 15-30 minutes for naloxone¹⁰, support the progression of this compound towards clinical trials.

Doxapram is widely used in veterinary practice to reverse opioid-induced respiratory depression. In goats, i.v. doxapram reduced etorphine-induced respiratory depression by rapid reversal of all respiratory parameters except tidal volume¹². In adult humans, doxapram is used to reverse respiratory depression post-anesthesia by direct input on brainstem centers with differential effects on the pre-Botzinger complex and the downstream motor output (XII)¹³. In preterm infants with apnea of prematurity insensitive to caffeine treatment, doxapram infusion significantly reduced apnea episodes primarily by its effect on respiratory drive rather than on respiratory muscle¹⁴. Interestingly, the molecular mechanism underpinning the respiratory stimulant effects of doxapram is restricted to the positive enantiomer and involves inhibition of human TWIK-related acid-sensitive K+-channels (TASK), in particular TASK-1 and TASK-3 channels that are expressed in the carotid body^{15,16}.

Recent work in anaesthetized rabbits has shed new light on the mechanism by which 5-HT receptor agonists stimulate respiratory parameters, including minute ventilation, respiratory rate, and tidal volume¹⁷. Specifically, bilateral microinjection of 5-HT caused excitatory activity of the pre-Botzinger complex via a mechanism mediated by 5-HT_{1A} and 5-HT₃ receptors¹⁷.

on.
lepressio
tory d
l respira
induced
r opioid-
counte
ity to
ir abil
or the
sed fo
asses:
senles
d mol
-opioi
of non
Summary
Table

Reference	0	19	20	21	22	12	ດ	23	22	24	25	26	27	28	24	28
Effect	↑ Respiratory frequency; ↑ hemoglobin oxygenation; less decrease of slope of the linear relationship between expiratory volume/minute and CO ₂ concentration in expired air (in hypercapnic challenge)	↑ Respiratory frequency; ↑ oxygen saturation	T Respiratory frequency and amplitude	↑ Respiratory frequency; ↑ burst amplitude; no effect on behavior or arousal state	↑ Respiratory rate; ↑ tidal volume; ↑ minute ventilation	↑ Tidal volume; ↑ ventilation; ↑ PaO ₂ ; ↑ SaO ₂ ; ↓ PaCO ₂	↑ Respiratory rate; ↑ minute ventilation	Protection against acute opioid-induced death; reversal of depression of respiratory parameters (respiratory frequency, minute ventilation, $pO_2^{,s}$, $SO_2^{,s}$) to normal; no effect on morphine antinociception	↑ Respiratory rate; ↑ tidal volume; ↑ minute ventilation	Counteracted morphine-induced apnea	T Minute ventilation	\uparrow Respiratory frequency; \uparrow tidal volume; \uparrow minute ventilation	\uparrow Respiratory minute volume	↓ Time to recumbency; ↑ respiratory rate; ↑ PaO ₂ ; ↓ PaCO ₂	Counteracted morphine-induced apnea	\downarrow Time to recumbency; \uparrow respiratory rate; \uparrow PaO_2; \downarrow PaCO_2
Species (strain/sex)	Human (males)	Rat (SD)	Rat (SD)	Rat (SD)	Rat (SD)	Boer goat (<i>Capra</i> hircus)	Rat (SD)	Mouse (KM), rat (SD)	Rat (SD)	Rat (SD)	Rat (SD)	Rat (SD)	Rat (SD)	Boer goat (<i>Capra</i> hircus)	Rat (SD)	Boer goat (<i>Capra hircus</i>)
Co-administered opioid (dose)	Alfentanii (100 ng/ml plasma concentration)	Fentanyl (60 µg/kg, i.v.)	Fentanyl (60 µg/kg, i.v.)	Fentanyl	Morphine (10 mg/kg, i.p.)	Etorphine (0.1 mg/kg, i.v.)	Fentanyl (120 µg/kg, s.c.)	TH-030418 (acute death - 15 mg/kg, s.c.; respiration - 20 µg/kg, i.v.)	Morphine (10 mg/kg, i.p.)	Morphine (21.3 ± 2.1 mg/kg, i.v.)	Remifentanil (2.5 µg/kg, i.v.)	Fentanyl (60 µg/kg, i.v.)	Fentanyl (10–15 µg/kg, systemic)	Etorphine hydrochloride (0.06 mg/kg, i.m.)	Morphine (21.3 ± 2.1 mg/kg, i.v.)	Etorphine hydrochloride (0.06 mg/kg, i.m.)
Receptor/target interaction	AMPA	AMPA	AMPA	AMPA	AMPA	AMPA	AMPA	AMPA	AMPA	5-HT _{1A}	5-HT _{1A}	5-HT _{1A}	5-HT _{4A}	5-HT $_{1A}$ and 5-HT $_7$	5-HT _{1A}	5-HT ₄
Dose, route	1,500 mg, oral	15 mg/kg, i.v.	15 mg/kg, i.v.	16 mg/kg, i.p.	15 mg/kg, i.p.		10 mg/kg, i.v.	1–30 mg/kg, i.v.	2 and 10 mg/kg, i.p.	50 µg/kg, i.v.	10 and 20 µg/kg, i.v.	0.2 mg/kg	1-2 mg/kg, systemic	0.5 mg/kg, i.v.	10 or 100 µg/kg	0.5 mg/kg, i.v.
Molecule	CX717			CX546		CX1942	LCX001	XD-8-17C	Tianeptine	Buspirone	Repinotan	Befiradol	BIMU8	8-OH-DPAT	8-OH-DPAT	Zacopride
Pharmacological class	Ampakines									5-HT agonists						

E1000 Possarch 2020 0	(E1000 Ecoult		t updated: 07	EEB 2020
F1000nesearch 2020, 9	(FI000 Facult	y nev).91 Las	i upualeu. 07	FED 2020

Reference	20	30	30	31	31	31	32	33	33	34	42	10	10
Effect	↑ Inspiratory time; ↓ respiratory rate	Recovered prolongation and flattening effect on inspiratory discharge in the phrenic nerve by morphine	Recovered prolongation and flattening effect on inspiratory discharge in the phrenic nerve by morphine	Reversal of fentanyl-induced abolition of phrenic and vagus nerve respiratory discharges and firing of bulbar post-inspiratory neurons	Reversal of fentanyl-induced abolition of phrenic and vagus nerve respiratory discharges and firing of bulbar post-inspiratory neurons	Reversal of fentanyl-induced abolition of phrenic and vagus nerve respiratory discharges and firing of bulbar post-inspiratory neurons	\uparrow respiratory rate; \uparrow tidal volume	↑ Minute volume; ↑ tidal volume; ↑ PaO₂; ↑ pH; ↓ PaCO₂	↓ End-tidal carbon dioxide (ET _{co2})	Normoxia: ↑ respiratory frequency; ↑ tidal volume; <i>Hypoxia:</i> ↓ respiratory frequency; ↑ tidal volume (0.03 mg/kg/ minute); ↓ tidal volume (0.1 mg/ kg/minute)	↑ Respiratory frequency; ↑ ventilation; ↑ PaO₂; ↑ SaO₂; ↓ PaCO₂	↑ respiratory frequency; ↑ tidal volume; ↑ minute ventilation;	↑ respiratory frequency; ↑ tidal volume: ↑ minute ventilation
Species (strain/sex)	Rat	Rat (WH)	Rat (WH)	Cat	Cat	Cat	Human -healthy	Rat (SD)	Cynomolgus monkeys	Rat (SD)	Boer goat (<i>Capra hircus</i>)	Rat (SD)	Rat (SD)
Co-administered opioid (dose)	Morphine (0.4 mg/kg/ minute, i.v.)	Morphine (1.0 mg/kg, i.v.)	Morphine (1.0 mg/kg, i.v.)	Fentanyl citrate (15–35 µg/kg)	Fentanyl citrate (15–35 µg/kg)	Fentanyl citrate (15–35 µg/kg)	Alfentanil (stepped drug infusion)	Morphine (10 mg/kg, i.v.)	Morphine (3–4 mg/kg, i.v.)	Morphine (10 mg/kg, i.v.)	Etorphine (0.1 mg/kg, i.v.)	Fentanyl (35 µg/kg, s.c.)	Fentanyl (35 µg/kg, s.c.)
Receptor/target interaction	PDE4	PDE4	PDE4	Ō	Ō	Ō	Carotid body	Carotid body	Carotid body	Peripheral chemoreceptors	Carotid body	α4β2	α4β2
Dose, route	20 mg/kg, i.v.	3 and 10 mg/kg, i.v.	0.1 and 0.3 mg/kg, i.v.	0.5–3 mg/kg	0.5–2.0 mg/kg	1.5–3 mg/kg	Stepped drug infusion	(0.6, 1.5, and 6.0 mg/ml; 0.04, 0.1, and 0.4 mg/kg/minute)	5-minute load of 0.2 or 0.1 mg/kg/minute i.v. + maintenance infusion 0.1 or 0.05 mg/kg/minute	0.03, 0.1 mg/kg/ minute, i.v.	1 mg/kg, i.v.	0.6 mg/kg, s.c.	0.03 to 0.06 mg/kg, s.c.
Molecule	Caffeine		Rolipram	6-Chloro-APB	Dihydrexidine	SKF-38393	GAL021	GAL021		Almitrine	Doxapram	Nicotine	A85380
Pharmacological class	Phosphodiesterase- 4 inhibitors			D1-dopamine receptor agonists			BK-channel blocker			Chemoreceptor stimulant		Nicotinic acetylcholine	receptor agonist

Pharmacological class	Molecule	Dose, route	Receptor/target interaction	Co-administered opioid (dose)	Species (strain/sex)	Effect	Reference
N-methyl-D- aspartate receptor antagonist	Esketamine	0.57 mg/kg, i.v., cumulative	NMDA	Remifentanil (0.1–0.5 ng/ml, i.v.)	Human – healthy	Stimulatory effect on ventilatory CO2 sensitivity	35
Protein kinase A (PKA) inhibitor	H89	50 µg, i.c.v.	1	Fentanyl (60 µg/kg)	Rat (SD)	Υ respiratory frequency; Υ inspiratory time; \downarrow expiratory time	36
GIRK channel blocker	Tertiapin-Q	0.5-2 µg, i.c.v.	I	Fentanyl (60 µg/kg)	Rat (SD)	↑ respiratory frequency; ↑ inspiratory time	36
Alpha 2- adrenoceptor antagonist	SK&F 86466	1 and 5 mg/kg, i.v.	α_2 -adrenoceptor	Dermorphin (30 or 100 pmol)	Rat (SD)	↑ relative ventilator minute volume; ↑respiratory rate; ↓ CO₂ production	37
AChE inhibitor	Donepezil	0.4 mg/kg, i.v.	Acetylcholinesterase	Morphine (2 mg/kg, i.v.)	Rabbit	\uparrow Respiratory rate; \uparrow respiratory amplitude; \uparrow minute phrenic activity; ↓ phrenic nerve apnea threshold PaCO ₂	88
	Donepezil	0.4 mg/kg, i.v.	Acetylcholinesterase	Buprenorphine (0.02 mg/kg, i.v.)	Rabbit	↑ Respiratory rate; ↑ respiratory amplitude; ↑ minute phrenic activity	30
	RA ₆	1 mg i.v., 2 mg s.c.	Acetylcholinesterase	Morphine (8 mg, i.v.)	Rabbit	↑ Respiratory rate; ↓ PaCO ₂	40
	RA_7	1 or 2 mg, i.v.	Acetylcholinesterase	Morphine (8 mg, i.v.)	Rabbit	↑ Respiratory rate; ↓ PaCO ₂	40
	RA ₁₅	0.25 or 0.5 mg, i.v.	Acetylcholinesterase	Morphine (8 mg, i.v.)	Rabbit	↑ Respiratory rate; ↓ PaCO ₂	40
	Physostigmine	0.05 or 0.1 mg, i.v.	Acetylcholinesterase	Morphine (8 mg, i.v.)	Rabbit	↓ PaCO₂	40
Others	4-aminopyridine	0.25 mg/kg, i.v.	Potassium channel blocker	Fentanyl (0.6–0.9 mg)	Human	↑ Respiratory rate; ↑ tidal volume; ↑ maximum occlusion pressure; ↓ PaCO ₂	41
	Glycyl-L- glutamine	1–100 nmol, i.c.v.	Brainstem neurons	Morphine (40 nmol, i.c.v.)	Rat (SD)	Inhibited hypercapnia (PaCO ₂), hypoxia (PaO ₂), and acidosis (blood pH) evoked by morphine	42
	Thyrotropin- releasing hormone	2–5 mg/kg, i.v., i.t.	1	Morphine (5–15 mg/kg, i.v.)	Rat (SD)	↑ Respiratory rate; ↑ tidal volume; ↓ PaCO ₂	43
	Taltirelin	1–2 mg/kg, i.v., i.t.	I	Morphine (5–15 mg/kg, i.v.)	Rat (SD)	↑ Respiratory rate; ↑ tidal volume; ↓ PaCO ₂ ; ↑ PaO ₂	43
5-HT, 5-hydroxytryptamii i.c.v., intracerebroventric oxygen; PDE4, phospho	ne; α4β2, alpha-4 bet ular; i.m., intramuscu diesterase 4; PKA, pr	:a-2 nicotinic receptor; AMI llar; i.p., intraperitoneal; i.t. otein kinase A; SaO ₂ , oxyg	PA, α-amino-3-hydroxy-5-me , intrathecal; i.v., intravenous gen saturation; s.c., subcutar	sthyl-4-isoxazolepropionic acid; D s; KM, Kun Ming; NMDA, N-methy neous; SD, Sprague Dawley; WH,	,, dopamine receptor D1; G I-D-aspartate; PaCO ₂ , parti Wistar Han.	IRK, G-protein-gated inwardly rectifying p al pressure of carbon dioxide; PaO ₂ , parti	ootassium; ial pressure of

Other pharmacological classes assessed for their ability to blunt opioid-induced respiratory depression include PKA inhibitors, GIRK inhibitors, and thyrotropin-releasing hormone (TRH) analogs. Specifically, fentanyl-induced respiratory depression was attenuated in unrestrained rats by intracerebroventricular (i.c.v.) bolus doses of the PKA inhibitor H89³⁶ and by the GIRK inhibitor tertiapin-Q³⁶. In anaesthetized rats, TRH and its long-acting analog, taltirelin, evoked a marked increase in respiratory rate, tidal volume, and blood oxygenation after i.v. co-administration with morphine⁴³.

In a proof-of-concept clinical study in healthy human subjects, i.v. infusion of the NMDA receptor antagonist esketamine at a subanesthetic dose dose-dependently reversed respiratory depression induced by i.v. remifentanil³⁵. This was underpinned by a stimulatory effect on ventilatory CO_2 chemosensitivity that was otherwise reduced by remifentanil alone³⁵. The esketamine

effect had a rapid onset of action and it was driven by plasma pharmacokinetics³⁵. By contrast, esketamine had little or no effect on resting ventilation. Of concern, however, is that two of 14 subjects withdrew from the study owing to the psychotomimetic side-effects of esketamine³⁵.

Conclusions

The US opioid epidemic has focused attention on the discovery of respiratory stimulants to reverse opioid-induced respiratory depression whilst sparing opioid analgesia. Although progress has been made, most studies have been confined to the preclinical setting. Very few molecules have entered clinical development, and there are currently no ongoing clinical trials of respiratory stimulants registered on ClinicalTrials.gov (accessed 5 December 2019). Hence, considerable work remains before respiratory stimulant molecules with promising preclinical and/or human data become available for use in clinical practice.

References

- Gudin JA, Mogali S, Jones JD, et al.: Risks, management, and monitoring of combination opioid, benzodiazepines, and/or alcohol use. Postgrad Med. 2013; 125(4): 115–30.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Dahan A, van der Schrier R, Smith T, et al.: Averting Opioid-induced Respiratory Depression without Affecting Analgesia. Anesthesiology. 2018; 128(5): 1027–37.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Correa D, Farney RJ, Chung F, et al.: Chronic opioid use and central sleep apnea: a review of the prevalence, mechanisms, and perioperative considerations. Anesth Analg. 2015; 120(6): 1273–85.
- PubMed Abstract | Publisher Full Text
 F Schmid CL, Kennedy NM, Ross NC, et al.: Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell. 2017; 171(5): 1165–1175.e13.
- PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

 5.
 F Manglik A, Lin H, Aryal DK, et al.: Structure-based discovery of opioid
- analgesics with reduced side effects. Nature. 2016; 537(7619): 185–90.
 PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
 Araldi D, Ferrari LF, Levine JD: Mu-opioid Receptor (MOR) Biased
- Agonists Induce Biphasic Dose-dependent Hyperalgesia and Analgesia, and Hyperalgesic Priming in the Rat. *Neuroscience*. 2018; 394: 60–71. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
- Ren J, Ding X, Greer JJ: Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats. Am J Respir Crit Care Med. 2015; 191(6): 704–10.
 PubMed Abstract | Publisher Full Text
- F Sun Y, Liu K, Martinez E, et al.: AMPAkines and morphine provide complementary analgesia. Behav Brain Res. 2017; 334: 1–5.
 PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
- F Dai W, Gao X, Xiao D, et al.: The Impact and Mechanism of a Novel Allosteric AMPA Receptor Modulator LCX001 on Protection Against Respiratory Depression in Rodents. Front Pharmacol. 2019; 10: 105. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
- F Ren J, Ding X, Greer JJ: Activating α4β2 Nicotinic Acetylcholine Receptors Alleviates Fentanyl-induced Respiratory Depression in Rats. Anesthesiology. 2019; 130(6): 1017–31.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Krystal A, Lippa A, Nasiek D, et al.: 0571 opioids and sleep apnea: antagonism of remifentanii-induced respiratory depression by cx1739 in two clinical models of opioid induced respiratory depression. Sleep. 2017; 40(suppl_1): A212–A212. Publisher Full Text
- Haw AJ, Meyer LC, Greer JJ, et al.: Ampakine CX1942 attenuates opioidinduced respiratory depression and corrects the hypoxaemic effects of etorphine in immobilized goats (Capra hircus). Vet Anaesth Analg. 2016; 43(5):

528–38. PubMed Abstract | Publisher Full Text

 F Kruszynski S, Stanaitis K, Brandes J, et al.: Doxapram stimulates respiratory activity through distinct activation of neurons in the nucleus hypoglossus and the pre-Bötzinger complex. J Neurophysiol. 2019; 121(4): 1102–10. PubMed Abstract | Publisher Full Text | F1000 Recommendation

F1000 recommended

- JE de Waal CG, Hutten GJ, Kraaijenga JV, et al.: Doxapram Treatment and Diaphragmatic Activity in Preterm Infants. Neonatology. 2019; 115(1): 85–8.
 PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
- F Cunningham KP, MacIntyre DE, Mathie A, et al.: Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels. Acta Physiol (0xf). 2020; 7(2): e13361. PubMed Abstract | Publisher Full Text | F1000 Recommendation
- F O'Donohoe PB, Huskens N, Turner PJ, et al.: A1899, PK-THPP, ML365, and Doxapram inhibit endogenous TASK channels and excite calcium signaling in carotid body type-1 cells. Physiol Rep. 2018; 6(19): e13876.
 PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
- Iovino L, Mutolo D, Cinelli E, et al.: Breathing stimulation mediated by 5-HT_{1A} and 5-HT₁ receptors within the preBötzinger complex of the adult rabbit. Brain Res. 2019; 1704: 26–39.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- F Oertel BG, Felden L, Tran PV, et al.: Selective antagonism of opioid-induced ventilatory depression by an ampakine molecule in humans without loss of opioid analgesia. Clin Pharmacol Ther. 2010; 87(2): 204–11.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Greer JJ, Ren J: Ampakine therapy to counter fentanyl-induced respiratory depression. *Respir Physiol Neurobiol.* 2009; 168(1–2): 153–7.
 PubMed Abstract | Publisher Full Text
- F Ren J, Ding X, Funk GD, *et al.*: Ampakine CX717 protects against fentanylinduced respiratory depression and lethal apnea in rats. *Anesthesiology*. 2009; 110(6): 1364–70.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- F Ren J, Poon BY, Tang Y, et al.: Ampakines alleviate respiratory depression in rats. Am J Respir Crit Care Med. 2006; 174(12): 1384–91.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Cavalla D, Chianelli F, Korsak A, et al.: Tianeptine prevents respiratory depression without affecting analgesic effect of opiates in conscious rats. Eur J Pharmacol. 2015; 761: 268–72.
 PubMed Abstract | Publisher Full Text
- Dai W, Xiao D, Gao X, et al.: A brain-targeted ampakine compound protects against opioid-induced respiratory depression. Eur J Pharmacol. 2017; 809: 122–9.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- 24. Sahibzada N. Ferreira M. Wasserman AM. et al.: Reversal of morphine-induced

apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine_{1A} receptors. *J Pharmacol Exp Ther.* 2000; **292**(2): 704–13. PubMed Abstract

- Guenther U, Theuerkauf NU, Huse D, et al.: Selective 5-HT'A-R-agonist repinotan prevents remifentanil-induced ventilatory depression and prolongs antinociception. Anesthesiology. 2012; 116(1): 56–64.
 PubMed Abstract | Publisher Full Text
- Ren J, Ding X, Greer JJ: 5-HT1A receptor agonist Befiradol reduces fentanyl-induced respiratory depression, analgesia, and sedation in rats. *Anesthesiology*. 2015; 122(2): 424–34.
 PubMed Abstract | Publisher Full Text
- F Manzke T, Guenther U, Ponimaskin EG, et al.: 5-HT₄₍₀₎ receptors avert opioid-induced breathing depression without loss of analgesia. *Science*. 2003; 301(5630): 226–9.
 Publisher Full Text | E1000 Recommendation

PubMed Abstract | Publisher Full Text | F1000 Recommendati

- F Meyer LC, Fuller A, Mitchell D: Zacopride and 8-OH-DPAT reverse opioidinduced respiratory depression and hypoxia but not catatonic immobilization in goats. Am J Physiol Regul Integr Comp Physiol. 2006; 290(2): R405–13. PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Kasaba T, Takeshita M, Takasaki M: [The effects of caffeine on the respiratory depression by morphine]. Masui. 1997; 46(12): 1570–4.
 PubMed Abstract
- Kimura S, Ohi Y, Haji A: Blockade of phosphodiesterase 4 reverses morphineinduced ventilatory disturbance without loss of analgesia. *Life Sci.* 2015; 127: 32–8.

PubMed Abstract | Publisher Full Text

- Lalley PM: Dopamine, receptor agonists reverse opioid respiratory network depression, increase CO₂ reactivity. *Respir Physiol Neurobiol.* 2004; 139(3): 247–62.
 PubMed Abstract I Publisher Full Text
- F Roozekrans M, van der Schrier R, Okkerse P, et al.: Two studies on reversal of opioid-induced respiratory depression by BK-channel blocker GAL021 in human volunteers. Anesthesiology. 2014; 121(3): 459–68.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Golder FJ, Dax S, Baby SM, et al.: Identification and Characterization of GAL-021 as a Novel Breathing Control Modulator. Anesthesiology. 2015; 123(5): 1093–104.

PubMed Abstract | Publisher Full Text

- Gruber RB, Baby SM, Tanner LH, et al.: The effects of almitrine on hypoxic and opioid-induced respiratory depression. The American Thoracic Society Annual Meeting: American Thoracic Society. 2011; 183: A5280. Publisher Full Text
- Jonkman K, van Rijnsoever E, Olofsen E, et al.: Esketamine counters opioidinduced respiratory depression. Br J Anaesth. 2018; 120(5): 1117–27. PubMed Abstract | Publisher Full Text | F1000 Recommendation
- F Liang X, Yong Z, Su R, et al.: Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression. *Neurosci Lett.* 2018; 677: 14–8.
 PubMed Abstract | Publisher Full Text | F1000 Recommendation
- Vonhof S, Sirén AL: Reversal of μ-opioid-mediated respiratory depression by a₂-adrenoceptor antagonism. *Life Sci.* 1991; 49(2): 111–9.
 Publisher Full Text
- Tsujita M, Sakuraba S, Kuribayashi J, et al.: Antagonism of morphine-induced central respiratory depression by donepezil in the anesthetized rabbit. Biol Res. 2007; 40(3): 339–46.
 PubMed Abstract | Publisher Full Text
- Sakuraba S, Tsujita M, Arisaka H, et al.: Donepezil reverses buprenorphineinduced central respiratory depression in anesthetized rabbits. *Biol Res.* 2009; 42(4): 469-75.

PubMed Abstract | Publisher Full Text

- 40. Elmalem E, Chorev M, Weinstock M: Antagonism of morphineinduced respiratory depression by novel anticholinesterase agents. *Neuropharmacology*. 1991; **30**(10): 1059–64. PubMed Abstract | Publisher Full Text
- Sia RL, Zandstra DF: 4-Aminopyridine reversal of fentanyl-induced respiratory depression in normocapnic and hypercapnic patients. *Br J Anaesth.* 1981; 53(4): 373–9.
 PubMed Abstract | Publisher Full Text
- Owen MD, Unal CB, Callahan MF, et al.: Glycyl-glutamine inhibits the respiratory depression, but not the antinociception, produced by morphine. Am J Physiol Regul Integr Comp Physiol. 2000; 279(5): R1944–R1948.
 PubMed Abstract | Publisher Full Text
- E Boghosian JD, Luethy A, Cotten JF: Intravenous and Intratracheal Thyrotropin Releasing Hormone and Its Analog Taltirelin Reverse Opioid-Induced Respiratory Depression in Isoflurane Anesthetized Rats. J Pharmacol Exp Ther. 2018; 366(1): 105–12.
 PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Open Peer Review

Current Peer Review Status:

Editorial Note on the Review Process

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1 Frances Chung

Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Canada

Competing Interests: No competing interests were disclosed.

2 Albert Dahan Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

