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Abstract

We present a toolbox for the study of molecular interactions occurring between

NGF and its receptors. By means of a suitable insertional mutagenesis method we

show the insertion of an 8 amino acid tag (A4) into the sequence of NGF and of 12

amino acid tags (A1 and S6) into the sequence of TrkA and P75NTR NGF-

receptors. These tags are shortened versions of the acyl and peptidyl carrier

proteins; they are here covalently conjugated to the biotin-substituted arm of a

coenzyme A (coA) substrate by phosphopantetheinyl transferase enzymes

(PPTases). We demonstrate site-specific biotinylation of the purified recombinant

tagged neurotrophin, in both the immature proNGF and mature NGF forms. The

resulting tagged NGF is fully functional: it can signal and promote PC12 cells

differentiation similarly to recombinant wild-type NGF. Furthermore, we show that

the insertion of A1 and S6 tags into human TrkA and P75NTR sequences leads to

the site-specific biotinylation of these receptors at the cell surface of living cells.

Crucially, the two tags are labeled selectively by two different PPTases: this is

exploited to reach orthogonal fluorolabeling of the two receptors co-expressed at

low density in living cells. We describe the protocols to obtain the enzymatic, site-

specific biotinylation of neurotrophins and their receptors as an alternative to their

chemical, nonspecific biotinylation. The present strategy has three main

advantages: i) it yields precise control of stoichiometry and site of biotin

conjugation; ii) the tags used can be functionalized with virtually any small probe

that can be carried by coA substrates, besides (and in addition to) biotin; iii) above

all it makes possible to image and track interacting molecules at the single-

molecule level in living systems.
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Introduction

Neurotrophic factors, whose prototype member is nerve growth factor (NGF) [1],

are a family of secreted proteins that crucially regulate neuronal development,

survival and plasticity both in the central and in the peripheral nervous system.

Their biological activity stems largely from the binding of two membrane receptor

types: the tropomyosin receptor kinase (Trk) family and the p75 neurotrophin

(P75NTR) coreceptor [2]. While most of the signaling cascades activated by NGF

binding to TrkA and P75NTR receptors were identified, the impact on receptor

dynamics caused by TrkA and P75NTR engagement by NGF and the regulation of

their cellular traffic are far from being understood. In this context, techniques that

make it possible to investigate the TrkA-NGF-P75NTR dynamic interplay in a

physiological context (e.g. the intact plasma membrane and endosomes in living

neuronal cells) can be decisive to unveil the molecular mechanisms governing

their functional interactions. To date these issues were poorly explored largely

owing to the lack of suitable experimental tools. Indeed these studies require to

selectively label neurotrophins and their receptors in order to simultaneously

detect them in living cells as three independent signals. Ideally, labeling strategies

should have the following properties: i) if labeling relies on the use of tagged

constructs of the proteins of interest, tags should be as small as possible, in order

to minimally interfere with protein functionality and with the formation of

molecular complexes; ii) a 1:1 stoichiometry between the labeled protein and the

probe should be obtained; iii) they should be versatile, in order to yield molecular

species that can be derivatized with different probes, depending on the

experimental needs (e.g. biotin, fluorophores, gold or magnetic nanoparticles); iv)

they should allow the simultaneous differential labeling of at least two molecules

that are supposed to form a complex (i.e. neurotrophin and one of its receptors,

or two neurotrophin receptors).

We previously demonstrated that the insertion of the acyl carrier protein (ACP)

tag [3] at the extracellular domain of TrkA makes it possible to specifically label

the receptor at the cell surface when the construct is transfected in living cells

[4,5]. The ACP tag belongs to a family of protein and peptide tags, which can be

covalently conjugated to virtually any small-probe substituted phosphopan-

tetheinyl (PP) arm of Coenzyme A (CoA) substrate by post-translational

modification enzymes named PP transferases (PPTases) [6]. The ACP tag was

shown not to interfere with TrkA receptor function [4]. When coupled to various

fluorescent probes, this tool made it possible to monitor in living cells single TrkA

movements and changes of oligomerization state upon binding of different

biologically-relevant ligands including NGF and proNGF [5].

Here we demonstrate the insertion of an 8-amino-acids tag into the sequence of

NGF and of 12-amino-acids tags into the sequence of the two NGF receptors,

Short-Tag Labeling of Neurotrophins and Their Receptors

PLOS ONE | DOI:10.1371/journal.pone.0113708 November 26, 2014 2 / 18



TrkA and P75NTR. These tags derive from in vitro evolution studies [7,8]

committed to the shortening of the ACP and peptidyl carrier protein (PCP) [9]

tags. The tags were inserted by an insertional mutagenesis method, based on a

modification of the standard site-directed mutagenesis protocol, that allows their

insertion in the protein of interest with no need for any additional linker sequence

and thus with minimal interference with protein activity. Here we conjugate

biotin to the tags by using PPTases in the presence of CoA-biotin substrates. We

demonstrate that upon insertion of these tags, a site-specific biotinylation is

achieved for the purified recombinant neurotrophin (both immature proNGF and

mature NGF forms) and for TrkA and P75NTR receptors expressed in the

membrane of living cells. Moreover, the properties of orthogonal labeling

displayed by the 12-amino-acid A1 and S6 tags [7] are exploited to simultaneously

label single TrkA and P75NTR receptors with two spectrally-distinct fluorophores,

even when the two receptors are expressed in the same cell. We show that the

insertion of such tags in the chosen sites has no measurable impact in NGF

functionality or in the correct translocation of TrkA and P75NTR receptors at the

cell membrane. Application of these three nanoprobes to the investigation of

trafficking and interactions of NGF and its receptors in living cells will be

discussed.

Materials and Methods

Plasmids preparation

Human TrkA and P75NTR cDNAs cloned in frame to EGFP in pReceiver-M03

(OmicsLink, ImaGenes Berlin) and human proNGF cDNA cloned in pET11

vector [10] were used as templates. The cDNA coding sequences of A1

(GDSLDMLEWSLM) and S6 (GDSLSWLLRLLN) tags were inserted into TrkA

and P75NTR downstream the N-terminal signal peptide of localization at the cell

membrane. The cDNA coding sequence of A4 (DSLDMLEW) was inserted at the

C-terminus of proNGF. We used the QuickChange XL Site-Directed Mutagenesis

kit (Agilent Technologies) with modifications adapted from what previously

reported in [11]. Briefly, we followed the scheme of a standard site-directed

mutagenesis, except for two main modifications: i) the use of a two-step PCR

program (Table S2) in which during the first step amplifications with forward and

reverse primers were kept separate; ii) the splitting of the amino acids to be

introduced in two sequential PCR reactions. All experimental details of this

protocol are provided in Text S1. In order to remove the EGFP sequence from the

resulting A1/S6-TrkA and A1/S6-P75NTR constructs, their full-length cDNA were

further PCR amplified using FW and RV primers bearing MluI restriction sites;

the amplification products were subcloned into pCR2.1TA cloning vector

(Invitrogen), before final insertion into the MluI sites of the TMPrtTA ‘‘all-in-

one’’ inducible lentiviral vector [12]. The ACP-TrkA construct used as a control

was described in [4].
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proNGF and NGF expression and purification

Tagged proNGF–A4 was expressed in E. coli and purified according to the

protocols published for the purification of recombinant human proNGF [13,14].

Briefly, ion exchange FPLC chromatography was used for the purification of

proNGF after its extraction from inclusion bodies and subsequent pulsed

refolding. NGF-A4 was further obtained from controlled proteolytic cleavage of

proNGF-A4 by trypsin (typically, 1 mg enzyme was incubated with 250 mg

proneurotrophin for up to 15 h at 4 C̊ to achieve exhaustive protein digestion).

NGF-A4 was purified from the digestion reaction by ion exchange FPLC

chromatography. We calculated the production yields of the purified proteins as

the quantity of obtained protein (in mg) per liter of bacterial culture volume (Fig.

S1). We found the yield of proNGF-A4 production to be ,30% of that typically

obtained for wt proNGF. Mature NGF-A4 production yield was found to be

,15% of that obtained for wt NGF. All steps above described were checked by

SDS-PAGE and Coomassie staining.

Cell culture

PC12 (ATCC, CRL-1721) cells were maintained at 37 C̊, 5% CO2 in RPMI1640

medium supplemented with 10% horse serum, 5% fetal bovine serum and 1%

penicillin/streptomycin (Gibco). PC12 differentiation was induced by treatment

with ,50 ng/ml wt NGF (Alomone Labs), recombinant NGF-A4 or biotinylated

NGF-A4 (NGF-A4b); cells were observed after five days at a Leica DM6000

microscope capable of transmission DIC imaging. Morphometric analysis of PC12

differentiation was performed on imaged cells, by measuring two parameters (Fig.

S2): the percentage (%) of PC12 differentiation (Diff), as obtained by counting the

number of cells displaying at least one neurite with a length equal to, or greater

than, the diameter of the cell body and expressing it as a percentage of the total

number of cells in a field [15]; the average number of neurites per differentiated

cell (av. neurites/cell) in a field. Statistical analysis was carried out using the one-

way ANOVA test and Bonferroni’s comparison of means, with P,0.05 considered

as significant. SH-SY5Y cells (ECACC, 94030304) were cultured at 37 C̊, 5% CO2

in DMEM-F12 medium supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin (Gibco). SH-SY5Y transfection was performed with

Lipofectamine 2000 (Invitrogen) according to the manufacturers’ instructions.

Synthesis of CoA-biotin conjugate

All reactions were carried out under nitrogen. Solvents (Romil) were of ultra-

pure, anhydrous grade, and were used without further purifications. Reagents

(Aldrich) were used as received. PBS was freshly degassed by sonication under

vacuum. Chromatographic analyses were performed using a Phenomenex Fusion

15064.6 mm column on a Dionex Ultimate 3000 HPLC equipped with PDA

detector and fraction collector and interfaced with an ABSciex API 3200 Q-TRAP

mass spectrometer. HPLC solvents: Ammonium formate 5 mM (eluent A)/
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acetonitrile (eluent B). CoA-biotin conjugate was prepared with a two-step

approach:

1) Conjugation of aminoethyl maleimide with biotin: Biotin (10 mg) was dissolved

in DMF (250 mL). NHS (1.1 eq) and 2-aminoethylmaleimide (1.1 eq)

dissolved in DMF (100 mL) were added to the solution. EDC (1.2 eq)

dissolved in PBS (100 mL) was added and the solution stirred 4 h at 25 C̊.

When complete conversion of the reagent was achieved (HPLC) the product

was purified by semipreparative RP-HPLC (Column: Phenomenex Proteo

25069.6 mm) and freeze-dried. MS (ESI): Predicted (m/z): [M+H]+: 367.14.

Found: 367.3. MS parameters: Curtain gas 10 L/min; Ion spray voltage:

5500 V; Temperature: not used; Declustering potential: 15 V; Entrance

potential: 10 V; Collision energy: 35 eV; Collision energy potential: 22 V;

Collision energy spread: 30 eV.

2) Conjugation with Coenzyme A: CoA-SH (2.82 mg) and TCEP (10 mM in PBS,

360 mL) were mixed and stirred at 40 C̊ for 1 h. Solution was cooled to room

temperature and aminoethyl maleimido biotin (1.32 mg) dissolved in DMF

(240 mL) was added to the solution. The reaction mixture was stirred at 35 C̊

for 4 h. When complete disappearance of the starting reagent was observed by

HPLC, the crude reaction mixture was purified by RP-HPLC and the resulting

product was freeze-dried. MS (ESI): predicted (m/z): [M+H]+: 1134.9. Found:

1134.3. MS parameters: Curtain gas 10 mL/min; Ion spray voltage: 5500 V;

Temperature: not used; Declustering potential: 75 V; Entrance potential:

10 V; Collision energy: 50 eV; Collision energy potential: 43 V; Collision

energy spread: 40 eV.

Biotinylation of NGF and its receptors

15 mM purified NGF-A4 and proNGF-A4 were incubated for 40 minutes at 37 C̊

with a reaction mix (10 mM MgCl2, 10 mM CoA-biotin and 1 mM Sfp Synthase

(SfpS) or Acp Synthase (AcpS) (New England Biolabs), or no enzyme as control in

phosphate buffer up to 30 ml final volume. Untagged proNGF and NGF were

subjected to the same reaction as control.

A1/S6-tagged TrkA-EGFP and P75NTR-EGFP constructs were sequentially

transfected into SH-SY5Y cells. The same constructs devoid of A1/S6-tags and the

ACP-TrkA construct [4] were transfected as controls. 24 h later, cells were serum-

starved for at least 2 hours and then incubated for 40 minutes at 37 C̊ with a

reaction mix prepared in serum/antibiotic-free DMEM-F12 supplemented with

0.5% BSA, 10 mM MgCl2, 10 mM CoA-biotin and 2 mM of SfpS or AcpS, or no

enzyme as control.

Western Blot

2 ml of all NGF/proNGF biotinylation reactions were treated under denaturing

conditions (100 C̊, 8 minutes in 26 Laemmli Sample Buffer), run on two gels
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(1 ml for each gel) and electrotransferred to two PVDF membranes. These were

blocked in TBST+5% w/v BSA, then one of them was blotted with anti-NGF

antibody, while the other one was incubated with HRP-conjugated streptavidin

(Zymed) 1:10000 diluted in blocking solution.

Biotinylated cell monolayers were washed in ice-cold PBS and lysed in RIPA

buffer supplemented with proteases and phosphatases inhibitors. 500 mg of each

clarified lysate were incubated over night at 4 C̊ with anti-TrkA or anti-P75NTR

antibodies. Immunocomplexes were precipitated with Dynabeads-Protein A

(Invitrogen) for at least 30 minutes at room temperature. After washing, the beads

were eluted under denaturing conditions (100 C̊, 10 minutes in 26 Laemmli

Sample Buffer), run on a gel and electrotransferred to PVDF membranes. These

were washed and blocked in TBST+5% w/v BSA before incubation with HRP-

conjugated streptavidin diluted (1:5000) in blocking solution. The input lysates of

the IP samples were loaded on a parallel gel and blotted against TrkA, GFP or

P75NTR for normalization of the biotinylation signal. Filters were developed by

electrochemiluminescence system (GH). Densitometric analysis was performed

using ImageJ software (http://imagej.nih.gov/ij/). Briefly, the integrated density of

the biotin signal was normalized to that of the respective GFP (for TrkA-EGFP,

A1-TrkA-EGFP, S6-TrkA-EGFP lanes), TrkA (for ACP-TrkA lanes), or P75NTR

(for P75NTR-EGFP, A1-P75NTR-EGFP, S6-P75NTR-EGFP lanes) band, with the

higher value normalized to 1. Results reported are mean¡sem from 3 (panel A)

and 2 (panel B) independent blots. Obtained images were subjected to linear

contrast enhancement after image analysis.

Antibodies used in the experiments were: anti-TrkA (06-574, Millipore; 1:500);

anti-P75NTR (07-476, Millipore; 1:1000); anti-GFP (ab290, Abcam; 1:1000); anti-

NGF (sc-549, Santa Cruz Biotechnology; 1:2000).

TIRF imaging and data analysis

S6-TrkA and A1-P75NTR constructs cloned in TMPrtTA ‘‘all-in-one’’ lentiviral

vector were transfected into SH-SY5Y cells. Constructs were either transfected one

at a time (control experiments) or co-transfected. 5 h after transfection each

transfected plate was split and cells seeded onto Willco glass-bottom dishes.

Transgene expression was induced adding 0.05 mg/ml doxycycline overnight. Cells

were serum starved for at least 2 hours and then incubated at 37 C̊ with two

sequential reaction mixes containing the two different PPTases. For all data shown

here, the first mix contained AcpS, the second one SfpS; indeed, keeping A1 tag

labeling as first minimized unspecific labeling in the control experiments. Each

mix was prepared in serum/antibiotic-free DMEM-F12 supplemented with 0.5%

BSA, containing 1.0 mM AcpS or SfpS, 10 mM MgCl2 and 10 mM biotin-CoA.

The typical incubation time was 20 min for both enzymes. However we observed

that reducing incubation times under 10 min (down to 5 min for AcpS and

7.5 min for SfpS) helped to minimize unspecific labeling (Fig. S3). Longer

incubation times (.20 min) produced much higher non-specific signal in the

control experiments. After each biotinylation step, cells were washed twice in PBS
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before a 6–10 min incubation at room temperature with Streptavidin-coated

quantum dots (S-Qdots525 or 655, Invitrogen) in Borate buffer pH 8.3, 0.5% BSA

and 215 mM sucrose as previously described [5]. 2 nM S-Qdots were used for

detection of receptor single molecules, as previously reported [5]. Up to four PBS

washes were necessary to remove unbound S-Qdots. Two incubations were

performed in between the two PPTases labeling reactions: the former consisted in

a 2 min incubation with 200 nM free streptavidin in order to saturate any

biotinylated receptor eventually left uncoupled from the respective S-Qdot. Next,

a 2 min incubation with 200 nM free biotin was performed, to saturate all the

streptavidins introduced in the previous steps. These washes constitute the

‘‘saturate and rinse’’ step of the dual-color labeling protocol.

Labeled cells were immediately imaged at 37 C̊, 5% CO2 by a Leica DM6000

microscope capable of transmission DIC imaging and equipped with the Leica

TIRF-AM module, an incubator chamber, an electron multiplying charge-

coupled-device (EM-CCD) camera (ImagEM C9100-13, Hamamatsu), and a

1006 oil immersion objective (NA 1.47). TIRF images were acquired sequentially

on ROIs that included the basal membrane of cells using the 405 nm laser line and

exploiting an emission fast filter wheel with Semrock FF01-525/45 and FF01-655/

10 emission filters for the detection of the green and the red channels, respectively.

The integration time was 20 ms for the red channel, 80 ms for the green channel.

The penetration depth was set at 90 nm. Time-lapse videos were acquired for each

analyzed cell, to check that observed particles in the two channels were actually

moving receptors (Videos S1, S2, S3). In this case, the same experimental set-up

described for the still images was used, and time lapses were acquired for ,8.5 s

with a frame time of 167 ms.

Acquired images were analyzed using ImageJ software (http://imagej.nih.gov/ij/

) by counting the number of particles detected in the two channels for the single

transfections and the co-transfection. The % of green and red over total particles

for each cell is plotted in box chart graphs for the three experiments. We discarded

from this analysis cells that displayed a density of Qdots too high for single-

particle studies in one of the fields (most often in the green one, as A1P75NTR

was generally more expressed than S6-TrkA at the 0.05 mg/ml doxycycline dose).

Presented images were subjected to background subtraction and linear contrast

enhancement after analysis.

Results

ACP and PCP tags belong to a family of protein and peptide tags that can be

covalently conjugated to virtually any small-probe-substituted PP arm of a CoA

substrate by post-translational modification enzymes named PPTases [6]. Here we

exploited shorter tags, derived from in vitro evolution studies committed to the

shortening of the ACP and PCP tags [7,8].

We prepared recombinant constructs encoding NGF, TrkA and P75NTR

proteins (schematically depicted in Fig. 1A) by insertion of the shorter
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aminoacidic tags into their sequences. The A4 tag sequence [8] (Fig. 1) was

inserted at the C-terminus of NGF, while A1 and S6 tags sequences [7] (Fig. 1)

were inserted into the extra-cellular (EC) domains of both TrkA and P75NTR

proteins, downstream of the signal peptide at the N-terminal position. As a result,

the tag is exposed at the cell surface upon receptor translocation to the plasma

membrane. Tag insertion sites are highlighted as red dots in the crystal structures

of NGF and of the receptors EC domains in Fig. 1B. Our insertional mutagenesis

procedure is schematically depicted in Fig. 1C and described in detail in Text S1.

This strategy yields tag insertion in the desired sites with no need for any linker

aminoacidic sequence. We thus took full advantage of the efforts that have

progressively converted the ACP and PCP protein tags into the shorter A1, A4,

Figure 1. Schematic overview of the insertional mutagenesis method. A) Cartoon depicting NGF, TrkA, and P75NTR constructs prepared for this study.
The site of tag insertion is indicated in each case by a red arrow. On top of the arrow the complete amino acidic tag sequence is reported. The promoters
used for expression of the receptors are depicted upstream each receptor construct. On the extracellular domain of the receptors, sites of interaction with
NGF are highlighted; on the intracellular domain of the receptors, sites of receptor activity are highlighted. Abbreviations: CMV5Cytomegalovirus promoter;
TRE5Tet-Responsive-Element promoter; SP5signal peptide; EC5extracellular domain; IC5intracellular domain; D55proximal immunoglobulin-like
domain; I5NGF-interaction site 1; II5NGF-interaction site 2; DD5death domain. B) Crystal structure of NGF (left; PBD. n.1BET), NGF-TrkA (EC) (middle;
PBD. n.2IFG), NGF-P75NTR(EC) (right; PBD. n.1SG1). The color code is the same as in panel A. Red spots highlight the sites of tag insertion in each
protein. C) Scheme of the insertional mutagenesis procedure used in this study. Details are provided in Text S1.

doi:10.1371/journal.pone.0113708.g001
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and S6 peptide tags [7,8]. We next examined whether these inserted peptides

could be effectively functionalized by PPTase enzymes without perturbing protein

functionality. We chose biotin, carried by CoA-biotin substrates, as well-known

test moiety.

The proNGF-A4 recombinant construct was expressed and produced in E. coli,

collected from inclusion bodies and purified by FPLC ion exchange chromato-

graphy with the same procedure adopted for wt recombinant proNGF [14].

ProNGF-A4 purified protein was then digested by trypsin and further purified by

FPLC ion exchange chromatography. We were thus able to obtain the purified

tagged mature neurotrophin using the same protocol adopted for the wt

counterpart. Purified NGF-A4 and proNGF-A4 were incubated with CoA-biotin

substrate and AcpS or SfpS PPTases. The same in vitro biotinylation reaction was

performed in parallel using untagged wt NGF and wt proNGF as controls.

Western blot analyses of all biotinylation reactions are reported in Fig. 2 (panels

A–B). Data show that specific biotin labeling was achieved for NGF-A4 and

proNGF-A4 reacted with AcpS. In order to verify if the modified neurotrophin

still maintains its biological function, we performed a differentiation assay with

PC12 cells. These cells endogenously express NGF receptors TrkA and P75NTR

and, when incubated with wt NGF, undergo neuronal differentiation which

manifests morphologically as a neurite network. PC12 cells were incubated for 5

days with ,50 ng/ml purified wt NGF, NGF-A4 or biotinylated NGF-A4. The last

one was purified from the biotinylation reaction using desalting columns (see

Methods) before addition to the cell medium. We found that both NGF-A4 and

biotinylated NGF-A4 do induce PC12 differentiation to a similar extent of wt

NGF, thus proving that the modified neurotrophin retains its biological activity

(Fig. 2C and Fig. S2).

We next assessed the biotinylation performance of A1 and S6 tags inserted at

the N-terminus of TrkA and P75NTR receptors. We previously demonstrated that

insertion of the longer full-length ACP tag, at this position, does not hamper TrkA

ability to bind NGF [4,5]. As for P75NTR, its N-terminal region is not involved in

an interaction with bound NGF [16,17]. We used a biotinylation procedure at the

surface of living cells similar to what previously reported for the ACP-TrkA

construct [4,5]. A1- and S6- TrkA-EGFP and P75NTR–EGFP constructs (as

depicted in Fig. 1A) were transfected in SH-SY5Y neuroblastoma cells. 24 h post-

transfection the cell monolayer was biotinylated adding CoA-biotin and either

AcpS or SfpS PPTases in the cell medium. Cells were then lysed and

immunoprecipitated using either anti-TrkA or anti-P75NTR antibodies. Samples

were loaded on a gel and blotted using Streptavidin-HRP. Figure 3 shows that the

A1 tag is specifically biotinylated by AcpS for both receptors (at least ten-fold

compared to SfpS, according to the densitometric analysis); the same is true for S6

tag reacted with SfpS. Conversely, the ACP-TrkA used as a control is equally

biotinylated by the two PPTases. In general, we found the A1 tag to be less

efficiently labeled than the S6 tag for the same construct, especially in the case of

TrkA where A1-TrkA is biotinylated about 60% less than S6-TrkA. These data

prompted us to use the combination of S6-TrkA and A1-P75NTR in subsequent
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experiments. Taken together, these data confirm for TrkA and P75NTR in living

cells, the properties of orthogonal labeling shown for A1 and S6 tags in previous in

vitro studies [7]. Furthermore, as this procedure only allows the biotinylation of

the receptor pool exposed at the cell surface, our data suggest that insertion of A1

and S6 tags downstream the signal peptide of TrkA and P75NTR receptors does

not inhibit their translocation at the cell membrane.

We next examined whether the use of A1 and S6 tags allows the simultaneous

fluorolabeling of single molecules of TrkA and P75NTR receptors when co-

expressed in the same cell. SH-SY5Y cells were co-transfected with the inducible

S6-TrkA and A1-P75NTR constructs (see Fig. 1A). A control transfection with

either construct alone was also performed. Transgene expression was then

induced using a low dose of doxycycline. This choice avoided receptor

overexpression in the cells that, in turn, may have hampered single-receptor

detection. Cells were subjected to a sequential dual-color staining procedure, as

outlined in Fig. 4A, in order to label receptors exposed at the cell surface. In more

detail, the exposed A1 tag was first biotinylated using AcpS enzyme; A1-P75NTR

construct was then coupled to S-Qdot525. In the next step, exposed S6 tag was

Figure 2. Site-specific biotinylation of proNGF and NGF. A–B) Western blot for the analysis of the in vitro
biotinylation reaction of purified NGF-A4 (A) and proNGF-A4 (B) using CoA-biotin substrate and AcpS or SfpS
PPTases. The same biotinylation reaction is performed in parallel using untagged wt NGF and wt proNGF as
negative controls. Streptavidin-HRP is used for detection of biotin. The anti-NGF blot is the loading control. C)
Typical DIC images obtained when performing the differentiation assay in PC12 cells using ,50 ng/ml of wt
NGF, NGF-A4 and biotinylated NGF-A4 (NGF-A4b). Untreated cells are the control. Scale bar: 20 mm.

doi:10.1371/journal.pone.0113708.g002
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Figure 3. Site-specific biotinylation of TrkA and P75NTR receptors. Western blot for the analysis of the
biotinylation reaction in living cells of A1/S6-TrkA-EGFP (A) and A1/S6-P75NTR-EGFP constructs (B) using
CoA-biotin substrate and AcpS or SfpS PPTases. The same biotinylation reaction is performed in parallel
using untagged TrkA-EGFP (A) and P75NTR-EGFP (B) as negative controls, and ACP-TrkA (A) as positive
control. Streptavidin-HRP is used for detection of biotin. Anti-TrkA (A) and anti-P75NTR (B) blots are loading
controls together with anti-GFP (both panels). The anti-TrkA blot contains an unspecific band running over
TrkA, as already shown [4]; the actual TrkA band in each lane is highlighted by a star. At the bottom of each
panel the densitometric analysis of the blot bands is reported. The biotin signal was normalized to the content
of GFP (for TrkA-EGFP, A1-TrkA-EGFP, S6-TrkA-EGFP lanes), TrkA (for ACP-TrkA lanes), and P75NTR (for
P75NTR-EGFP, A1-P75NTR-EGFP, S6-P75NTR-EGFP lanes), with the higher value normalized to 1. Results
reported are mean¡sem from 3 (panel A) and 2 (panel B) independent blots.

doi:10.1371/journal.pone.0113708.g003
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biotinylated using SfpS enzyme; S6-TrkA construct was finally coupled to S-

Qdot655. Labeled cells were imaged in the two different channels by TIRF

microscopy (Fig. 4B and Videos S1, S2, S3), and the number of single molecules

detected in the two channels quantified for each cell (Fig. 4C–E). Cells transfected

with both receptors were similarly stained with the two different S-Qdots upon

labeling (Fig. 4E); single transfections performed as a control yielded labeling

largely dominated by the Qdots added after the reaction with the tag-specific

PPTase (Fig. 4 C and D). These data demonstrate that the use of A1 and S6 tags

Figure 4. TIRFM detection of PPTase-specific A1-P75NTR and S6-TrkA fluorolabeling. A) Scheme of the
dual-color labeling protocol used in the experiment. Details are provided in Materials and Methods. B) TIRF
microimages analyzing PPTase-specific A1-P75NTR and S6-TrkA fluorolabeling at the SH-SY5Y plasma
membrane. A1 labeling by AcpS is detected by S-Qdot525; S6 labeling by SfpS is detected by S-Qdot655.
Borders of the cells basal membrane, determined through the DIC image, are highlighted in the corresponding
TIRF images by a white line, while areas outside cells are grayed to simplify image interpretation. Scale bars:
10 mm. C–E) Quantification of the % of green and red over total particles at the basal membrane of each
analyzed cell expressing A1-P75NTR (C), S6-TrkA (D) or both constructs (E).

doi:10.1371/journal.pone.0113708.g004
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leads to orthogonal fluorolabeling of TrkA and P75NTR receptors co-expressed in

living cells.

Discussion

The experimental study of molecular interactions occurring between NGF (more

in general, neurotrophins) and its receptors requires means to label them

independently, simultaneously, and with controlled stoichiometry. In this work

we developed a toolbox for this aim. We describe here a method for the

introduction of three different tags into the sequence of NGF (both as immature

and mature neurotrophin) and of TrkA and P75NTR receptors (Fig. 1). The

chosen tags belong to the ACP and PCP families [3,9] and bear a serine residue as

the site of covalent transfer of the CoA PP arm by PPTase enzymes. In all

experiments presented here, the CoA PP arm is substituted with biotin so that we

achieve site-specific biotinylation of (pro)NGF and its receptors. We wish to

stress, however, that virtually any small-probe carried by CoA PP arms can be

coupled to the three proteins. (pro)NGF is labeled in vitro, after purification of the

proneurotrophin expressed in E. coli (Fig. 2). On the other hand, TrkA and

P75NTR are labeled in living cells that express the tagged receptors (Fig. 3).

PPTases and CoA-biotin substrate are added to the cell medium and do not

permeate the cell membrane, so that only the receptor pool exposed at the cell

surface is actually biotinylated. Fluorolabeling of the two receptors at the cell

membrane is achieved by addition of two spectrally-distinct S-Qdots to the cell

medium (Fig. 4), and their subsequent visualization at the single-receptor level.

Our strategy fulfills all the recommended criteria to achieve the specific labeling

of proteins of interest that are involved in molecular interactions (see

Introduction). First of all these tags are small, being shortened versions of the ACP

and PCP tags [7,8]: A4 tag fused to NGF is 8 amino-acid long, while A1 and S6

tags fused to either TrkA or P75NTR are 12 amino-acid long. Our insertional

mutagenesis method (Fig. 1C and Text S1, Tables S1, S2) makes it possible to

insert tags with no need for any additional flanking or linker sequence in virtually

any site of the protein of interest. This is particularly relevant for the case of TrkA

and P75NTR, since their tag insertion site is neither the N-terminus nor the C-

terminus of the receptors, but is downstream the signal of localization to the

plasma membrane (Fig. 1A). Traditional tag-cloning procedures would in this

case result in the insertion of additional amino acids thus compromising the

effective gain resulting from tag shortening. Although the choice of not inserting

any linker sequence may in principle hinder accessibility of the tags for the

labeling reaction, this seems not to be the case for most of our constructs. We

provided unambiguous biochemical evidence that tag biotinylation occurs both

for the neurotrophin (Fig. 2) and for its receptors (Fig. 3). Nevertheless, in the

latter case we experienced a reproducible lower degree of biotinylation for A1 tag

than for S6 tag; as for P75NTR (Fig. 3B), such small difference can be likely

ascribed to the higher enzyme efficiency reported for SfpS when compared to
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AcpS in the tag labeling reactions [7]. However, the unexpected <60% reduction

of A1-TrkA compared to S6-TrkA biotinylation (Fig. 3A) hints at a possible

protein environment in TrkA EC domain that hampers A1 but not S6 tag labeling

by PPTases. Notably, the two tags are differently charged at physiological pH;

indeed, A1 tag displays three negatively charged residues, while S6 tag bears one

positively and one negatively charged residue leading to an overall neutral charge

status. We are tempted to propose that possible electrostatic interactions between

negatively charged A1 tag and the surrounding proteic TrkA environment affect

the efficiency of tag recognition by AcpS. Further analysis are necessary to clarify

this hypothesis, but the relevant conclusion, important for the methodological

work presented here, is that S6-TrkA biotinylation is more efficient.

Overall, this tag-length optimization likely minimizes any interference with

recombinant-protein folding and function, or with complex formation with

respect to the endogenous counterparts. Importantly, the insertion sites chosen

for the tags are far from residues involved in the formation of NGF-receptor

complexes (Fig. 1B) and were already reported to lead to functional proteins, at

least for the case of NGF [18] and TrkA [4].

Generally, non-specific biotinylation of proteins is achieved by chemical

conjugation of reactive biotin derivatives to amine, thiol or carboxyl groups of

proteins [19]. The main disadvantage of this approach is the lack of control in

number and type of biotinylated sites of the target proteins, so that mixed

populations of labeled proteins are obtained; this can potentially lead to

impairment of biological activity and lack of experimental reproducibility. Our

choice of inserting A1, A4 and S6 tags ensures 1:1 stoichiometry between the

labeled neurotrophin/receptor and biotin. This is an important aspect from the

point of view of microscopy and in view of tracking individual membrane

proteins (like TrkA and P75NTR) (or their complexes) in living cells [20]. It may

even allow the determination of complex stoichiometry. Also, we wish to

underline the relevance of the present approach for its application to NGF and in

general neurotrophins. In most of the papers reported to date, neurotrophins were

chemically coupled to biotin [21,22,23,24] and organic fluorophores

[25,26,27,28], leading to mixed populations containing 3–9 small probes per

neurotrophin depending on the experimental procedure used. The possibility

presented here of labeling NGF with 1:1 stoichiometry will yield more

reproducible results and is optimal for single-molecule imaging. In this context,

the performance of our mono-functionalized NGF will be similar to what recently

reported for NGF-AVI tag construct [18]. We should like to point at one

significant advantage of the present approach over the AVI (AP) tag/biotin ligase

system: any substituted PP arm of CoA substrates can in principle be fused to the

protein of interest, besides (and in addition to) the biotinylated one [6]. We

therefore envisage the possibility of broadening the spectrum of applications for

this recombinant neurotrophin, from standard biochemistry to single-molecule

imaging and counting, from electron microscopy to NMR studies depending on

the probe used for NGF labeling.
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Finally, in this work we report the possibility of simultaneous individual

imaging of the two neurotrophin receptors (Fig. 4). This is achieved by

introduction of A1 and S6 tags in the sequences of P75NTR and TrkA,

respectively. Such tags were already reported to display properties of orthogonal

labeling in vitro and in living cells by using two different PPTases [7]. Here we

demonstrate the possibility of detecting by TIRF microscopy single molecules of

the two tagged receptors labeled by two different S-Qdots in living cells. This is

made possible by controlling (and restraining) the level of expression for the

tagged receptors in the cells using Tet-ON inducible expression systems and by

adopting an optimized dual-color staining method (Fig. 4A and Materials and

Methods section) to minimize the cross-reaction due to the use of biotin-

streptavidin interaction for both A1 and S6 tags. Under these conditions, we

demonstrated at least ,85% PPTase-specific fluorolabeling for both receptors, as

quantified by counting the number of single particles detected in the green and

red channels in cells transfected with the two receptors separately (Fig. 4 C and

D). We believe that the residual unspecific labeling does not represent a real

concern when performing dual-color experiments (see also Fig. S3). First of all

one must note that this percentage is unavoidably an overestimate owing to Qdots

aspecifically adsorbed at the basal membrane. These are present in both channels

but obviously have a more sizable impact on the estimated percentage in the less

populated channel. More importantly we stress that the aspecificity can be further

reduced by shortening the PPTase incubation times during the dual-color labeling

procedure. In conclusion we believe that these results represent a viable method to

simultaneously image and track TrkA and P75NTR receptors in the same cell by

using two different PPTases and two spectrally-distinct fluorophores.

Supporting Information

Figure S1. Yields of production of proNGF-A4 and NGF-A4 versus wt proNGF

and NGF. The production yield is expressed as quantity of obtained purified

protein (in mg) per liter of bacterial culture volume. Mean values obtained are

represented by histogram bars. Error bars represent standard deviations of four

and three independent productions of proNGF-A4 and NGF-A4, respectively.

doi:10.1371/journal.pone.0113708.s001 (TIF)

Figure S2. Quantitative morphometric analysis of differentiated PC12 cells.

The distributions of Diff (% of differentiated cells in a field, panel A) and

av.neurites/cell (average number of neurites per differentiated cell, panel B) for

the 4 samples analyzed (untreated control: n511 fields comprising 147 cells,

NGF-A4: n518 fields comprising 138 cells, NGF-A4b: n59 fields comprising 52

cells, wt NGF: n515 fields comprising 139 cells) are reported as mean¡sem.

Statistical analysis was performed using the one-way ANOVA test, to compare the

distributions of NGF-A4 and biotinylated NGF-A4 (NGF-A4b) to the same

obtained for the control (ctrl) and wt NGF (wt). Obtained P values below 0.05
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were considered significant (*), vice versa they were considered not significant

(#).

doi:10.1371/journal.pone.0113708.s002 (TIF)

Figure S3. Dependence of the specificity of A1P75NTR labeling on the presence

of immobile, adsorbed Qdot under the plasmamembrane and on the duration

of PPTase labeling reactions. Quantification of the % of green and red over total

particles at the basal membrane of each analyzed cell expressing A1-P75NTR,

upon (left to right): 1) 20 min PPTase incubation in the labeling reaction (same

data of Fig. 4C); 2) same data as 1, corrected for the number of aspecific

(immobile, probably blocked on the glass) Qdots under the plasma membrane in

the two channels, as estimated considering the density of immobile Qdots at the

basal membrane of non-transfected cells; 3) data obtained from cells labelled

using PPTase incubation times shorter than 10 min (,5 min for AcpS and

,7.5 min SfpS).

doi:10.1371/journal.pone.0113708.s003 (TIFF)

Table S1. List of insertional primers used for constructs preparation.

doi:10.1371/journal.pone.0113708.s004 (DOCX)

Table S2. Scheme of the PCR program used for the insertional mutagenesis.

doi:10.1371/journal.pone.0113708.s005 (DOCX)

Text S1. Supporting information for the insertional mutagenesis protocol.

doi:10.1371/journal.pone.0113708.s006 (DOCX)

Video S1. Time-lapse TIRF imaging of A1-P75NTR at the basal membrane of a

cell subjected to the dual-color labeling protocol.

doi:10.1371/journal.pone.0113708.s007 (AVI)

Video S2. Time-lapse TIRF imaging of S6-TrkA at the basal membrane of a cell

subjected to the dual-color labeling protocol.

doi:10.1371/journal.pone.0113708.s008 (AVI)

Video S3. Time-lapse TIRF imaging of A1-P75NTR and S6-TrkA at the basal

membrane of a cell subjected to the dual-color labeling protocol.

doi:10.1371/journal.pone.0113708.s009 (AVI)
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