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Stent thrombosis remains one of the main causes that lead to vascular stent

failure in patients undergoing percutaneous coronary intervention (PCI). Type

2 diabetes mellitus is accompanied by endothelial dysfunction and platelet

hyperactivity and is associated with suboptimal outcomes following PCI, and an

increase in the incidence of late stent thrombosis. Evidence suggests that late

stent thrombosis is caused by the delayed and impaired endothelialization of

the lumen of the stent. The endothelium has a key role in modulating

inflammation and thrombosis and maintaining homeostasis, thus restoring a

functional endothelial cell layer is an important target for the prevention of stent

thrombosis. Modifications using specific molecules to induce endothelial cell

adhesion, proliferation and function can improve stents endothelialization and

prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a

potential cell source for the in situ-endothelialization of vascular conduits

and stents. We aim in this review to summarize the main

biofunctionalization strategies to induce the in-situ endothelialization of

coronary artery stents using circulating endothelial stem cells.
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Introduction

Cardiovascular diseases are the most prevalent non-communicable diseases

worldwide, accounting for 31% of all deaths (WHO, 2017). Coronary artery disease

(CAD) is the most common type of cardiovascular disease, causing the majority of

cardiovascular-related deaths worldwide (Okrainec et al., 2004). The main cause of CAD

is the accumulation of fatty and fibrous materials in the wall of the coronary artery

forming an atherosclerotic lesion, which eventually leads to arterial occlusion (Ross,

1993). The growing size of the formed lesion can be sufficient to block the blood flow,

however most clinical complications result from thrombus formation. A thrombus
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obstructs blood flow to the heart muscle leading to myocardial

ischemia and infarction (Lusis, 2000).

Percutaneous coronary intervention (PCI) is a non-surgical

revascularization technique used to treat obstructive coronary

arteries. PCI has become the treatment of choice for CAD. The

implantation of intracoronary stents is one of the major PCI

techniques used to relive the narrowing of coronary arteries

(Smith et al., 2001). Although stenting have improved the acute

outcomes of PCI, the long-term outcomes are still hindered by

other factors such as age and other comorbidities (Smith et al.,

2001). Stent thrombosis and restenosis remain the main causes

that lead to vascular stent failure in patients undergoing PCI

(Seabra-Gomes, 2006; Chaabane et al., 2013). Stent implantation

causes mechanical vascular injury characterized by endothelial

denudation and platelet activation, leading to thrombosis and

stenosis (Kipshidze et al., 2004; Otsuka et al., 2012; Chaabane

et al., 2013).

Evidence suggests that type 2 diabetes mellitus is associated

with suboptimal outcomes following PCI or revascularization

(Seabra-Gomes, 2006; Bittl, 2015; Koskinas et al., 2016). Type

2 diabetes mellitus is characterized by hyperglycemia and insulin

resistance leading to endothelial dysfunction. The abnormal

reactivity of diabetic endothelial cells is associated with an

increased rate of cardiovascular events (Seabra-Gomes, 2006).

In addition, patients with diabetes are at higher risk to develop

coronary lesions in stented vessels and are presented with higher

rates of completely occlusive restenosis following PCI (Seabra-

Gomes, 2006). Diabetes also results in platelet dysfunction and

hypo-responsiveness to antiplatelet treatments, increasing the

risk of stent thrombosis (Gum et al., 2003; Watala et al., 2004;

Angiolillo et al., 2005).

It has been suggested that inducing the rapid

endothelialization of stents might improve the outcomes of

PCI (Finn et al., 2007). Rapid endothelialization of blood-

contacting devices and surfaces is desired due to the anti-

thrombotic and anti-adhesive properties of endothelial cells,

thus preventing the recruitment and adhesion of platelets and

leukocytes to the stented area (Sousa et al., 2003). Establishing a

functional endothelial cell layer rapidly after stent implantation

might prevent stent thrombosis (Kong et al., 2004). Thus, in this

review, we highlight the role of endothelial cells in protecting

from stent thrombosis in the context of diabetes, and summarize

the main studies that investigated biofunctionalization strategies

to induce the in-situ endothelialization of coronary artery stents

using circulating endothelial stem cells.

Pathogenesis of stent thrombosis: Role of
endothelial cells

Coronary stents are prosthetic cylindrical meshes inserted

into the coronary artery using a catheter to relieve the

narrowing of the artery and improve blood flow to the

heart muscle (Meads et al., 2000). Stents provide a

permanent scaffolding for the vessel wall, thus inhibiting

the arterial recoil and restenosis associated with plain old

balloon angioplasty (Meads et al., 2000; Garcia-Garcia et al.,

2006; Seabra-Gomes, 2006). To improve the outcomes of PCI,

stents have evolved in terms of design and composition, from

bare metal stents (BMS), to drug eluting stents (DES) and

bioresorbable vascular scaffolds (BRS). We refer the reader to

these reviews on the evolution of stents types, designs and

materials (O’Brien and Carroll, 2009; Borhani et al., 2018;

Torii et al., 2020; Scafa Udriște et al., 2021).

Stent thrombosis is the occlusion of a coronary artery stent

by a thrombus. Standard definitions and classifications of

stent thrombosis has been proposed by the Academic

Research Consortium (ARC) (Garcia-Garcia et al., 2018).

Stent thrombosis is classified into early, late or very late

thrombosis according to the elapsed time from stent

implantation, and could also be defined according to the

degree of certainty as definitive, probable, or silent

occlusion (Garcia-Garcia et al., 2018). The reported

incidence of stent thrombosis was< 1% for early stent

thrombosis (D’Ascenzo et al., 2013), 0.5–1% for late stent

thrombosis (D’Ascenzo et al., 2013) and 0.2–0.4% per year for

very late stent thrombosis with second generation DES while

2% was reported with 1st generation DES (Biondi-Zoccai et al.,

2006). Although stent thrombosis incidence remains low, it

constitutes a significant public health issue due to the high

number of implanted stents worldwide and the major

consequences of thrombotic events (Gori et al., 2019). The

mortality caused by stent thrombosis has been reported to be

as high as 45% (Biondi-Zoccai et al., 2006). Additionally, stent

thrombosis was shown to be accountable for 20% of all

myocardial infarction cases following PCI (Gori et al.,

2019). Four factors have been identified to influence stent

thrombosis including the used device, implantation

procedure, patient status, and type of lesion.

The pathophysiological response to stent implantation

involves wound healing processes including thrombosis,

inflammation, and remodeling (Chaabane et al., 2013). The

stenting process leads to a partial or complete denudation of

the endothelial cell layer, stretching of the artery, and

mechanical vascular injury. This induces platelet activation

and adhesion, and the deposition of fibrin on the site of

injury. The activated platelets express adhesion molecules,

such as P-selectin, which leads to the recruitment of

inflammatory cells (Costa and Simon, 2005). The recruited

platelets and leukocytes respond by releasing growth factors

and cytokines that induce smooth muscle cell proliferation,

migration, and deposition of extracellular matrix proteins in

the intima of the artery, leading to in-stent restenosis

(Chaabane et al., 2013).

Endothelial cells play an important role in protecting from

thrombosis and inflammation and maintaining blood fluidity.
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The release of vasoprotective and thromboresistant agents such

as Nitric oxide (NO) and prostacyclin prevents platelet activation

and thrombus formation. VonWillebrand factor secretion is also

an important factor that modulates platelets adhesion and

aggregation under shear conditions (van Hinsbergh, 2012).

Additionally, the normal endothelium activates fibrinolysis

through the secretion of tissue plasminogen activator; an

important mechanism for the resolution of thrombi (Oliver

James et al., 2005). Endothelial injury leads to a disturbed

production of these protective molecules, and an increase in

the expression of adhesion molecules leading to thrombosis,

leukocyte recruitment and smooth muscle cell dysregulation

(van Hinsbergh, 2012).

The vascular endothelium is also an important interface

between the vascular wall and the blood components, and its

absence leads to the exposure of the subendothelial elements.

The direct interaction of the blood with the subendothelial

elements might trigger platelet adhesion leading to thrombosis

(Palmaz, 1992). Additionally, implanted stent strut or coating

material may induce stent thrombosis (Palmaz, 1992; Jaffer

et al., 2015; Georgiadou and Voudris, 2017). It has been

determined that the degree of stent coverage with

endothelial cells is “the most powerful histological predictor”

of stent thrombosis (Finn et al., 2007; Georgiadou and Voudris,

2017). Additionally, the degree of neointima formation

following mechanical injury was found to be correlated with

the rate of re-endothelialization (Douglas et al., 2013). The

delayed stent coverage with endothelial cells in addition to the

constant fibrin deposition and inflammation are associated with

late and very late stent thrombosis, and the risk is greatly

increased in stents with more than 30% uncovered struts

(Finn et al., 2007; Claessen et al., 2014).

The stent design and composition are of the main factors that

influence stent endothelialization and endothelial cell recovery

following PCI (Cornelissen and Vogt, 2019). The surface

topography of the stent affects cell adhesion and alignment. It

has been shown that a topography resulting in elongated and

aligned cells could accelerate the development of a healthy

endothelium layer (Claessen et al., 2014). Additionally, the

non-physiological nature of the stent material could affect the

migration and adhesion of endothelial cells and thus

biocompatibility is a key factor in improving

endothelialization (Van der Heiden et al., 2013).

Endothelialization is also influenced by the thickness of the

strut and was shown to be improved in stents with thinner

struts (Cornelissen and Vogt, 2019). Additionally, the types of

drugs and polymers used in the stent affect cell adhesion and

proliferation. While the antiproliferative drugs used in DES

reduce neointima formation and in-stent restenosis, they also

delay the endothelization of the stent leading to late stent

thrombosis (Finn et al., 2007). The incidence of thrombosis in

BMS and DES was not shown to be different, and the polymers

used in BRS were shown to induce thrombosis (Buchanan et al.,

2012). To reduce the occurrence of thrombotic events, dual anti-

platelet therapy (aspirin and a P2Y12 inhibitor) is given to

patients following PCI (Seabra-Gomes, 2006).

Stent thrombosis and diabetes

In diabetes mellitus, patients usually present with platelet

dysfunction, hyperactivity or hypo-responsiveness, increasing

their risk of stent thrombosis (Yuan and Xu, 2018).

Additionally, the vascular endothelium is dysfunctional in

response to hyperglycemia, and the proliferation and wound

healing responses are impaired in this subgroup of patients

(Triggle et al., 2020). Hyperglycemia results in the impairment

of endothelial cells, reducing the generation of the vasodilator

NO, thus favoring a vasoconstrictive state through the increase in

vasoconstrictors and pro-thrombotic mediators, endothelin-1

(ET-1) and thromboxane A2 (TXA2). This imbalance disturbs

the vascular tone and results in an increase in smooth muscle

proliferation and migration, accompanied by an increased

secretion of inflammatory cytokines and prothrombotic

factors. The reduction in NO, and the increase of ET-1 and

TXA2 induces platelet activation and thrombosis with the

potential contribution of an elevated generation of

prostacyclin that activates TXA2 receptors (Beckman et al.,

2002; Seabra-Gomes, 2006; Vanhoutte and Tang, 2008). These

conditions promote thrombus formation (Figure 1A). The

incidence of stent thrombosis in patients with diabetes was

found to be double that for patients without diabetes (Wiviott

et al., 2008). Additionally, insulin was found to play a major role

in influencing thrombosis. The chronic activation of endothelial

cells by insulin might affect the production of vasoprotective and

antithrombotic factors, activating a prothrombotic and

proinflammatory status (Wu and Thiagarajan, 1996; Angiolillo

et al., 2005). The prothrombotic status in these patients decreases

their response to anti-platelet agents. The dysfunctional platelets

in patients with diabetes are less sensitive to aspirin increasing

their risk of ischemic events (Gum et al., 2003;Watala et al., 2004;

Angiolillo et al., 2005). There is also evidence of the negative

effect of the common anti-diabetes drug, metformin, on

endothelial proliferation on stents releasing mTOR inhibitors,

as was shown in vitro and in rabbit model (Habib et al., 2013a;

Habib et al., 2013b). In terms of the time of occurrence, a meta-

analysis of stent thrombosis in patients with and without diabetes

have shown that both subgroups had a similar rate of early stent

thrombosis following PCI with DES, however, diabetes was

associated with an increase in the incidence of late stent

thrombosis (Yuan and Xu, 2018).

Given the important role of the endothelium in the protection

from thrombosis, re-endothelialization is a key therapeutic target to

improve the outcomes of stent implantation in patients with

diabetes, and to maintain an antithrombotic and anti-

inflammatory status at the site of implantation (Douglas et al.,
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2013). The gradual endothelialization of stents protects from the

thrombotic events, however, this process is slow in BMS, and the

drugs used inDES inhibit endothelial cell proliferation and complete

coverage. Thus, there is a need for a modulation in the composition

of the stents to induce rapid endothelial cell adhesion and

proliferation and full stent coverage soon after implantation.

Stent biofunctionalization to induce
endothelialization with circulating
endothelial progenitor cells

Endothelialization of stents happens through two main

mechanisms: (I) the proliferation and migration of the

FIGURE 1
Biofunctionalization of stents to improve endothelialization and reduce thrombosis. (A) Cellular dysfunction in diabetes leads to high risk of
stent thrombosis. Hyperglycemia results in vascular dysfunction characterized by reduced generation of NO, and induced synthesis of ET-1 and
TXA2, resulting in a proinflammatory, pro-thrombotic and vasoconstrictive state. In addition, the chronic activation of endothelial cells by insulin
affects the production of vasoprotective and antithrombotic factors. Diabetes also causes platelet hyperactivity, and hypo-responsiveness to
anti-platelets drugs. Activated platelets bind to the vascular endothelium directly through adhesion molecules and stimulate an inflammatory
response. Platelets also deposit chemokines into the surface of endothelial cells leading to leukocyte recruitment, and platelets can bind to
leukocytes that adhere to the endothelial layer. Platelets also can influence endothelial cells by their secretion of vasoactive molecules (such as ADP,
serotonin and TXA2) from their granules. The regenerativemechanisms by EPCs are also impaired due to EPCs dysfunction characterized by reduced
EPC proliferation, and impaired eNOS and NO production. (B) Endothelialization of stents can reduce stent thrombosis. Stent endothelialization
happens through 2 mechanisms: resident cell replication and EPC recruitment. Both mechanisms are impaired in diabetes. Targeting these
mechanisms can enhance the endothelialization rate. (C) Biofunctionalization strategies to promote stent endothelialization. Surface
biofunctionalization with mimicry factors aims to induce EPCs mobilization, capture, adhesion, and proliferation. Some of the listed factors also
induce the proliferation of resident endothelial cells. NO, nitric oxide; eNOS, endothelial nitric oxide synthase; ROS, reactive oxygen species; TAX2,
thromboxane A2; ET-1, endothelin-1; ADP, Adenosine diphosphate; LDL, low density lipoprotein; SMCs, smooth muscle cells; EPCs, endothelial
progenitor cells; ICAM-1, intercellular adhesion molecule 1; ECM, extracellular matrix; SDF-1a, stromal cell-derived factor 1; VEGF, vascular
endothelial growth factor; GAGs, glycosaminoglycans. Figure was created by BioRender.com.
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resident cells at the site of injury, and (II) the homing and

adhesion of circulating endothelial progenitor cells (EPCs)

(Ong et al., 2005) (Figure 1B). Mature endothelial cells have a

low proliferation and replication capacity, thus their

participation in the endothelialization process is slow and

limited. It is hypothesized that EPCs play a major role in the

endothelialization process. EPCs are progenitors that circulate

in the blood and have the ability to differentiate to mature

endothelial cells and to participate in angiogenesis and

neovascularization processes (Medina et al., 2017). Since

their discovery by Asahara et al. (1997) in 1997, many

attempts have been made to isolate EPCs using varying

methods, which resulted in the identification of multiple

cell populations that have been categorized under the EPC

terminology (Medina et al., 2017). The main identified sub-

populations are early EPCs (expressing CD31, CD45 and

CD14, and lack expression of CD133) and late EPCs

(expressing CD34, CD31 and CD133 and lack expression of

the hematopoietic markers CD45, CD14, and CD115) (Tura

et al., 2013; O’Neill TJtWamhoff et al., 2005; Zentilin et al.,

2006). The late EPCs have been recently recognized to be the

“true EPCs” due to their ability to differentiate into a stable

mature endothelial phenotype, and to participate directly in

the neovascularization process by incorporating into the

vasculature (Yoder et al., 2007; Medina et al., 2010a;

Keighron et al., 2018). A recent study used single-cell

RNA-sequencing analysis (scRNA-seq) to identify specific

markers in late EPCs, and found that this subpopulation

expressed high levels of bone morphogenetic protein 2 and

4 (BMP 2 and 4) and ephrin B2 (EFNB2) when compared to

other types of endothelial cells (Abdelgawad et al., 2021). BMP

2 and 4 were also found to be selectively expressed by late, but

not, early EPCs, and to regulate EPC commitment and

angiogenic potential (Smadja et al., 2008). Late EPCs and

HUVECs share high expression of neuropilin 1 (NRP1) and

Vascular endothelial growth factor (VEGF-C) (Abdelgawad

et al., 2021), both important factors for the differentiation of

endothelial precursors (Cimato et al., 2009; Zhang et al., 2019;

Abdelgawad et al., 2021). This expression pattern could be

used for the identification and differentiation between

subpopulations of EPCs. We refer the reader to these

reviews on the detailed differences between these subtypes

and their therapeutic potential in many settings including

diabetes (Medina et al., 2010b; Yoder, 2012; Pelliccia et al.,

2022a; Triggle et al., 2022a).

Biofunctionalization of blood contacting implants and stents

using attracting molecules (such as antibodies, proteins,

glycosaminoglycan (GAGs), peptides and aptamers) have been

proposed to induce endothelialization (Figure 1C). Other delivery

approaches have been investigated such as nanoparticles and

magnetic molecules. These modifications provide mimicry factors

that aim to induce cell capture, adhesion, and proliferation of

endothelial progenitors and/or influence their mobilization,

taking advantage of their ability to migrate to the site of injury

during vascular repair processes. Table 1 summarized some of the

recent studies investigating the use of these factors to induce stent

endothelialization. We also refer the reader to a comprehensive

review on the chemistry aspect of biofunctionalization to

incorporate these molecules into the surfaces of medical devices

(Spicer et al., 2018).

To this date, the main clinically applied biofunctionalization

strategy to induce EPCs capture and stent endothelization is the use

of monoclonal antibodies against CD34, represented by the

Genous™ EPC capture stent and the COMBO bio-engineered

stent (OrbusNeich, Florida, United States) (Klomp et al., 2009;

Tomasevic et al., 2019) (Table 1). CD34 biofunctionalized stents

showed a great promise in early in vivo models, as they resulted in

the rapid endothelialization of stents in amurinemodel (Kutryk and

Kuliszewski, 2003). Also, early ex-vivo and clinical studies showed

the rapid endothelialization of BMS (Larsen et al., 2012) and DES

(Granada et al., 2010; Nakazawa et al., 2010), and for that it was

hypothesized that these stents will protect from stent thrombosis.

Despite their initial promise, recent clinical studies comparing the

performance of the Genous™ EPC capture stent with DES didn’t

show superior results in terms of their protection from lumen loss

and restenosis. Studies including the TRIAS-HR (71), HEALING

and HEALING II (Duckers et al., 2007) showed that the Genous

stent was associated with a trend towards increase in target vessel

failure. In light of these findings, it was thought that combining the

CD34 capture antibody with an anti-proliferative drug will improve

these outcomes, thus the novel COMBO bio-engineered stent was

developed.

The COMBO bio-engineered stent (OrbusNeich, Florida,

United States), is a new generation DES which contains a

sirolimus-releasing resorbable polymer matrix to reduce

restenosis, in addition to the CD34 coating to induce

endothelization. Although comparative clinical trials have

shown that COMBO stents were non-inferior to other DESs

including TaxusLiberte™ (REMEDEE randomized study)

(Haude et al., 2013), and Xience™ (HARMONEE randomized

study) (Saito et al., 2018), the COMBO stents were associated

with a trend towards increase in the rates of target vessel failure at

12 months (Saito et al., 2018; Jakobsen et al., 2021). Additionally,

a recent systematic review including a total of 3961 patients and

comparing the COMBO EPC-capturing DES against standard

DES from 4 randomized controlled trials, showed no difference

in 1-year cardiac death when compared to standard DESs.

However, COMBO stent was associated with higher rates of

target lesion revascularization and target vessel failure (Pelliccia

et al., 2022b). Thus the benefit of these stents in inducing rapid

endothelization should be weighed against the possible risk of

induced hyperplastic reactions and their consequences (Pelliccia

et al., 2022b).

The use of CD34 antibody to capture EPCs has also been

proposed for other medical devices, vascular grafts and tissue

engineering scaffolds. Nevertheless, because CD34 is not specific
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TABLE 1 Summary of the recent studies investigating the use of biomolecules to induce stent endothelialization.

Stent type/
Material

Bioactive molecule Biofunctionalization strategy Outcomes References

Clinical

studies

Genous™ EPC capture

stent (OrbusNeich,

Florida, United States),

stainless steel 316L

Murine monoclonal Anti-human CD34+

antibody

Covalently coupled poly-saccharide intermediate

matrix coating, immobilized with anti-human CD34+

antibodies.

- Anti CD34 coated stents resulted in rapid

endothelialization of stents in murine model (Kutryk

and Kuliszewski, 2003).

- Clinical studies: TRIAS-HR (Klomp et al., 2011),

HEALING (Aoki et al., 2005) and HEALING II

(Henricus Eric et al., 2007) showed that the Genous

stent was associated with a trend towards increase in

target vessel failure. HEALING IIB showed that

although statins induced EPC recruitment, combining

statin therapy with Genous stent didn’t reduced in-

stent restenosis.

(Kutryk and Kuliszewski, 2003;

Klomp et al., 2011; Henricus

Eric et al., 2007; Klomp et al.,

2011; Aoki et al., 2005)

COMBO bio-engineered

stent (OrbusNeich,

Florida, United States),

stainless steel 316L

Sirolimus and murine monoclonal Anti-

human CD34+ antibody

Sirolimus-releasing resorbable polymer matrix

(SynBiosysTM urethane-linked multi-block copolymer

composed of lactide/ glycolide/ caprolactone/

polyethylenglycol (PEG)) combined with anti CD34+

antibodies.

- COMBO stents were non-inferior to TaxusLiberte™
(REMEDEE randomized study) (Haude et al., 2013),

and Xience™ (HARMONEE randomized study) (Saito

et al., 2018)

- Associated with a trend towards increase in the rates

of target vessel failure at 12 months (Saito et al., 2018;

Jakobsen et al., 2021).

- No difference in 1-year cardiac death when

compared to standard DESs. Showed higher rates of

target lesion revascularization and target vessel failure

(Pelliccia et al., 2022).

(Haude et al., 2013; Saito et al.,

2018; Jakobsen et al., 2021;

Pelliccia et al., 2022)

Cobra PzF stent

(CeloNova BioSiences,

San Antonio, Texas),

Cobalt chromium (CoCr)

Fluorinated Polyzene-F (PzF) polymer Coated with a thin nano-layer of fluorinated Polyzene-

F (PzF) polymer, and a layer of poly (bis

[trifluoroethoxy]phosphazene).

- PzF previously showed reduced intimal hyperplasia,

anti- thrombotic, and anti-inflammatory properties

(Koppara et al., 2016) and had superior healing when

compared to bioabsorbable polymer DES in porcine

and rabbit models (Hiroyuki et al., 2019).

- Clinical studies: 1-year follow up showed that the

stent performance is satisfactory and confirmed

clinical efficacy and safety (Maillard et al., 2021).

- 5 years follow up showed low incidence of major

adverse clinical events, with no reported stent

thrombosis throughout the 5 years. Target vessel

failure increased form 11.5% at 9 months to 17.4% at

5 years (Cutlip et al., 2022).

(Koppara et al., 2016; Hiroyuki

et al., 2019; Maillard et al.,

2021; Cutlip et al., 2022;

Cornelissen et al., 2022)

In vivo

studies

CoCr A homing peptide for endothelial colony

forming cell (WKYMVm)

Stents were coated with dopamine, and the peptide

was conjugated to dopamine using N-

hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) to

activate the carboxyl group of the peptide.

- In vitro: The modified stent improved the

proliferation of HUVECs at day 7 of culture in

comparison to BMS.

- In vivo: peptide delivery to vessels was studied in

rabbit iliac arteries, and peptide coating was observed

up to 7 days, and diminished gradually.

(Bae et al., 2020)

Stainless Steel Murine monoclonal antihuman endoglin

antibody

Commercially available stents: murine monoclonal

antihuman endoglin antibody (ENDs) (Beijing Lepu

Medical Technology limited corporation, China), in

comparison to sirolimus eluting stents (SESs)

(Johnson & Johnson, United States), and BMS

(Abbott, United States).

Animal model: juvenile pigs. Findings: Mean

neointima area and percent area stenosis were lower in

ENDs and SESs when compared to BMSs at 14 days of

implantation. Endothelial coverage of ENDs was

significantly higher than that of SESs and BMSs at days

7 and 14, indicating induced endothelialization.

(Cui et al., 2014)

Stainless steel stents coated with murine monoclonal

ENDs and CD34s (Beijing Lepu Medical Technology

limited corporation, China), and SESs (Johnson &

Johnson, United States).

Animal model: pigs. Findings: mean neointima area

and ENDs, SESs and CD34s were lower in ENDs, SESs

and CD34s when compared to DES at day 14 of

implantation. Endothelial coverage was induced in

ENDs and CD34 when compared to SESs and BMSs at

days 7 and 14.

(Cui et al., 2015)

CoCr Anti CD146 antibody and silicone (si)

nanofilaments

Polished surfaces were coated with si nanofilments.

Surfaces were treated with O2 plasma, followed by

immersion in toluene dissolved in 3-

aminopropyltriethoxysilane (APTES) to introduce

amine groups. Antibodies were immobilized in the

presence EDC and NHS.

- In vitro: both si nanofilaments and CD146 induced

EPCs and MSCs capture under dynamic conditions

(15 dyne/cm2) in a perfusion pump system. Cell

adhesion and spreading was improved on modified

surfaces.

- In vivo: stents were implanted into porcine coronary

arteries for 1 week, and showed enhanced endothelial

coverage in stents coated with both si nanofilaments

and CD146 antibody. The modified stents reduced

restenosis when compared to BMS.

(Park et al., 2020)

Stainless steel 316L Recombinant antibody fragments (scFv)

specific for vascular endothelial growth factor

receptor-2 (VEGFR2)

Surfaces were coated with titanium precursor followed

by functionalization with amino groups and

immobilization of oxidized glycosylated scFv

molecules.

- In vitro: The modification didn’t affect the metabolic

activity or induce cytotoxicity of HUVECs. Adhesion

of HUVECs was increased on VEGFR2 scFv surfaces.

- In vivo: stents were implanted into porcine arteries

for 5 and 30-days. There was no evidence of restenosis,

thrombosis, or myocardial infarction at both time

points. Stent coverage was significantly higher in

modified stents when compared to BMS at 5 days. No

significant difference was detected at 30 days.

Histological sections showed coverage with a cell layer

(80 μm) by day 30.

(Wawrzyńska et al., 2020)

Nitinol RGD peptide and CXCL1 Stents were coated with star-shaped

polyethylenglycole (PEG), followed by immobilization

of RGD alone or RGD/CXCL1.

- In vitro: increased adhesion of EOC and HUVEC to

RGD and RGD/CXCL1 surfaces compared to BMS

and star-PEG modified surfaces. Smooth muscle cells

(SMCs) proliferation was not affected in RGD/CXCL1

and was reduced in star-PEG surfaces.

- In vivo: stents were implanted in apoE-/- mice for one

week, and showed reduced stenosis and thrombosis in

(Simsekyilmaz et al., 2016)

(Continued on following page)
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TABLE 1 (Continued) Summary of the recent studies investigating the use of biomolecules to induce stent endothelialization.

Stent type/
Material

Bioactive molecule Biofunctionalization strategy Outcomes References

RGD and RGD/CXCL1 stents. Star-PEG stents

resulted in induced thrombosis. Endothelialization

was increased in RGD/CXCL1 stents.

Stainless Steel Vascular endothelial cadherin (VE-Cad)

antibody

VE-Cad antibodies were immobilized on stainless steal

stents grafted with sulfonamide zwitterionic and

acrylic acid.

- In vitro: the modified stent with the co-polymer

didn’t cause blood cell or platelet adhesion or

activation. Stents containing VE-Cad antibody

resulted in induced EPCs adhesion and coverage, while

small numbers were adhered to BMS and stents with

the co-polymer alone.

- In vivo: stents were implanted into rabbit carotid

artery, and showed no signs of thrombosis or stenosis

following 1 month of implantation. Modified stents

were completely covered with endothelial cells.

(Chen et al., 2017)

Titanium (Ti) heparin/poly L-lysine nanoparticles The nanoparticles were immobilized into dopamine

coated Ti surfaces. Ti disks were coated with dopamine

(2 mg/ml in Tris buffer, pH 8.5) for 12 h, followed by

sonication in water. The process was repeated three

times to coat with three layers, followed by incubation

with nanoparticle suspension at 37°C for 24 h.

Ti modified samples were implanted into dog femoral

arteries for 4 weeks. Ti surfaces showed severe

thrombus formation and thick neo-intimal formation,

whereas Ti modified surfaces showed no thrombosis

or neointimal thickening. The Ti modified surfaces

were also covered with a confluent layer of endothelial

cells.

(Liu et al., 2014)

Stainless Steel Vildagliptin Electrospinning of poly (D,L)-lactide-co-glycolide

(PLGA), in combination with vildagliptin (240 mg/

40 mg or 260 mg/20 mg) and hexafluoro isopropanol

(HFIP).

The nanofibrous sheets were mounted on

commercially available BMSs (Gazelle BMS,

Biosensors International, Switzerland) followed by

vacuum drying.

- In vitro: Migration of HUVECs in transwells was

enhanced in presence of vildagliptin eluents.

- In vivo: Pure PLGA stents and vildagliptin eluting

stents (low and high dose loading) were implanted into

mechanically-denuded abdominal aorta of alloxan-

induced-diabetic rabbits. Vildagliptin stents resulted

in superior coverage with endothelial cells following

2 months of implantation when compared to pure

PLGA stents. Nanofibrous stents induced the

alignment of cells and insured cell-cell contact, unlike

the pure PGLA stents. Endothelium- dependent

vasodilation response to acetylcholine was higher in

vildagliptin stents.

(Lee et al., 2019)

In vitro

studies

CoCr Elastin-like recombinamers (ELR) genetically

modified with an REDV sequence

Plasma activation and etching using sodium hydroxide

(NaOH) followed by silanization with 3-

chloropropyltriethoxysilane and functionalized with

the ELR

HUVEC cell adhesion response time was directly

correlated to the amount of immobilized ELR on the

surface. Surfaces activated with NaOH showed better

adhesion and spreading of HUVECs.

(Castellanos et al., 2015)

Stainless Steel 316L Phage identified SUS316L-binding peptide

(SBP-A, VQHNTKYSVVIR), followed by

anti ICAM-1 antibody modification

The SBP-A peptide was used as a linker to immobilize

ICAM-1 antibody. N-terminal streptavidin-modified

anti-ICAM antibody was added to SBP-A-modified

SUS316L disks.

The identified peptide (SBP-A) was not toxic to

HUVECs. The described modification with SBP-A and

anti ICAM-1 antibody influenced HUVECs adhesion

and showed higher selectivity to HUVECs over SMCs.

(Sakaguchi-Mikami et al.,

2020)

CoCr Endothelial specific oligonucleotide: 5’ -GGG

AGC TCA GAA TAA ACG CTC AAC AAC

CCG TCA ACG AAC CGG AGT GTG GCA

GGT TCG ACA TGA GGC CCG GAT C-3’

Aminosilanization using (3-Aminopropyl)

triethoxysilane (APTES), followed by immobilization

of of 3’-thiol modified oligonucliotide.

Porcine EPCs showed enhanced adhesion to modified

surfaces and were able to proliferate and reached

confluence in 4 days of culture.

(Barsotti et al., 2015)

Ti Ti oxide (TiO2) nanotubes and fibronectin TiO2 surfaces were anodized to create TiO2 nanotubes.

Fibronectin was immobilized on TiO2 nanotubes using

polydopamine

Fibronectin functionalized TiO2 nanotubes enhanced

the adhesion, spreading, proliferation and secretion of

nitric oxide and prostacyclin in HUVECs. The

nanotube size had an inverse relationship with

cytocompatibility.

(Jin et al., 2018)

Ti Ti nanotubes Anodic oxidation Ti nanotubes induced VEGF production by

macrophages. Also, they inhibited glycolysis of

macrophages by activating AMPK signaling, leading to

reduced macrophage release of inflammatory factors

and induced polarization, accelerating

endothelialization.

(Yu et al., 2021)

Nitinol Semi-interpenetrating network (IPN)

hydrogel consisting of Polyacrylamide

(PAAm), polymethyl methacrylate (PMMA),

polyurethane and polydopamine

Cast molding of stents in semi IPN hydrogel through

free radical polymerization

Induced adhesion, proliferation, and migration of

HUVECs. Reduced adhesion and proliferation of

SMCs.

(Obiweluozor et al., 2019)

Stainless steel 316L Recombinant antibody fragments (scFv) Incorporating hydroxyl groups through coating with

titania, followed by silanization using APTES, and

immobilization of glycosylated scFv.

The modification was nontoxic to the EPC line 55.1

(HucPEC-55.1) and maintained their viability on

modified steal.

(Foerster et al., 2016)

bio-absorbable

magnesium alloy

MgZnYNd

Arginine-leucine based poly (ester urea

urethane)s (Arg-Leu-PEUUs) in comparison

to poly (glycolide-co-lactide) (PLGA) coating

Spinning coating of disks with the polymers (Arg-Leu-

PEUU in N,N-Dimethylformamide (DMF) or PLGA

in Dichloromethane CH2Cl2) followed by solvent

evaporation and heating.

Enhanced HUVECs viability, which was

proportionally related to Arg ratio. HUVECs increased

NO production. Viability of SMCs was not affected by

the peptide.

(Liu et al., 2017; Liu et al.,

2017)

Ti Heparin-VEGF-fibronectin Layer-by-layer coating The modification resulted in reduced platelet adhesion

and aggregation and prolonged partial thrombin and

prothrombin time, compared to unmodified Ti.

HUVECs adhesion and proliferation were induced on

modified surfaces

(Wang et al., 2013)

PEG-diacrylate (PEGDA)

hydrogel

REDV-containing peptides Peptides that target α4β1 and α5β1 were coupled to

PEGDA hydrogel using these combinations:

RGDS+ REDV

CRRETAWAC(cyclic)+REDV, P_RGDS+

KSSP_REDV,

P_RGDS+ P_RDEV

P_RGDS+ P_REDV

CRRETAWAC(cyclic)+REDV,

P_RGDS+KSSP_REDV, and P_RGDS+P_REDV

induced late EPCs capture under dynamic conditions

in a parallel plate flow chamber system at 20 s–1, and

resulted in high tether percentages and velocity

fluctuation

(Tian et al., 2022)
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to EPCs, it has been suggested that other CD34 positive cells in

the blood will compete with EPCs to adhere to the immobilized

antibody (Sidney et al., 2014). This could be a contributing factor

to the hyperplasia observed in the CD34 biofunctionalized stents.

The use of other antibodies against CD133, and VE-Cadherin,

amongst other antigens, have been reported to influence EPCs

capture, however these stents have met mixed success in vivo

(Sedaghat et al., 2013; Van der Heiden et al., 2013). Therefore,

there is a need to incorporate other specific bioactive moieties to

induce the specific recruitment of EPCs without inducing

hyperplasia and restenosis.

Other EPC capturing strategies have been investigated

in vitro and in vivo, however these approaches are yet to be

validated and translated to clinical use (Table 1 respectively).

Growth factors such as vascular endothelial growth factor

(VEGF) have been used to induce EPCs adhesion and growth

(Van der Heiden et al., 2013). Mobilization of stem cells using

chemokines such as stromal cell derived factor 1a (SDF-1a) have

also been investigated (Zhang et al., 2011). However, these factors

are not specific to EPCs and might result in similar outcomes to

what has been observed in CD34 coated stents.

A more specific approach to capture EPCs is the use of specific

short peptide ligands and aptamers. These ligands provide an

advantage over large biomolecules, because controlling the

configuration and folding of large biomolecules is challenging

during the biofunctionalization process. The literature describes

the use of peptides with different specificities: (i) metal-binding

peptides, (ii) non-specific cell adhesion peptides, (iii) endothelial

cell-specific peptides and (iv) EPC-specific peptides. Metal-binding

peptides are used as linkers to allow further modifications of the

stent surface. Examples include the stainless-steel specific peptide

SBP-A (Sakaguchi-Mikami et al., 2020).

One of the commonly used peptides that has shown enhanced

cell biocompatibility is RGD (Arginyl-glycyl-aspartic acid) peptide,

which is the principle ligand responsible for cell binding to the ECM

(Bellis, 2011). Other peptides have been investigated such as the

laminin derived sequences IKVAV (isoleucine-lysine-valine-

alanine-valine) and YIGSR (Tyrosine-Isoleucine-Glycine-Serine-

Arginine) (Massia and Hubbell, 1991; Grant et al., 1992). These

peptides enhance the non-specific adhesion of cells to

biofunctionalized surfaces. Peptides targeting endothelial cells

have also been investigated, including REDV (Arginine-

Glutamate-Aspartate-Valine) (Hubbell et al., 1991). Specific

peptides to EPCs have been identified such as the disulfide cyclic

octa-peptide (cGRGDdvc, also known as LXW7) (Hao et al., 2017),

TPS (Threonine-Proline-Serine-Leucine-Glutamate-Glutamine-

Arginine-Threonine-Valine-Tyrosine-Alanine-Lysine) (Veleva

et al., 2007), and WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met) (Bae

et al., 2020a). These peptides interact with the integrins -which are

adhesion receptors on the cells - and activate them, resulting in

enhanced cell adhesion and binding. EPCs specific aptamers or

oligonucleotides have been also tested (Barsotti et al., 2015). These

bioactivemolecules hold a great promise for the biofunctionalization

of stents due to their specificity and ease of incorporation.

Challenges facing stent endothelialization
with EPCs

One of the main challenges facing the in situ endothelialization

with circulating EPCs is their low numbers in the blood (Yoder,

2012). These numbers were also shown to be reduced in disease

states such as diabetes. Thus, strategies to boost the numbers of EPCs

might be required. One example is the use of pharmacological

induction using agents with known effects on EPCs such as statins. It

was observed during theHEALING IIB study that statin therapy has

increased the numbers of EPCs by 5.6-fold, and that the

combination of statin therapy with EPC capturing stents

resulted in optimal coverage of the stents (den Dekker et al.,

2011). EPCs numbers could be boosted by other strategies

such as combining more than one capturing molecule or

incorporating chemokine or growth-factor-releasing

nanoparticles within the coating of the stent.

Additionally, local or systematic injection of autologous

EPCs could help to boost the endothelialization of the stent.

Another limitation of stent endothelialization with EPCs is the

variability in the intrinsic regenerative potential between patients,

whichmight be affected by diabetes, cardiovascular diseases or other

comorbidities (Emmert and Hoerstrup, 2016). This is important to

consider particularly because the whole concept of in situ

endothelialization depends on the intrinsic regenerative potential,

and any impairment of this potential will affect the rate of

endothelialization (Stassen et al., 2017). It was shown that EPCs

function and regenerative ability is impaired in diabetes (Triggle

et al., 2022b). This, in addition to vascular endothelial dysfunction,

reduces the potential of stent coverage. Thus, enhancing endothelial

and EPC function in these patients should be a target to improve

endothelialization, in combination with stent biofunctionalization.

Antidiabetic drugs with endothelial and cardioprotective effects

(such as vildagliptin) (Lee et al., 2019) could be investigated in

combination with the biofunctionalized stents.

In conclusion, stent endothelialization represents a potential

target to reduce in-stent thrombosis following PCI. Specific

biofunctionalization of stents is required to induce

endothelialization without evoking restenosis. Targeting EPC

and endothelial dysfunction in diabetes are key strategies to

aid in the endothelialization process.
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