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Flexible controls of scattering 
clouds using coding metasurfaces
Shuo Liu1,2 & Tie Jun Cui1,3

Metamaterials or metasurfaces have been designed to precisely manipulate the scattering at every 
angle. Here, we propose to control the probability of random scattering appearing in the desired 
range of angles, which is defined in this letter as scattering cloud. We present a controllable random 
metasurface by simply adding a random coding sequence to gradient coding sequence. It is shown that 
the direction and size of the scattering cloud can be arbitrarily engineered. We demonstrate the exotic 
behavior of the scattering cloud by making an analogy to the electron cloud in quantum mechanics. A 
new coding particle featuring low-interference with neighboring coding particles is designed to realize 
the controllable random surface, which demonstrates highly consistent results to the theoretical 
calculations using fast Fourier transform. The exciting phenomena and versatile behaviors of scattering 
clouds and their probabilities enabled by controllable random surfaces will lead to diversified 
applications in the fields of electromagnetic waves and acoustic waves.

In the past decade, the manipulation of electromagnetic (EM) wave has gradually evolved from three-dimensional 
(3D) metamaterial1–3 to two-dimensional (2D) metasurface4, which is composed of periodically or 
non-periodically arranged subwavelength scatterers on a deep subwavelength surface. Compared with 3D bulk 
metamaterials, the significant reduction in the thickness of metasurfaces allow them to control EM waves with 
less metal and dielectric absorptions and lighter weight. Due to their planar configuration, metasurfaces can 
be easily implemented at the terahertz and visible light spectra using the standard photolithography process, 
and have led to development of many practical devices including perfect absorber5–7, polarization convertor8–10, 
modulator11–13, and holography14–16. The manipulation of the wavefront for bending and focusing light using a 
single18,19 or multiple layers10,20 of metallic strcutures with elaborately designed phase distributions has received 
increasing attention since the proposal of the generalized Snell’s law17 in 2011 to reflect/refract the normal inci-
dence in anomolous directions.

In 2014, the concept of coding metasurface21 was proposed by designing two subwavelength coding particles 
(unit cells) ‘0’ and ‘1’ with opposite reflection phases, respectively. By simply arranging these coding particles with 
pre-designed coding sequences on a flat surface, a variety of functionalities of the coding metasurface have been 
demonstrated in microwave and terahertz frequencies, such as the anomalous beam reflections21,22, random diffu-
sions23,24, and polarization conversion22. Similar to the digital circuit, where the quantization of the analogue sig-
nal into binary states “on” and “off ” enhances the signal-to-noise ratio (SNR) effectively, the discretization of the 
continuous phase profile can help increase the robustness of the coding metasurface against environment changes 
in practical applications, such as the deviation of the reflection responses due to fabrication errors of the structure 
and the chemical contamination with different refraction indices. Most importantly, coding metasurfaces with 
binary codes have provided great convenience to explore relations between the coding pattern and radiation 
pattern from the fully-digital perspective, resulting in digital and programmable metasurfaces21. Many existing 
theorems from the information science, such as fast Fourier transform (FFT) and information entropy25,26, can be 
directly applied in the analyses of coding metasurfaces. Here we should note that our coding metamaterial is dif-
ferent from the digital metamaterial proposed by Engetha27, which is introduced to design new materials whose 
permitivity can be artitrarily controlled by mixing two different materials (named as metamaterials bit) in certain 
proportions (named as the metamaterials byte).

Results
Concept of controllable random surface. In previous coding schemes for broadband diffusions of EM 
waves using randomly distributed Minkowski-loop23 and square-patch21 coding particles, the incident beam is 

1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China. 2Synergetic Innovation 
Center of Wireless Communication Technology, Southeast University, Nanjing 210096, China. 3Cooperative 
Innovation Centre of Terahertz Science, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China. 
Correspondence and requests for materials should be addressed to T.J.C. (email: tjcui@seu.edu.cn)

Received: 21 September 2016

accepted: 31 October 2016

Published: 25 November 2016

OPEN

mailto:tjcui@seu.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:37545 | DOI: 10.1038/srep37545

simply redistributed in numerous directions in the entire upper-half space. This type of conventional random 
surface28,29, known as rough surface at visible light spectra, is schematically illustrated in Fig. 1a, where the nor-
mally incident light rays (blue arrows) are randomly scattered by the random surface in multiple directions (red 
arrows). Although the radar cross section (RCS) of a flat or cylindrical metallic object, especially the strong 
reflection in the back scattering direction, can be effectively reduced by such random surfaces, we are not able to 
predict, or to control, the directions of scattered waves. Here, we propose a new concept of controllable random 
surface, which is unlike any other rough surfaces from natural materials. The random scattering diffused by the 
controllable random surface can be manipulated in a desired manner in terms of the locations in the upper-half 
space, such as the main directions and the angle ranges of each main direction. This concept is illustrated in 
Fig. 1b, in which the random scattering that is originally located around the surface normal is diverted to the 
right-hand side by the elaborately designed controllable random surface. We remark that, unlike the previous 
demonstrated periodic coding sequences to generate a single or multiple beams pointing in definite directions, 
the controllable random surface is not designed to precisely manipulate the scattering at every angle, but to con-
trol the probability of random scattering appearing in desired range of angles, which is defined in this paper as 
scattering cloud. In this regard, the scattering cloud can be compared to, in a sense, the electron cloud in an atom, 
where one can never know the accurate position of the electron but only its probability inside a certain spherical 
zone, according to Heisenberg uncertainty principle in quantum mechanics.

As is known from the previous work, a gradient periodic coding sequence “01230123… ” from a 2-bit cod-
ing metasurface could generate a single-beam scattering pointing in a certain direction21, whereas the random 
scattering from random coding sequence is roughly located within a certain range of angles around the surface 
normal21–24. Then, an interesting idea arises: what happens if we add a periodic coding sequence to a random one? 
This conception is illustrated in Fig. 1c, where a random coding pattern (on the left) and a periodic coding pat-
tern with “01230123… ” gradient coding sequence (in the middle) are added together, resulting in their modulus 
(mod by 4) on the right side. It is interesting to find that the mixed coding pattern, which forms the controllable 
random surface, possesses both features of the random and the periodic coding patterns. For this reason, one 
may intuitively expect both characteristics: the random diffusion and single beam scattering, from the mixed 
scattering pattern.

Figure 1. Conceptual illustrations of the conventional random surface and the proposed controllable 
random surface. (a,b) Schematics for the conventional random surface and the proposed controllable random 
surface. (c) Schematic illustration for the generation of the mixed coding pattern (the right pattern) of the 
controllable random surface from the addition of a periodic coding sequence “01230123… ” (the middle 
pattern) and a random coding sequence (the left pattern).
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Theoretical characterization. To demonstrate the unusual physical phenomena of the controllable ran-
dom surface, we first consider the 1-bit coding metasurface composed of only two coding digits “0” and “1”. 
Figure 2a shows the coding pattern M1, which includes 64 ×  64 coding particles and is obtained by mixing a ran-
dom coding sequence and a periodic “0101… ” sequence. The depth of the blue color indicates the value of coding 
digit. To mix the random coding pattern and the periodic coding pattern, we first add them together and then 
calculate the modulus of it by 2. Each coding digit in the periodic coding sequence is composed of N ×  N identical 
coding particles, defined in the previous works as the super-unit-cell21. Table 1 lists the detailed information of 
the periodic coding sequences for the coding patterns M1–M4. Here, we provide a fast and efficient method for 
calculating the 3D scattering pattern directly from the coding pattern. Please refer to the method section for the 
details of the generation of mixed coding pattern and the procedure of fast calculation of the scattering pattern.

Figure 2e shows the 3D far-field scattering pattern plotted in the polar coordinate, in which the radial and 
azimuthal directions represent the elevation angle θ and azimuthal angle ϕ in the spherical coordinate, respec-
tively. All the scattering patterns have been normalized to their maximum intensity. It can be observed that most 
of the random scatterings appear in the left and right circular areas, with their center exactly located at the radia-
tion directions of the periodic “0101… ” sequence. The accurate value of the those directions can be theoretically 
calculated by the function of the generalized Snell’s law θ = λ

Γ
− ( )sin 1 22 as (θ =  30°, ϕ =  0°/180°), in which λ and 

Γ are the working wavelength and periodicity of the periodic coding sequence. Because the above- described 
directions are determined by the periodicity of the periodic coding sequence, we could divert the random scatter-
ing to larger angles by decreasing the periodicity, or vice versa. Figure 2b shows the coding pattern M2, which is 
obtained by mixing a random coding sequence with a periodic coding sequence that features the chessboard 
distribution. As expected, the random scattering shown in Fig. 2f is split into four regions, with their centers 
pointing in the radiation directions of the chessboard distribution coding sequence (θ =  32°, ϕ =  ± 45°/135°).

In certain applications, the random scattering may be required to be diverted to one direction. This can be 
realized by the 2-bit coding metasurface which allows much more pattern flexibility. Figure 2c shows the coding 
pattern M3 that is mixed by a random coding sequence and a periodic coding sequence “01230123… ”. The cor-
responding 3D scattering pattern is shown in Fig. 2g, where an obvious scattering cloud can be found to the right 
side of the center, around (θ =  30°, ϕ =  0°).

One may be interested in what the scattering pattern would be like if a random coding sequence is added with 
two different periodic coding sequences, such as “01230123… ” and chessboard distribution. Note that, when the 
1-bit and 2-bit coding digits are added together, the 1-bit coding digits should be multiplied by two in order to 
keep the 180° phase difference (i.e. “0101… ” should be converted to “0202… ”). And then we should calculate 
the modulus of them by 4. The resulting coding pattern M4 from such a combination is shown in Fig. 2d. Since it 
can be viewed as the addition of the coding pattern M3 with a periodic coding sequence “01230123… ”, we would 
expect a similar scattering pattern as Fig. 2f but is shifted to the right side. This can be verified from the 3D scat-
tering pattern shown in Fig. 2h.

To further elaborate the physical mechanism of such a rotation of the random radiation pattern to the desired 
directions, we would like to make an analogy to the mixing process (modulation) in signal processing. In fact, 
there is a Fourier transform relation between the coding pattern (near-field distribution) and the far-field radia-
tion pattern. Therefore, any property from the Fourier transform can be directly applied to the design of coding 
metasurface. As we know, a carrier wave with single frequency can be viewed as an ideal Dirac function from 
the frequency-domain perspective. The frequency spectrum of a baseband signal can be shifted to the central 
frequency of the carrier wave without distortion, after being multiplied with the carrier wave in the time-domain, 
or conducted by a convolution operation on its spectrum (Dirac function) in the frequency domain. For coding 
metasurfaces, the gradient coding sequence “01230123”, with unity amplitude and linearly increasing phase pro-
file, can be viewed as a carrier wave with single frequency in the time domain, or Dirac function in the frequency 
domain. Hence the random coding pattern, which is compared to the baseband signal, can be steered to an 
oblique direction with little distortion in the same manner as the above mixing (modulation) process.

The above cases have demonstrated the powerful control on the directions of the scattering cloud by simply 
adding one or more periodic coding sequences with a random one. Here, we show that the area of scattering could 
also be manipulated by altering the size of super-unit-cell in the random coding pattern. To demonstrate the 
influence of super-unit-cell size on the area of scattering cloud, we add a periodic coding sequence “01230123…”  
(super-unit-cell size is 2 ×  2) with three random coding patterns, each having a distinct super-unit-cell size. 
Figure 3a–c show the mixed coding patterns when the weight arrays w (see the method section) of the three ran-
dom coding patterns are set as w1 =  [0 1 0 0 0 0], w2 =  [0 0 1 0 0 0], and w3 =  [0 0 0 1 0 0], respectively.

For the first case, since the super-unit-cell size of the random coding matrix 16 ×  16 is the largest among the 
three cases (see Fig. 3a), the random scattering is confined in a small area, as is observed from the 3D scattering 
pattern in Fig. 3d. As the size of super-unit-cell further reduces to 8 ×  8, the mixed coding pattern becomes more 
randomly distributed, as shown in Fig. 3b. Consequently, the EM energy is diffused to a larger range of directions 
(see Fig. 3e), compared to the first case (see Fig. 3d). For the last example where each super-unit-cell is composed 
of 4 ×  4 identical coding particles, we have the largest number of random coding digits (16 ×  16 =  256) in the 
random coding pattern (see Fig. 3c). As expected, the scattering cloud covers the biggest area among the three 
cases, as illustrated in Fig. 3f.

This example reveals the relation between the level of diffusion effect (i.e., the area of a single scattering cloud) 
and the super-unit-cell size of the random coding pattern (i.e., the number of random coding digits). This find-
ing enables us to control the size of scattering cloud flexibly by changing the size of super-unit-cell in random 
coding pattern. Smaller super-unit-cell size generates scattering cloud with larger area, which implies higher 
uncertainty of scatterings appearing in a fixed range of angles in the upper-half space. Once the super-unit-cell 
size is given, we could obtain a series of coding patterns that generate the same-sized scattering clouds. Although 
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Figure 2. Performance of the controllable random surface in diffusing the EM wave to desired directions. 
(a–d) The mixed coding patterns M1–M4. (e–h) The 3D scattering patterns for M1–M4 plotted in the polar 
coordinate, where the radial and azimuthal directions represent respectively, the elevation angle θ and azimuthal 
angle ϕ in the spherical coordinate.
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these scattering patterns may look different from each other, the probability of scattering appearing at a certain 
direction with certain intensity is definite. This feature is quite similar to the experimental observation of elec-
trons in an atom. Even though the electron may appear at different positions in each observation, one should get 
the same probability distribution of the electron’s position in the atom if the experiment is repeated for enough 
times. This principle can also be found in the controllable random surface. Figure 3g–i show the corresponding 
probability clouds of random scattering for weight arrays w1–w3, each obtained from the averaged result of 100 
different scattering patterns that have the same super-unit-cell size. Clearly, the bright level in each plot indicates 
the relative probability of random scattering appearing at a specific direction. That is to say, the random scatter-
ing should have more chances to appear at those directions with brighter color. The center points of probability 
clouds for all three cases coincide because they share the same periodic coding sequence. Again, the size of the 
probability cloud gradually increases as expected with the decreasing of the super-unit-cell size of the random 
coding sequence. Please find more details about the relationship between the level of scattering diffusion and 
super-unit-cell size in Supplementary Information Figure S1.

Here, we find an interesting connection between the potential information carried by a controllable random 
surface and size of scattering cloud by analyzing the controllable random surface from the perspective of Shannon 
entropy25,26, which is used to measure the unpredictability of information content. We know that a signal source 
with larger entropy (i.e. higher uncertainty) should theoretically be able to deliver more information than that 
with smaller entropy (i.e. less uncertainty). Likewise, a radiation pattern with random scattering carries more 
information than that with a single or only a few scattering beams. That is to say, more random coding dig-
its (i.e. smaller super-unit-cell size) result in more uncertainty of the scattering that appears in a certain direc-
tion, and thus possessing potentially more information. This could be better understood by the application of a 
single-sensor imaging system30. In order to retrieve the image of an object with high resolution and accuracy, i.e. 
with more information, the scattering pattern generated from the transmitting antenna is required as random 
as possible. With the controllable random surface, we could easily obtain a series of coding patterns that have 
the same information entropy, which might be of particular interests in the applications like compressive radar 
imaging31.

Numerical simulation. In order to implement the controllable random surface with a realistic struc-
ture, we design the coding particle as shown in Fig. 4a, which features low EM interference with adjacent cod-
ing particles due to the existence of the metallic frame added to the edge of each coding particle. The design 
details for this structure and the comparison of it with structures in the previous works21–24 are described in the 
Supplementary Information. Figure 4b shows the simulated phases of reflections from 0.8 to 1.2 THz of the four 
optimized coding particles, which reach exactly to − 180°, − 90°, 0°, and 90° at the operating frequency 1.0 THz. 
The amplitudes of all four coding particles remain above 0.75 at the designed frequency (see Supplementary  
Information Figure S2).

We built the coding pattern M1–M4 in CST using the designed structure (see Fig. 4c for the coding pattern M1)  
and simulated them with the time-domain solver. It is clearly observed from Fig. 4d that the numerically simulated 
scattering pattern for M1 is highly consistent with the theoretically calculated one given in Fig. 2a. Excellent agree-
ments can also be found between the numerically simulated scattering patterns for M2–M4 (see Supplementary  
Information Figure S3) and the theoretical results in Fig. 2f–h, which are due to the low-interference charac-
teristic of the designed structure. Such a highly consistency between the numerical simulation and theoretical 
calculation validates the feasibility of the approach to use coding metasurface for the implementation of the 
controllable random surface, and at the same time, verify the effectiveness of the method for the fast calculation 
of the scattering patterns using FFT.

In addition to the outstanding performance, the controllable random surfaces are especially appealing for 
their flat profile and ease of fabrication with respect to 3D bulk structures. We remark that they may have 
potential applications not only in the terahertz frequency, but also in the microwave or visible light spectra, or 
even for the acoustic waves. Some of the possible applications that may benefit from this concept are discussed 
as follows.

Coding pattern (periodic part) Combination Size

M1








0 1
0 1  (N =  3) 1-bit 64 ×  64

M2








0 1
1 0  

(N =  3) 1-bit 64 ×  64

M3





















0 1
0 1

2 3
2 3

0 1
0 1

2 3
2 3  

(N =  2) 2-bit 64 ×  64

M4





















0 1
0 1

2 3
2 3

0 1
0 1

2 3
2 3  

(N =  2) 2-bit+

  









0 1
1 0

 

(N =  3) 1-bit 64 ×  64

Table 1.  Information of the periodic coding sequences for the coding patterns M1–M4.
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For the single-sensor imaging system in the microwave or millimeter wave frequencies, the random scattering 
generated by the transmitting antenna is usually confined in a certain range of angles with respect to the optical 
axis, fundamentally limiting the area that could be effectively imaged at the imaging plane. With the controllable 
random surface, however, the random scattering can be deviated to larger oblique angles, and therefore could 
increase the size of image area. At the visible light spectrum, a material with artificially tailored diffusion may 
have a wide range of applications in the fields where the conventional reflective/diffusion materials are applied, 
such as warning board, facade material of building, clothing materials, etc. For instance, it can be used to replace 
the reflective material around the bulb to guide the light in the desired range of directions, or to confine the dif-
fusion of the projection screen in the audience direction to improve the luminance. The concept of controllable 
random surface can also be extended to acoustic waves32,33, and may promise many novel acoustic diffusion 
materials with unusual diffusion properties.

Conclusion
In this work, inspired by the functionalities of random scattering and beam scanning capability of coding meta-
surfaces, we proposed the concepts of controllable random surface and scattering clouds by combining periodic 
and random coding sequences. It is interesting to remark that the scattering cloud behaves like the electron cloud 
in an atom in the aspect that every definite coding pattern of the controllable random surface is essentially a par-
ticular instance of the probabilistic model (probability cloud) under a certain control parameter (e.g. the size of 
super-unit-cell). Moreover, just like the superposition principle of quantum mechanics that wave functions can 
be added together and multiplied by complex numbers to form new wave functions, the shape of the scatterings 
cloud, which is determined by the probabilistic model of the controllable random surface, can be tailored in a 

Figure 3. Manipulation of the level of scattering diffusion by controlling the super-unit-cell size of 
the controllable random surface. (a–c) The mixed coding patterns when the weight numbers w of the 
three random coding patterns are set as w1 =  [0 1 0 0 0 0], w2 =  [0 0 1 0 0 0] and w3 =  [0 0 0 1 0 0]. (d–f) The 
corresponding 3D scattering patterns. (g–i) The corresponding plots for the probability clouds of the random 
scatterings.
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similar manner by superposing multiple random coding sequences with different weights, and various periodic 
coding sequences.

As an example of practical implementation of the controllable random surface using realistic structures, we 
designed and simulated a novel coding particle that features low EM interference with neighboring unit cells. The 
numerical simulations agree very well with theoretical calculations. Given the exotic physical phenomena of the 
controllable scattering clouds and their probabilities, our design can be considered, in a sense, a new type of diffu-
sion material that may have a great impact on the conventional reflective and diffusion materials from microwave 
to optical spectra, and even for acoustic waves.

Method
Generation of the random coding pattern. The random coding pattern Mrandom is formed by the fol-
lowing function:

∑=










⋅









=

−M round mod kron rand ones w( (2 ), (2 ) ) , 1
(1)

random
i

N
i N i

i
1

in which the item kron(rand(2i), ones(2N−i) represents a 2i ×  2i partitioned matrix, and each partitioned matrix is 
composed of 2N−i ×  2N−i identical random numbers on the open interval (0,1); wi is the weight (random number 
on the open interval (0,1)) on each of the above random matrix. According to Equation (1), the final random 
coding pattern of the controllable random surface is obtained by the following setup. First, sum up these different 
random matrices as the integer i ranges from 1 to N; then calculate the modulus of it by one; finally round the 
continuous random numbers (from 0 to 1) to the discrete binary codes “0” and “1”. In this work, N is chosen as 6, 
making a coding pattern with 64 ×  64 coding particles. The weight array w =  [w1, w2, w3, w4, w5, w6] is determined 
randomly for the following four cases.

Procedure of calculating the 3D scattering pattern. The procedure for the fast calculation of the 3D 
scattering pattern directly from the coding pattern mainly includes two steps, which are a 2D FFT of the coding 

Figure 4. Numerical implementation for the controllable random surface using a low-interference 
structure. (a) The structure of the coding particle design. (b) The simulated phases of reflections for the four 
coding particles from 0.8 to 1.2 THz. (c) The model of the coding pattern M1 built in CST. (d) The numerically 
simulated scattering pattern for M1.
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pattern and a coordinate transformation from the angular coordinate (u, v) to the visible angle coordinate (θ, ϕ) 
using the following equations,

π
λ

θ ϕ=u d2 sin cos
(2)x

π
λ

θ ϕ=v d2 sin cos
(3)x

in which dx, dy are the periodicities of the coding particle that are distributed on the 2D plane along the x and y 
directions, respectively. λ = 300 μm is the working wavelength. As (u, v) range from 0 to π , dx, dy should be less 
than half wavelength so that (θ, ϕ) can cover all the visible angles, which means the encoded metasurface will 
have the capability to scan in the entire upper-half space. During the theoretical calculation, we have assumed the 
amplitude as unity across the square area (100 ×  100 μ m) of each coding particle, and their phases as the ideal 0° 
and 180°. We remark that the computational time is dramatically reduced to only several seconds, at least three 
orders of magnitude fewer than that took by the numerical simulations using the commercial software, CST 
Microwave Studio.
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