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Using Coherence-based spectro-
spatial filters for stimulus 
features prediction from electro-
corticographic recordings
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The traditional approach in neuroscience relies on encoding models where brain responses are related 
to different stimuli in order to establish dependencies. In decoding tasks, on the contrary, brain 
responses are used to predict the stimuli, and traditionally, the signals are assumed stationary within 
trials, which is rarely the case for natural stimuli. We hypothesize that a decoding model assuming each 
experimental trial as a realization of a random process more likely reflects the statistical properties of 
the undergoing process compared to the assumption of stationarity. Here, we propose a Coherence-
based spectro-spatial filter that allows for reconstructing stimulus features from brain signal’s features. 
The proposed method extracts common patterns between features of the brain signals and the stimuli 
that produced them. These patterns, originating from different recording electrodes are combined, 
forming a spatial filter that produces a unified prediction of the presented stimulus. This approach 
takes into account frequency, phase, and spatial distribution of brain features, hence avoiding the 
need to predefine specific frequency bands of interest or phase relationships between stimulus and 
brain responses manually. Furthermore, the model does not require the tuning of hyper-parameters, 
reducing significantly the computational load attached to it. Using three different cognitive tasks 
(motor movements, speech perception, and speech production), we show that the proposed method 
consistently improves stimulus feature predictions in terms of correlation (group averages of 0.74 
for motor movements, 0.84 for speech perception, and 0.74 for speech production) in comparison 
with other methods based on regularized multivariate regression, probabilistic graphical models and 
artificial neural networks. Furthermore, the model parameters revealed those anatomical regions and 
spectral components that were discriminant in the different cognitive tasks. This novel method does not 
only provide a useful tool to address fundamental neuroscience questions, but could also be applied to 
neuroprosthetics.

The traditional approach to investigating brain functions involves the presentation of different stimuli and the 
analysis of evoked brain response properties1. The latter are collected either through non-invasive (e.g., electro-
encephalography [EEG], magnetoencephalography [MEG] or functional magnetic resonance imaging [fMRI]) 
or invasive (e.g., electrocorticography [ECoG]) recording techniques2,3. Independently of the method used, the 
measured signals contain background noise arising from other biological processes and environmental interfer-
ences that need to be filtered out or attenuated4,5. Several preprocessing methods such as signal filtering or refer-
encing can serve to limit neural noise or artifactual activity and are used to improve signals quality prior to the 
extraction of different brain features. One popular approach in the literature involves the decomposition of brain 
signals into distinct frequency bands (i.e., delta, theta, alpha, beta, gamma, and high-gamma) broadly divided 
into low-frequency components (LFC, below 40 Hz) and high-frequency activity. These different frequency bands 
have been extensively used as features to model brain phenomena6–17. For instance, LFCs, usually measured as 
low-pass filtered brain signal (below 40 Hz)18–20, have been used as informative features in several applications, 
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including decoding of position, velocity and acceleration of executed motor tasks18–26. The use of this feature pro-
duces significant improvements in decoding and prediction compared to models restricted to power modulations 
in alpha and beta bands24,25,27. Given its enhanced signal to noise ratio compared with both EEG and MEG, ECoG 
can also exploit high-frequency components above 100 Hz. High-frequency band activity (HFB), usually meas-
ured as the average power changes in the band from 70 to 200 Hz (although some works include lower spectral 
components in the range of 60–90 Hz28), has been used for decoding in multiple tasks, including motor, auditory, 
and visual21,29–34. The extracted features are used to model brain responses for basic brain research, medical diag-
nostics, and rehabilitation applications35–37. In rehabilitation, brain signal’s features are used to control external 
devices that allow subjects to interact with the environment36,38. In this case, successful use of the devices requires 
modeling the relationship between the executed task/stimulus and the brain features3,39.

Models based on multilinear regression, support vector machines, probabilistic graphical models, and artifi-
cial neural networks have been proposed in combination with different types of features8,9,11–14,18–20,22–26,40–42. These 
features involve spatial patterns discovery28,38,43–47, which is argued to be critical for increasing signal-to-noise 
ratio and to improve interpretability of the observed brain activity. Approaches such as common average reference 
(CAR), spline Laplacian filters and common spatial patterns (CSP) have previously been proposed48–52, and more 
recent approaches based on Riemannian geometry have shown promising results in brain-computer interfaces by 
using covariance matrices for feature representation and learning45,53,54. Modeling of temporal dynamics through 
probabilistic approaches such as hidden Markov models42,55–57, conditional random fields11–14,21 and recurrent 
neural networks30,31,58 have also successfully been used. In addition, features based on frequency decomposition 
of brain signals performed through either Fourier or wavelet analysis are well described in the literature, high-
lighting the importance of including patient-specific frequency bands in the design of brain-computer inter-
faces50,54. More recently, approaches that go beyond the classic approach based on second order statistics (power 
spectrum and cross power spectrum) have been introduced, allowing modeling of cross-frequency interactions 
in brain signals using bi-spectrum59,60.

Each method presents advantages and disadvantages. In multilinear regression with distributed lag, a widely 
used method in the literature19,23,39,61–68, the original feature set is expanded by including lagged versions of the 
original set. Without appropriate regularization, this can introduce model over-fitting39. In probabilistic graphical 
models and deep neural networks architectures, temporal relationships can be incorporated through the mode-
ling of long-range dependencies21,58 and include prior information about the execution of the tasks42. However, 
these approaches require the use of a considerable amount of data that is usually not available in experiments with 
humans, limiting the performance of these methods69.

We hypothesize that modeling brain responses as realizations of a random rather than a stationary process 
should improve the identification of those features that are critical to their generation. We propose a decoding 
method based on complex coherence that accounts for different parameters such as frequency, phase, and spatial 
distribution of neural signals. Such an approach does not require manually predefining frequency bands of inter-
est or phase relationships (i.e. lags) between stimulus and brain responses. The method is built on the notion that 
each experimental trial is a realization of a random process whose characteristics reflect the presented stimulus or 
executed task. In contrast with methods assuming signal stationary within a trial19,23,39,61–68, a statistically consist-
ent phase difference between the neural signals and stimulus is expected across repeated trials of the same stimu-
lus presentation, leaving all other parameters (e.g., specific frequency bands of interest or the phase relationships 
(i.e., lags values) between stimulus and brain features) hypothesis free. Although other approaches attempted 
to solve the non-stationarity problem by modeling the temporal dynamics of brain signal’s features21,42,58, their 
performance is limited by the amount of data available for training models. Our results show that the proposed 
approach significantly improves decoding performance and reduces the computational load compared to other 
methods that require explicit tuning of hyper-parameters.

The remainder of this document is organized as follows. We first describe the proposed method, experimental 
tasks, and evaluation criteria, and then present a thorough analysis of the obtained results. We discuss the main 
aspects of the proposed method based on the results and compare this to other approaches in the literature, 
including caveats and cautions on the use of the proposed method.

Methods
Proposed method.  The proposed method is described in Fig. 1 using a finger movement task as an example. 
To model brain responses to stimulus/task- execution, each trial of an experiment is assumed to be a realization of a 
random process. Individual trials measure the superposition of the response due to the stimulus/task plus random 
noise that is assumed to be uncorrelated to the actual brain response of interest. The proposed method makes use of 
complex coherence to determine the relationship in amplitude and (more importantly) phase between stimuli and 
brain features at each frequency components across the training trials. In this approach, the coherence is estimated 
across trials, instead of across time windows in each trial. That is, it is assumed that the properties of the process are 
the same across trials, but not necessarily across the time course of individual trials. This allows relaxing assump-
tions about the stationarity of the brain features. For each electrode, a spectral filter is calculated.

The spectral filter extracts commonalities between stimuli and brain features at each frequency band. The 
output of these filters is then combined using multivariate linear regression, producing a final prediction that 
incorporates frequency, phase, and spatial features of the brain response. Importantly, spatial filtering results 
can be analyzed to determine the contribution of different recording electrodes on the prediction, examining for 
anatomical discriminability among different cognitive tasks or different stimuli.

Signal preprocessing and feature extraction.  For all three data-sets the preprocessing stage is identical. All elec-
trodes were band-pass filtered between 0.1 and 200 Hz using a zero-phase Butterworth filter of 4th order. A notch 
filter at 60 Hz was used to reduced the interference of the power line (See Supplementary Table S1). A common 
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average reference (CAR) was used to reduce the effect of the reference electrode in all the recording electrodes. 
For this, the average across all electrodes is subtracted from the individual electrodes in the following fashion:
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where s(t) = {s1(t), …, sN(t)} represent the brain signals measured for a trial at different electrode locations pre-
processed with the bandpass filter (0.1–200 Hz) and the notch filter at 60 Hz. N is the number of electrodes.

The brain signals were separated within two frequency ranges: low frequency components (LFC) from 0.5 to 
40 Hz, and HFB(70 to 170 Hz). LFCs were estimated by filtering the brain signals with a band-pass Butterworth 
filter of 4th order between 0.5 and 40 Hz. The envelope of high frequency band components (HFBE) was calcu-
lated as the magnitude of the analytic signal in the following fashion: assuming that the signal zbandpass(t) is the 
result of band-pass filtering z(t) in the HFB range, the analytic signal zanalytic(t) is calculated as:

= + H( ) ( ) { }( )z t z t j z t (2)analytic bandpass bandpass

where H represents the Hilbert transform operation. The envelope of high frequency band components was 
low-pass filtered with a Butterworth filter of 4th order and a cut-off frequency of 40 Hz to reduce rapid changes in 
the amplitude of the signal. After this, LFCs and HFBE where down-sampled to 200 Hz in order to reduce redun-
dant information. The stimulus features (speech envelope or finger movement dynamics) were accordingly 
down-sampled to 200 Hz.

Coherence-based spectro-spatial filter.  The complex coherence allows for determining how well two signals cor-
relate at each frequency component70. Given the random variables x(t) = {x1(t), …, xN(t)} representing the brain 
features extracted at each recording electrode (either LFCs, HFBE or the concatenation of both) and y(t) repre-
senting the dynamics of the stimuli that elicits the brain responses, the complex coherence between each xj(t) and 
y(t) is given by:













=
( )

( ) ( )
C f

P f

P f P f
(3)

x y
x y

x x y y

,
,

, ,
j

j

j j

Figure 1.  Description of the coherence-based spectro-spatial filter. The diagram represents the recordings of a 
trial while the patient performs a movement with his/her thumb. (A) Brain features are used as input to a set of 
linear filters trained for each electrode. The filters represent the transfer function of a linear system that maps 
the brain features to the movement of the finger. The outputs of all filters are combined using linear regression to 
produce the final prediction of the movement. The signals shown in the figure correspond to LFCs components. 
(B) Example of one patient’s electrodes location. (C) Example of the magnitude response of one of the learned 
filters showing a peak in the low-frequency domain around 1 Hz.
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where ( )P fx x,j j
 and Py,y(f) are the power spectral density of xj(t) (brain signal features at electrode j) and y(t) 

respectively, and ( )P fx y,j
 is the cross-power spectral density calculated between xj(t) and y(t). Power spectral 

densities (and therefore the complex coherence) were calculated based on the welch method, but rather than 
dividing each trial in several segments, we assume that each trial of the same class is a different realization of the 
same process and therefore each trial is one window in the calculation. The windows size is then the length of the 
trial, the window function used was a Hamming window, and the overlap was set to zero. The magnitude squared 
of the complex coherence has values between 0 and 1 and can be understood as the squared correlation between 
the two signals at each frequency component. Using the coherence as a measure of correlation between two sig-
nals at each frequency f, a linear filter is defined as:
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Using the expression in Equation (3) for coherence we obtain:
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where Hj(f) is the linear filter. Note that ( )P fx y,j
 is a complex quantity, while Px x,j j

 is real. Therefore the phase spec-
trum of Hj(f) is given by the phase differences between y(t) and xj(t). That is, for prediction of y(t) from xj(t), the 
phase differences at each frequency f are taken into consideration by the filter. Estimation of y(t) from xj(t) is then 
obtained by:

≅ ∗( ) ( ) ( )y t x t h t (6)j j

where hj(t) represent the inverse Fourier transform of Hj(f). Finally, different electrodes may contain different type 
of information, and should be accordingly combined forming a spatial filter, as follows:
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where bj is a weight that determines how important the jth feature xj(t) is for the prediction of the signal y(t). The 
term n(t) is used to model the error in the prediction. The set of coefficients bj, can be understood as a spatial filter 
that provides information about which brain areas are involved in the processing of the stimuli or task executed. 
Combining h(t) with the coefficients in Equation (7) forms a filter that takes into account the frequency and phase 
spectrum of the signals, and the spatial patterns representing the contribution of different brain areas.

It is worth noting that the frequency response of the filters h(t) is defined by the signals xj(t) and y(t), and 
therefore should be calculated independently for each patient. Once the filters hj(t) are build, parameters bj can 
be learned using the least square solution for linear regression. For validation of the performance of the method, 
the proposed filters are constructed using portion of the available data (training set) and tested in the remaining 
portion (testing set), using a 5-fold cross-validation approach.

subsectionData-set description.

Finger movements.  The motor data-set consists of electrocorticographic recordings from five patients that 
underwent surgery for temporary placement of subdural electrodes due to intractable epilepsy. These data orig-
inally appeared in23. Clinical information is displayed in Table 1. Patients executed a repetitive finger move-
ment task. During the task, patients were cued with a word displayed on a bedside monitor indicating which 
finger to move (Thumb, Index, Middle, Ring, and Pinky). Patients were asked to repetitively move the indi-
cated finger during an interval of 2-second (trial). There were thirty trials for each finger. Recordings were done 
using a Neuroscan Synamps2 device with a sampling rate of 1000 Hz. In addition to ECoG, finger positions were 
recorded using a 5-degree-of-freedom data-glove sensor. The data-glove signals were originally sampled at 25 Hz 
and up-sampled at 1000 Hz to match the sampling rate of the ECoG signals. The data-glove signal for each finger 

Patient Age Sex Handedness Grid Location Seizure focus

S01 46 F Left Left frontal Left frontal

S02 24 M Right Right frontal Right medial frontal

S03 18 F Right Left frontal Left frontal

S04 32 M Right Left fronto-temporal Left temporal

S05 27 F Right Left fronto-temporal Left temporal

Table 1.  Clinical information for patients in the finger movement data-set.
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is the signal to be predicted from the brain features. Only electrodes in the sensory-motor (S1) and Motor areas 
(M1) were included in the analysis (See Supplementary Fig. S1). The identification of these areas was based on 
brain-mapping using electrical stimulation on the patients during the surgery. All patients gave informed consent. 
The study was approved by the Institutional Review Board of the University of Washington School of Medicine.

Speech perception.  The data-set consists of ECoG recordings from three patients that underwent placement 
of subdural electrodes due to intractable epilepsy. These data originally appeared in71. Clinical information is 
displayed in Table 2. During the experiment, patients were requested to listen to a taped female voice repeating 
six different words (battlefield, cowboys, python, spoon, swimming and telephone). Each trial started with a 
baseline period of 500 ms after which a word out of a total of six is randomly selected and played on speakers at 
the bedside of the patient. Based on the anatomical mapping, electrodes that responded to auditory stimulus were 
selected (see Supplementary Figure S2). Each word was repeated eighteen times. Recordings were done using a 
g.USBAMP (g.tec medical engineering GmbH, Austria) with a sampling rate of 9600 Hz -DC coupled-. The audio 
input was recorded in parallel with brain signals to achieve the minimum loss of synchronization, the selected 
sampling rate covers the essential portions of the voice spectrum. We use the speech envelope72,73 as the feature 
to be predicted from brain features using the proposed method. For each trial, we selected 1.5 s segments starting 
from the auditory onset. All patients volunteered and gave their informed consent. The experimental protocol was 
approved by the Albany Medical College Institutional Review Board and methods were carried out in accordance 
with the approved guidelines and regulations.

Speech production.  The data-set consists of ECoG recordings from three patients (same patients as in the per-
ception task with the same recording parameters). During the experiment, patients repeated a particular word 
presented to them (among six different words: battlefield, cowboys, python, spoon, swimming and telephone). 
Each trial started with a baseline period of 500 ms after which the patient repeated the word that he or she 
heard prior to the beginning of the trial. Based on clinical mapping, electrodes that responded speech tasks were 
selected and used for both speech perception and speech production analysis. Each word was repeated eighteen 
times. Technical details of the recordings are the same as described in the speech perception data-set. These data 
originally appeared in71. For each trial, we selected 1.5 s segments starting from speech production onset. This 
onset was determined using an audio signal which recorded along with the ECoG. The experimental protocol was 
approved by the Albany Medical College Institutional Review Board and methods were carried out in accordance 
with the approved guidelines and regulations.

Evaluation.  For the finger movement data-set, we compare the results obtained with the proposed method 
with results available in the literature. 1. Pace-regression: used for finger movement detection in23, 2. A proba-
bilistic graphical model presented in42 that uses prior information to model the smooth dynamics of the finger 
movement, 3. A mTRF (multivariate Temporal Response filter) presented in39 and, 3. A non-linear function fitting 
method based on neural networks (named ANNFit in the remaining of the document).

The methods based on Pace-regression and probabilistic graphical models used the same set of data used in 
this work. Details of the methods and parameter selection can be found in23 and42. mTRF39 learns a multivariate 
temporal response function that can be used to map brain signal features to stimulus properties or vice-versa, 
making use of regularized linear regression. In our case, the goal is to predict stimulus properties or task dynam-
ics form the brain signal features. mTRF builds a highly dimensional feature set by adding lagged versions of the 
original features. The lags can be positive or negative (making the resulting filter non-causal). The brain signal 
features were lagged using values from −500 to 500 ms, with steeps of 1/fs where fs is the sampling rate of the 
features. In order to avoid over-fitting, given the large number of features used, mTRFs uses Ridge regression74,75, 
which uses L2 regularization; adding the square magnitude of the coefficients as a penalty to the loss function, 
favoring solutions with coefficients with small square magnitude. The amount of penalization is controlled by a 
hyper-parameter (λ). We perform a grid search using nested cross-validation within the training set. The range 
of values for λ was selected as presented in a recent study that compares regularization methods in forward and 
backward models for auditory attention decoding75. λ values range from 10−6 to 108 in 54 logarithmically-spaced 
steps, using the following formula (Equation 16 in75):

λ λ= × . ∈n n1 848 , [0, 53] (8)n 0

where λ0 = 10−6.
A non-linear method based on artificial neural networks was also implemented for comparison (ANNFit). 

The brain signal feature-set was expanded with lagged versions of the original feature set with lags from −500 ms 
to 500 ms as for the mTRF method. The first hidden layer is densely connected and uses a sigmoid activation 
function. In order to avoid over-fitting, a drop-out layer was incorporated with a dropping-out probability of 0.5. 
The output layer uses a linear combination of the output of the previous layer to predict the finger movement. 

Patient Age Sex Handedness Grid Location

P01 NA NA Left Left frontal, temporal

P02 25 F Right Right frontal, temporal, parietal

P03 19 F Left Left frontal, temporal, parietal

Table 2.  Clinical information for patients in the speech perception and speech production data-sets.
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The artificial neural network was implemented using the Keras library in Python with Tensorflow as backend. 
We used the mean-squared-error as loss function and 100 epochs. Adadelta was the selected learning algorithm 
given that it adapts learning rates based on a moving window of gradient updates, making it a robust optimizer 
compared to other alternatives as Adagrad76. The initial learning rate for Adadelta was set to 1.0.

For the listening and speech production data-set, the mTRF method and the ANNFit method were imple-
mented with the same criteria described above for parameter learning and hyper-parameter selection.

The initial set of features input to the models was the same in all cases implemented in this work. While mTRF 
and the ANNFit models expand the feature set, the proposed method based on coherence does not need to do 
this, which reduces the probability of over-fitting and reduces the computational load.

We used a 5-fold cross-validation process to evaluate performances. Cross-validation was implemented by 
dividing the available data for each task in five blocks. In each fold, four blocks were used for training and the 
remaining block for testing. This process was repeated five times each time having a different block for testing; 
ensuring that the data in the testing set is not part of the training set within the same fold. For the finger move-
ment dataset a model for each of the five fingers is learned, and a total of 30 trials per finger are available, leaving 
24 trials for training and 6 trials for testing on each fold. For the speech datasets a model for each of the 6 words is 
learned and 18 trials per word are available, therefore in each fold 14 trials were used for training and 4 for testing. 
In all cases, training or testing, the brain features are accompanied by an external reference signal (data-glove sen-
sor or audio recordings depending of the data-set). These reference signals are used to calculate the filters in the 
training stage and those in the testing set are employed as targets to validate the output of the proposed method.

Results concerning the prediction of the stimulus features (speech envelope) or task dynamics (finger move-
ment tracking) were obtained using all electrodes previously selected based on anatomical mapping.

Results
To address whether the coherence-based spectro-spatial filters method outperforms traditional approaches, we 
first compared its predictive power (in terms of the correlation between the predicted output and the actual 
stimulus/task dynamics) to the methods described in the Section 2.2. Evaluation of all methods implemented 
was performed in the same fashion, with the same features, using 5-folds cross-validation. Results show that for 
the tree data-sets the proposed method based on coherence and spatial filtering provides higher performance as 
displayed in Fig. 2. To assess the significance of performance gain, we performed a statistical test on the results. 
For the finger movement data-set, repeated-measures ANOVA on the performance results reveals significant 
differences between the five compared methods (DF = 4, F = 27.76, p < 0.0001). A post-hoc Tukey-Kramer 
multi-comparison test shows that the proposed method performs significantly better than all the other methods 
used for comparison (p < 0.001). For speech perception task (Listening) repeated measures ANOVA shows a 
significant difference between the three methods used (DF = 2, F = 95.03, p < 0.0001). A post-hoc Tukey-Kramer 
multi-comparison test shows that the proposed method performs significantly better than all the other meth-
ods (p < 0.0001). Similarly, for the speech production task repeated measures ANOVA shows significant differ-
ences in performance between the methods used (DF = 2, F = 18.53, p < 0.0001) and post-hoc Tukey-Kramer 
multi-comparison test show that the proposed method performs significantly better than the methods used for 
comparison (p < 0.0001). Detailed results for the correlation values between the actual and predicted feature 
dynamics in all patients across the three modalities are shown in Table 3, Tables 4 and 5 for finger movement task, 
listening and speech production respectively.

Furthermore, the proposed method enables to analyze the importance or weight of different recording elec-
trodes in the prediction of the stimulus/task dynamics. As a result, the magnitude of coefficients bj (see Equation 

Figure 2.  Average performcne in terms of correlation value between the model prediction and the actual 
stimulus perceived or task executed.
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(7)) reflects the contribution of each electrode to the final prediction. In the proposed method, the combination 
of channels occurs after the filtering stage. Therefore, the output of each filter only contains components that are 
linearly related to the stimulus/task dynamics. Consequently, the set of coefficients bj can be understood as a set 
of spatial filters that contain discriminant information about the areas involved in task execution. These spatial 
filters can be plotted on the brain models for different tasks. Figure 3 displays the spatial distribution of the coef-
ficients for LFC (panel B) and HFBE (panel A) components in one representative patient of the finger movement 
data-set. The results show that the proposed method leads to distinct spatial patterns, not only in response to dif-
ferent finger movements but also in the LFC and HFBE components. Similarly, the spatial filter for predicting the 
envelope of the perceived (Fig. 4) and produced (Fig. 5) speech revealed a level of discriminability across models 
learned for each word as well as between models learned using LFC and HFBE.

To assess the degree of discriminability within conditions (finger moved or word perceived/produced) 
revealed by the magnitude of the weights bj, we trained a set of models for each condition using a 5-fold 
cross-validation approach. We ranked the level of discriminability of the coefficients bj assigned to each electrode 
using K-means (k = 5 for finger movement dataset -five fingers- and 6 for speech data-sets -six words-) and fed 
an LDA (linear discriminant analysis) classifier with only the best two electrodes (selected using only the training 
set) to prevent over-fitting. The results revealed that the coefficients of the best two electrodes enabled discrim-
ination of the models fitted to each finger movements with a high level of accuracy/Coen’s Kappa for both LFCs 
(Acc = 83%, kappa = 0.8) and HFB (Acc = 80%, kappa  =  0.76). Similarly, we found that the coefficients discrim-
inated among the models learned for different words in the speech perception (LFCs Acc  =  90%, kappa  =  0.88; 
HFBE Acc = 94%, kappa  =  0.93) and production (LFCs Acc = 88%, kappa  =  0.86; HFBE Acc = 93%, kappa  =  
0.92) tasks. These results show that the method learns for each condition a spatial filter that indicates the impor-
tance of a particular electrode in the decoding of the task dynamics. These results demonstrate that the calculated 
models for each condition are differentiable by the values of the coefficients, evidencing different spatial activa-
tions during the execution of different tasks. Using all the selected electrodes for the finger movement data-set 
we obtain higher classification performance (LFCs Acc = 95%,Kappa = 0.94; HFBE Acc = 92%, Kappa = 0.90), 

Patient

Proposed TRF ANNFit SNDS Pace-Reg

L + H L + HL H L + H L + H L + H

S01 0.81 0.67 0.83 0.80 0.79 0.65 0.56

S02 0.78 0.68 0.79 0.77 0.78 0.67 0.60

S03 0.71 0.48 0.75 0.69 0.68 0.65 0.54

S04 0.58 0.39 0.60 0.56 0.54 0.61 0.50

S05 0.67 0.62 0.75 0.68 0.67 0.62 0.42

Average 0.71 0.57 0.74 0.70 0.69 0.64 0.52

Table 3.  Averaged correlation values between the predicted and the real finger movement dynamics for the three 
models. L represents low-frequency components (LFC). H represent high-frequency band envelope (HFBE).

Patient

Proposed Method TRF ANN-fit

L H L+H L+H L+H

P01 0.79 0.89 0.90 0.71 0.70

P02 0.65 0.75 0.70 0.66 0.67

P03 0.80 0.91 0.92 0.71 0.79

Average 0.75 0.85 0.84 0.69 0.72

Table 4.  Averaged correlation values between the predicted and the real envelope of speech (speech perception) 
for the three models. L represents low-frequency components (LFC). H represent high-frequency band 
envelope (HFBE).

Patient

Proposed Method TRF ANN-fit

L H L+H L+H L+H

P01 0.39 0.67 0.79 0.58 0.66

P02 0.70 0.67 0.69 0.70 0.62

P03 0.53 0.69 0.73 0.65 0.71

Average 0.54 0.68 0.74 0.64 0.66

Table 5.  Averaged correlation values between the predicted and the real envelope of speech (speech 
production) for the three models.L represents low-frequency components (LFC). H represent high-frequency 
band envelope (HFBE). L represents low-frequency components (LFC). H represent high-frequency band 
envelope (HFBE).
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for speech perception task (LFCs Acc = 98%, Kappa = 0.97; HFBE Acc = 98%, Kappa = 0.97) and for speech pro-
duction task (LFCs Acc = 94%, Kappa = 0.93; HFBE Acc = 99%, Kappa = 0.99). See Supplementary Figs S4–S6 
for more details.

Figure 6 shows, for the finger movement task, the coherence between the brain features and the data-glove 
recordings in three patients for the movement of the Thumb. Colored areas indicate statistically non-significant 
values for coherence at each frequency component calculated using random phase test77. It is important to note 
that the magnitude squared coherence can be understood as the r2 at each frequency component between the 
signals into consideration. The peaks with higher value were found to be related to the average rate of finger 
flexion for individual patients, calculated using the data-glove signals. The High value in the magnitude squared 
coherence indicates that the brain features are highly informative about the executed task. Importantly, the fre-
quency of peak coherence value is different for each patient. This is an expected observation as patients were cued 
to flex the finger freely during a particular amount of time. The proposed approach can then calculate the most 
informative frequency components within the LFC and the HFBE and use those to predict the dynamics of the 
task while reducing the impact of other components in the final prediction. Furthermore, Fig. 6 also shows a close 
relationship between the observed coherence when the LFCs and the HFBE are used.

It must be noted that the proposed method does not require the brain features to be in phase across trials. It 
exploits the fact that the same stimulus will produce a response with the same underlying statistical properties. 

Figure 3.  (A) Spatial patterns of (A) LFC and (B) HFBE of a patient (S02) during movement of three different 
fingers. Filters coefficient have been linearly normalized to range between 0 and 1.

Figure 4.  (A) Spatial patterns of (A) LFC and (B) HFBE of a patient (P03) during the perception of three 
different words. Filters coefficient have been linearly normalized to range between 0 and 1.
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Therefore, what is exploited, is the consistency in the phase difference between the stimulus and the brain features 
at each frequency component. This means that even in cases when there is no precise information about the exact 
moment when the patient starts executing the task, the proposed method will perform well, as is the case for the 
finger movement data-set and the speech production data-set.

In cases when the stimulus presented is in itself highly non-stationary (as in the speech perception or speech 
production cases), the traditional approach of using short windows to calculate the coherence is inappropriate, 
as it assumes that across the time the statistical properties of the signals remain unchanged. In contrast, our 
approach uses each trial as a realization of the same process, model the relationships at the trial level in the 
Fourier domain, and then transform the signals back to the time domain. In such cases, physical interpretation 
of the frequency response of the coherence based filters may be obscured, but the mathematical modeling using 
Fourier analysis is still valid, and therefore useful for decoding purposes.

Although Person’s correlation is commonly used to report the similarity between the predicted output and the 
true targets, this index does not take reproducibility into account78. To allow future works to be compared with 
the results presented in this study we included results based on Concordance Correlation Coefficient78 (Tables 
S2–4).

In terms of computational load, the proposed method requires significantly less time to be trained. We cal-
culated the average time necessary to train a model for the movement of the thumb finger with the proposed 
method and compared it to the mTRF and ANNFIT approaches. The results, after repeating this training 10 times, 
show a significant difference in the computational load. The proposed method require in average 0.65 +/− 0.07 
seconds for training, ANNFIT requires an average of 24.11 +/− 1.4 seconds, and Ridge regression requires 26.1 
+/− 1.02 seconds.

Discussion
Coherence-based spectro-spatial filter.  We propose and assess a method to reconstruct stimuli or task 
dynamics from features extracted from brain responses, that does not require a priori manual specification of any 
signal parameters. Relevant parameters are calculated through the use of a reference signal in the training stage 
and used lately to make predictions based only on the brain features on a patient-specific basis. We found that the 
coherence-based method outperforms traditional predictive models and provides both a high-performance level 
(in terms of correlation) and consistency across motor and linguistic domains. The proposed method provides 
group averages of 0.74 for motor movements, 0.84 for speech perception, and 0.74 for speech production, while 
the best results obtained among all the other methods used for comparison are 0.7, 0.72 and 0.66 for motor move-
ments, speech perception and speech production respectively. Notably, we demonstrate that the coherence-based 
method produces spatial filters that are discriminative of the task executed, revealing the importance of different 
brain areas for the execution of the tasks. The performance improvement relative to other methods is explained 
by several factors. The proposed method uses frequency decomposition and takes into account the phase rela-
tionships across trials. This allows for removing frequency components containing artifactual high power that 
does not show phase consistency between stimulus and brain features across trials. Such phase relationships 
are an essential factor because they reflect the latencies between the signals of interest at each frequency com-
ponent. Multilinear regression-based approaches19,23,39,61–68 cannot account for phase relationships and requires 
expanding the set of regressors with lagged versions of the data which could lead to over-fitting, given the large 
number of features obtained. mTRF39 uses multilinear regression with lags but uses L2 regularization to avoid 
over-fitting issues, which require fine-tuning the regularization parameter λ (see 2.2). This makes the method 
computationally demanding as there is not closed-solution for the value of λ and it must be selected using grid 
search combined with cross-validation or grid search plus model selection approach such as Akaike information 

Figure 5.  (A) Spatial patterns of (A) LFC and (B) HFBE of a patient (P03) during the production of three 
different words. Filters coefficient have been linearly normalized to range between 0 and 1.
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criterion (AIC) or Bayesian information criterion (BIC)79. This makes mTRF several folds slower than the pro-
posed method for the same task. The proposed filter can be calculated in the Fourier domain using the FFTW 
algorithm80, which is highly efficient and widely implemented in commercial packages, (Python, Matlab, R). 
The ANNFit method used for comparison includes the possibility to incorporate non-linearities through sig-
moid activation functions. However, it cannot model latencies among the signals of interest. Although expanding 
the regressors set with lagged versions of the data is possible as presented here, and in23,41,61,62, this may lead to 
over-fitting as the number of parameters increases while the amount of available data remains constant. To avoid 
these issues, we implemented a drop-out layer for the ANNFit method. However, the proposed method based 
on coherence not only outperforms the ANNFit method but is also computationally more efficient, despite the 
ANNFit being trained with a backend that uses parallel computing through graphical processing units (GPUs). 
Recently an approach based on canonical correlation analysis (CCA) has been proposed41 with good results. The 
CCA method produces a transformation of the input signals and also on the output signals (targets), which makes 
it impossible to compare in the scenario of the data-sets presented here. Nonetheless, the CCA also requires the 
inclusion of lagged versions of the input or to construct the input using multiple filtered versions of the brain 
signal features, which makes it prone to over-fitting. (see41)

We provided decoding results for LFCs and HFBE used both independently and in combination. For the finger 
movement data-set we found a high contribution from low frequency components (LFC), as previously reported 
in the literature25,81, which suggests that phase information is the most relevant information to be obtained from 
LFCs, which is consistent with other works showing selectively phase entrainment of the motor cortex on under-
lying rhythms in the low frequency range82. A recent work19 focused on LFCs showed that the phase of the brain 
features contains more information for decoding of kinematic parameters of the executed movements than the 
signal amplitude. It is also worth noting that the frequency range of the LFCs varies greatly across the literature, 
for instance, in81 the LFCs have a frequency content up to 20 Hz, while in24,25 the frequency content is up to 3 Hz. 
In83 LFCs were set to frequencies below 13 Hz for local field potentials, in84 frequencies below 2 Hz were selected 
for ECoG, and in85 a frequency content below 7 Hz was selected for EEG and MEG recordings. The approach in 
this work was to set a wide band (0–40 Hz) for the LFCs and determines based on coherence the frequencies that 
show phase consistency with the presented stimulus. The upper band was selected only to avoid contamination 
due to the power band at 60 Hz. In the case of the two speech data-sets, results show a greater contribution of 
HFBE compared to LFCs, in the case of speech perception where the brain activity expected is mainly sensory, we 
expect HFBE to provide better performance as it is highly correlated to the neuronal firing27. In the case of speech 

Figure 6.  Amplitude squared coherence between the data-glove signals and the brain features in the low 
frequency (LFC, top panel) and high frequency band envelope (HFBE, bottom). Colored areas show non-
significant values for coherence. Note than only portions of the spectrum show significant coherence. The 
proposed approach appropriately attenuates frequency components that do not contain relevant information.
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production there are motor components due to the vocal motor activity and auditory sensory components, there-
fore it is expected to obtain better performance combining those features. Furthermore, the difference in the 
performance between speech perception and speech production could be explained by the fact that auditory 
stimulus are highly consistent across trials as for a particular word, the same audio recording was presented to the 
patients, while in the speech production, variations in the speed at which the speech is produced were observed 
in the data. Such variations are difficult to model through linear systems which motivates the use of non-linear 
approaches as presented in71.

Given the limited amount of data available for each patient (30 trials per class for the finger movement data-set 
and 18 trials per class for the speech data-sets) electrode selection was guided by the clinical mapping, i.e. sig-
nal power increase during the relevant (motor or speech) tasks. This basic approach contributes to significantly 
reduce the dimensionality of the data and to limit over-fitting. While it likely produces interpretable results, it 
is not necessarily optimal in terms of decoding as areas that are not primarily included might also hold relevant 
information. When the amount of data is not limited, the spatial component of the proposed filter, can be com-
bined with regularization techniques (i.e., L1 norm) that aim at finding sparse solutions (see86–88) allowing auto-
matic selection of relevant electrodes.

The proposed coherence-based filter shows robust performances across different patients and operates well 
regardless of inter-individual differences and electrodes localization making it well suited for cases where the 
decoding goal is to decode what stimulus was presented to the patient. Using complex coherence, correlations 
between stimulus and brain features at each frequency component are calculated and are used to create a filter. 
Filter parameters are calculated under the assumption that each trial is a realization of a random process which 
allows employing the different trials to calculate a robust estimation of the cross-spectral density between brain 
features and the stimulus presented in training data. This permits extraction of components that are in phase with 
task dynamics across trials for each frequency and recording site. The resulting signal is then combined spatially 
to form a final prediction. The coherence-based spectro-spatial filter method has the advantage of including 
different dimensions of brain features such as phase, frequency, and space to handle the prediction of stimulus 
dynamics in an automated fashion. Importantly, the second stage of the proposed method combines different 
recordings electrodes. The difference between this and the methods used for comparison is that signals are com-
bined after the coherence-based filtering, which ensures that the components combined have a linear relationship 
with the stimulus/task dynamics. This reduces the possibility that the coefficients learned (spatial filters) reflect 
a simple noise-canceling process. Evidence for this is provided by the clustering of the values of the coefficients 
for each task, enabling discrimination of the models learned by stimulus type (word presented) or task (finger 
moved), which provides information about the brain areas involved in the particular task.

Caveats and caution.  The proposed method is better suited for discrete tasks. For instance, speech percep-
tion experiments as those presented here, in which the patient listens to a word and a prediction of the acoustic 
envelope of the audio attended is made, is an excellent example of such a discrete task. The proposed method 
could be used for continuous prediction as long as the causality of the filters hj(t) is ensured. Although engineer-
ing methods for ensuring causality exists, particular implementations of these techniques are beyond the scope 
of this study. However, in cases where patients are exposed to long continuous stimuli, methods based on linear 
switching dynamics or modeling of sequential states like hidden Markov models (HMM), conditional random 
fields (CRF) and recurrent neural networks, are better options given that the non-stationarity can be modeled 
with the different states that make part of such models. Although we selected a linear model for spatial filtering, 
non-linear methods are possible. We selected a linear approach aiming to obtain interpretable results as shown 
in Figs. 3–5. Finally, as explained before, when the signals that need to be modeled are highly non-stationary, 
physical or physiological interpretation of the spectral shape of the coherence-based filters should be made with 
caution as in such cases the Fourier representations of the signals, although numerically correct, may have no 
meaningful interpretation. Nonetheless, the results are still useful for decoding, as shown in the results of this 
work, in particular for speech-related tasks.

Conclusion
We present a method capable of predicting from features extracted from brain signals, characteristic features 
of a stimulus. The proposed method employs complex coherence to extract common patterns among the 
brain features related to the dynamics of the presented stimulus. This includes spatial information forming a 
spectro-spatial filter that is capable of reconstructing the dynamics of the stimulus with high performance (in 
terms of the correlation coefficient). Analysis of the coefficients that form the learned spatial patterns showed 
discriminability among different conditions, indicating the involvements of different areas and frequency com-
ponents during the execution of various cognitive tasks such as finger movement as well as speech perception 
and production. The anatomical discriminability revealed by the method can be exploited in the design of 
neuro-prosthesis as well as for investigating the normal brain function.

In order to allow reproducibility of the results, an implementation of the proposed coherence-based method 
has been made available in89.

Data availability
A Finger movement data-set was made available by Gerwin Schalk. A data-set with the same finger movement 
task is publicly available at “A library of human electrocorticographic data and analyses.” (https://exhibits.
stanford.edu/data/catalog/zk881ps0522). Speech perception and speech production data-sets were provided by 
Robert T. Knight and Gerwin Schalk and may be provided by them to interested researchers upon request.
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