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Recently developed cancer immunotherapy approaches including immune checkpoint 
inhibitors and chimeric antigen receptor T cell transfer are showing promising results 
both in trials and in clinical practice. These approaches reflect increasing recognition of 
the crucial role of the tumor microenvironment in cancer development and progression. 
Cancer cells do not act alone, but develop a complex relationship with the environment 
in which they reside. The host immune response to tumors is critical to the success of 
immunotherapy; however, the determinants of this response are incompletely under-
stood. The immune cell infiltrate in tumors varies widely in density, composition, and 
clinical significance. The tumor vasculature is a key component of the microenvironment 
that can influence tumor behavior and treatment response and can be targeted through 
the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have 
important roles in the trafficking of immune cells, controlling the microenvironment, and 
modulating the immune response. Improving access to the tumor through vascular 
alteration with antiangiogenic drugs may prove an effective combinatorial strategy with 
immunotherapy approaches and might be applicable to many tumor types. In this review, 
we briefly discuss the host’s immune response to cancer and the treatment strategies 
utilizing this response, before focusing on the pathological features of tumor blood and 
lymphatic vessels and the contribution these might make to tumor immune evasion.

Keywords: endothelial cells, lymphatic endothelial cells, angiogenesis inhibitors, tumor immune evasion, 
immunotherapy

iNTRODUCTiON

The interaction between tumor cells and the microenvironment in which they exist is increasingly 
recognized as a key player in the development and progression of cancer. The microenvironment 
of a tumor includes the blood and lymphatic vasculatures, stroma, nerves, and cells of the immune 
system, which may be resident in the involved tissue or recruited from the periphery. The hallmarks 
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FigURe 1 | Photomicrographs comparing a heavy lymphocytic 
infiltrate in a basal phenotype breast carcinoma (A), with a sparse 
infiltrate in a different basal phenotype breast carcinoma (B) (H&e, 
original magnification 200×). A similar contrast is seen between a marked 
CD8+ T cell infiltrate in a mismatch repair-deficient colon cancer (C), and the 
sparse infiltrate in a mismatch repair proficient colon cancer (D). CD8+ T cells 
are seen both within the tumor epithelium (closed arrowhead) and in the 
tumor stroma (open arrowhead) (CD8 immunohistochemical stain, original 
magnification 200×).
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of cancer include features of the tumor cells themselves, such as 
replicative immortality and resistance to cell death, as well as 
features relating to the microenvironment, such as induction of 
angiogenesis and evasion of the immune response (1). Successful 
reversal of this immune evasion by checkpoint inhibitors is now 
a clinical reality, with inhibitors of cytotoxic T lymphocyte-
associated protein-4 (CTLA-4) as well as programed cell death 
protein-1 (PD-1) and programed death ligand-1 (PD-L1) deliv-
ering durable responses in a subset of patients with a range of 
cancer types including melanoma (2, 3), urothelial carcinoma (4), 
Hodgkin lymphoma (5), non-small cell lung carcinoma (6–8), 
Merkel cell carcinoma (9), and squamous cell carcinoma of the 
head and neck (10). In addition, decades of research into the use 
of adoptive cell transfer and genetic engineering of tumor killing 
T cells has resulted in breakthrough therapy designation of anti-
CD19 chimeric antigen receptor (CAR) T cell transfer for use in 
B-acute lymphoblastic leukemia (11). However, there is marked 
variability in patient response to immune checkpoint blockade 
(12), and the use of CAR T cells against solid tumors has seen 
little success in the clinic (13).

Immunotherapy, particularly checkpoint inhibitors, differs 
from conventional cancer therapies. A complex intermediate 
step is introduced by activating the host’s immune system, 
instead of a direct toxic effect on tumor cells or targeting of a 
tumor cell-specific mutation. Understanding the tumor micro-
environment is critical to understanding the exact mechanisms 
of actions of these therapies and predicting response. There 
is a clear need for robust microenvironmental biomarkers to 
direct therapeutic strategies. The presence of tumor-infiltrating 
lymphocytes (TILs) is correlated with improved prognosis in 
many tumor types, as well as improved response to some con-
ventional therapies and most immunotherapies (14). Tumors 
can exert direct effects to adapt to, escape, and suppress anti-
tumor immunity, which is reviewed in Ref. (15). The access of 
immune cells to the tumor is a critical factor in the efficacy of 
both adoptive cell transfer and immune checkpoint inhibition, 
and the role of the tumor vasculature in providing or blocking 
access to the tumor is likely to prove an important consideration 
in immunotherapeutic strategies. In addition, blood vessels, 
lymphatic vessels, and the hypoxic tumor environment have 
important immunomodulatory roles, which contribute to the 
immune evasion of tumors. In this review, we provide a brief 
overview of factors affecting the host immune response to 
tumors and current immunotherapy approaches, which show 
exciting clinical results. We then focus on the molecular and 
mechanical features of the tumor vasculature that modulate the 
host antitumor immune response and consider the implications 
of these interactions for potential therapeutic approaches to 
enhance immunotherapy.

THe HOST iMMUNe ReSPONSe  
TO TUMORS

For an effective host immune response, the tumor must be 
recognized as foreign and the immune effector cells must be 
able to access the tumor to destroy it. It is well established that 

tumors are antigenic and able to induce a systemic, tumor-
specific immune response (16, 17). Unstable tumor genomes 
contain many mutations that generate altered protein products, 
which have the potential to be recognized as foreign by the host 
immune system during surveillance. The tumors must therefore 
develop mechanisms of evading this immune response in order 
to establish, grow, and eventually metastasize. For example, cir-
culating T cells specific to tumor antigens can be demonstrated 
in patients with metastatic melanoma, yet the tumor progresses 
(18, 19).

There is wide variation in the immune cell infiltrate seen in 
solid tumors, both within and between different tumor types, 
which is illustrated in Figure  1. This can provide important 
prognostic and predictive information. The density of TILs 
correlates with improved survival in many tumors ranging 
from melanoma to colorectal cancer, renal cell carcinoma, and 
non-small cell lung carcinoma (20). However, specific immune 
cell subsets modify this association, including regulatory T 
cells (Tregs), myeloid-derived suppressor cells (MDSCs), and 
tumor-associated macrophages (TAMs) (20, 21). The presence 
of TILs has also been shown to be predictive of response to 
conventional anticancer treatment, for example, anti-HER2/
neu therapy and trastuzumab and anthracycline chemotherapy 
in breast cancer (22). A classification of tumors based on 
their immune phenotypes has been proposed, both as a 
broad conceptual approach (23, 24) and as specific quantita-
tive scoring (21). Broadly, tumors can be classified as “T-cell 
inflamed” or “non-inflamed” based on the presence or absence 
of CD8+ cytotoxic T cells within the tumor (23). For example, 
Figure  1A shows a basal phenotype breast carcinoma with a 
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florid lymphocytic infiltrate, whereas Figure 1B, which is also 
a basal phenotype breast carcinoma, shows very few TILs. Even 
in melanoma, widely accepted as an immunogenic tumor and 
the solid tumor in which immunotherapy has had the most 
success, approximately 40% of tumors display a non-inflamed 
phenotype (24). The existence of an inflamed phenotype is sup-
ported by gene expression profiling of tumors, through which 
a subset of tumors rich in immune-related gene transcripts has 
been identified in pancreatic ductal adenocarcinoma, colorec-
tal carcinoma, and melanoma (25–27). A multitude of different 
scoring systems and methodologies have been proposed to 
describe the immune infiltrate in tumors, with variable repro-
ducibility and practicality (21, 28, 29). As such, use of these 
scoring systems is limited in routine pathology practice, despite 
the valuable information they could convey.

It is hypothesized that the mutational load of the tumor 
correlates with the presence of an immune infiltrate, due to the 
greater potential for neoantigen formation. In support of this 
hypothesis is the evidence that mismatch repair deficient tumors 
with vast mutational loads show higher immune cell infiltrates 
than mismatch repair proficient tumors (30) (for example, see 
Figures 1C,D, respectively). The tumor types showing high levels 
of response to immune checkpoint blockade—melanoma, smok-
ing associated lung cancer, and urothelial cancer—are the tumor 
types with the highest overall mutational loads (31). However, 
this correlation is weak at an individual tumor level, as the 
presence of mutations does not necessarily result in neoantigen 
formation, and multiple factors are involved in the presentation 
of antigens to elicit an immune response (32, 33). In addition, the 
extent and composition of the immune infiltrate varies widely 
between individual tumors within these highly mutated types 
(29, 34). Features of the microenvironment, including blood and 
lymphatic vessel structure, stromal fibroblasts, and extracellular 
matrix, may contribute to this variation by modulating the access 
of immune cells to the tumor and their activation and function in 
the tumor microenvironment.

Trafficking of effector T cells to tumors is complex and tightly 
regulated. T cell migration, activation, and differentiation are 
intricately linked processes. Following activation by antigen-
presenting cells (APCs), T cells upregulate chemokine receptors 
and ligands for endothelial adhesion molecules. Binding of 
inflammatory chemokines enhances adhesion and extravasation, 
allowing effector T cells to enter the tumor microenvironment 
(35, 36). Levels of chemokines within tumors, particularly the 
CXCR3 ligands CXCL9 and CXCL10, have been shown to corre-
late with T cell infiltration into tumors and enhanced antitumor 
responses (37, 38). Chemokine/chemokine receptor mismatch-
ing is postulated as an important mechanism of reduced T cell 
trafficking into tumors (35). Post-translational modification of 
chemokines can also affect immune cell infiltration. For example, 
nitration of CCL2 as a result of the intratumoral production 
of reactive nitrogen species can reduce T cell infiltration into 
tumors, while macrophages and MDSCs can still be attracted by 
nitrated CCL2 (39).

Once arriving within the tumor microenvironment, T cells 
must also proliferate locally, as evidenced by the enrichment of 
cancer-specific T cells in the tumor compared to the peripheral 

blood (40). A range of cellular, metabolic, and molecular fea-
tures of the tumor microenvironment contribute to limit the 
proliferation and activation of antitumor immune effector cells. 
Activation of CD8+ T cells requires APCs that can efficiently 
cross-present antigen. However, hypoxia in the tumor micro-
environment can impair the maturation and differentiation of 
dendritic cells (DCs) and polarize macrophages to an immu-
nosuppressive phenotype (41). Nutritional depletion, hypoxia, 
and reactive nitrogen species, features characteristic of the 
abnormal metabolic environment of tumors, can limit the acti-
vation of T cells and induce apoptosis [reviewed in Ref. (42)]. 
Enzymes contributing to immunosuppression are also found 
in the tumor microenvironment. Indoleamine 2,3-dioxygenase 
(IDO) is an intracellular enzyme preferentially expressed by 
subsets of APCs, which functions to catalyze catabolism of 
tryptophan to kynurenine (43). Depletion of tryptophan and 
accumulation of kynurenine in the tumor microenvironment 
impairs DC function and limits the clonal expansion of T 
cells (44), induces CD8+ T cell anergy (45), and promotes Treg 
induction and activation (46, 47). IDO has been implicated in 
resistance to immune checkpoint inhibitors (48), and blockade 
of the IDO pathway is under investigation in clinical trials 
(49). Depletion of l-arginine in the microenvironment can 
also result in the impairment of T cell function. Enzymes of the 
arginase and nitric oxide synthase (NOS) families control the 
metabolism of l-arginine [reviewed in Ref. (50)]. Expression 
of inducible NOS and arginase-1 has been demonstrated to 
limit T cell responses and promote the immunosuppressive 
microenvironment in different tumor types (51–53). These 
metabolic features of the tumor microenvironment combine 
with cellular mechanisms such as the expression of co-
inhibitory immune checkpoint molecules [reviewed elsewhere 
(54)] to control the activity and proliferation of immune cells 
in the tumor microenvironment. Both exclusion of immune 
cells and inhibition of their function clearly contribute to the 
creation of an immunosuppressive microenvironment, which 
allows tumor immune evasion. The contribution of the tumor 
vasculature to T cell trafficking, the regulation of endothelial 
adhesion molecule expression, and the creation of an immuno-
suppressive microenvironment are discussed in the following 
sections.

CURReNT THeRAPieS UTiLiZiNg THe 
HOST iMMUNe ReSPONSe

Tumors that do support T cell trafficking and show high levels 
of immune cell infiltration appear to use a range of immuno-
suppressive pathways to evade the host response. An important 
immune evasion strategy is the use of inhibitory signaling 
pathways, known as immune checkpoints, which are part of the 
physiological process of peripheral tolerance, designed to pro-
tect against autoimmunity (55). In this process, self-antigens 
taken up by APCs will be presented to T cells without the 
appropriate coactivation signals such as the binding of CD80 
or CD86 to CD28, or in the presence of co-inhibitory signals 
such as the binding of PD-1 to PD-L1. This results in anergy 
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or deletion of the self-reactive T cell. Tumors can co-opt these 
signaling pathways to evade the immune response, by express-
ing high levels of co-inhibitory molecules such as PD-L1 
(54). Release of these immune checkpoints through the use of 
inhibitory monoclonal antibodies targeting CTLA-4, PD-1, or 
PD-L1 can result in durable antitumor responses in a subset 
of patients (2–7, 56, 57). Responses have been demonstrated 
across multiple tumor types; however, the selection of patients 
likely to respond remains problematic (12). The presence of 
TILs is critical to the success of these immune checkpoint 
inhibitors (58).

An alternative approach that utilizes the host immune 
response to fight tumors is termed adoptive cell transfer. Here, 
TILs are isolated from the patient’s tumor tissue, expanded ex vivo 
and reintroduced into the patient’s blood stream. This approach 
has a number of limitations and to date has seen minimal success 
in the clinic (59). Genetic modification of the T cells can improve 
tumor cell specificity and enhance activation (59). CARs include 
a specific antigen-binding domain and an intracellular signaling 
domain, which allow MHC-independent activation of T cells. 
Limited success has been seen in the use of CAR T cell and adop-
tive cell transfer against solid tumors compared to impressive 
results in hematological malignancies (13).

A limiting factor in the efficacy of CAR T cells in solid tumors 
is the lack of infiltration into the tumor itself. This therapeutic 
approach has seen the most success in B cell leukemia, in which 
the tumor cells express a common and specific antigen (CD19) 
and are easily accessible, as they are circulating in the peripheral 
blood (11). Infiltration of solid tumors by the transferred T cells 
is required for efficacy (60); however, it has been demonstrated 
in both humans and mice that only a small fraction of transferred 
T cells reach the tumor tissue (35). Following transfer, CAR T 
cells may be readily identifiable in peripheral blood, but scant in 
the tumor tissue (61). It has also been shown that mesothelin-
targeted CAR T cells demonstrated markedly superior efficacy 
in an orthotopic mouse model of mesothelioma when delivered 
regionally rather than systemically (62). Current clinical trials are 
investigating methods to overcome this suboptimal trafficking of 
CAR T cells, including altering the chemokine milieu of the tumor 
and expressing matched chemokine receptors on the engineered 
T cells (35, 63). Investigations into local delivery approaches are 
also ongoing (13).

iS THeRe AN ACCeSS iSSUe?

The existence of the non-inflamed tumor phenotype and the 
lack of success of CAR T cell therapy in solid tumors support the 
concept that exclusion of immune cells from the microenviron-
ment plays an important role in the immune escape of tumors. 
It has been recognized that the tumor vasculature is part of the 
permissive microenvironment that prevents the immune rejec-
tion of tumors (64). Understanding the impact of the tumor 
vasculature’s role in this exclusion will be important in selecting 
appropriate therapeutic strategies to enhance the potential of 
immunotherapy. The immunomodulatory effects of tumor blood 
vessels and lymphatics are also important targets in understand-
ing and manipulating the tumor microenvironment.

ROLe OF THe TUMOR vASCULATURe  
iN iMMUNe CeLL eXCLUSiON

Molecular Mechanisms
Specialized endothelial cells line the blood and lymphatic vessels 
of the body and act in a variety of ways to control the delivery 
and removal of oxygen, nutrients, and circulating cells to the 
tissues. Endothelial cells are active participants in the immune 
response to inflammation (65), through their role in regulating 
the trafficking and activation of immune cells. A summary of 
the alterations in leukocyte–endothelium interactions seen in 
tumors is provided in Figure 2. Migration of leukocytes (lym-
phocytes, monocytes, and granulocytes) from the blood vessels 
into peripheral tissues is a multistep process involving rolling, 
slow rolling, activation, firm adhesion, adhesion strengthening, 
intraluminal crawling, and transcellular and paracellular migra-
tion (66). E-selectin and P-selectin on endothelial cells and 
L-selectin on granulocytes, monocytes, and most lymphocytes 
mediate rolling through interaction with P-selectin glycoprotein 
ligand-1 and other glycosylated ligands (66). Selectins require 
shear stress resulting from the flow of blood to support adhesion 
(67). Intercellular adhesion molecule-1 (ICAM-1) is a member 
of the immunoglobulin superfamily that plays an important role 
in the adhesion cascade, participating in rolling, firm adhesion, 
and transcellular migration (68). ICAM-1 and vascular cell 
adhesion molecule-1 (VCAM-1), another immunoglobulin 
superfamily member (69), are located on the luminal surfaces 
of endothelial cells and bind to the integrins such as lymphocyte 
function-associated antigen-1 (LFA-1) and very late antigen-4 
(VLA-4), respectively (70, 71). LFA-1 is expressed on lympho-
cytes, monocytes, and neutrophils, whereas VLA-4 is expressed 
on lymphocytes and monocytes (72). Clustering of ICAM-1 and 
VCAM-1 is also a critical step in transendothelial migration, 
and blocking this clustering is sufficient to prevent migration 
of leukocytes expressing LFA-1 or VLA-4 (73). Expression of 
vascular adhesion molecules in intratumoral blood vessels is cor-
related with the number of TILs. E-selectin is required for T cell 
extravasation in skin, and expression of E-selectin in cutaneous 
squamous cell carcinoma and Merkel cell carcinoma correlates 
with infiltration by CD8+ T cells and better prognosis (74, 75). 
Medullary breast carcinomas are defined in part by a florid lym-
phocytic infiltrate and showed a higher expression of ICAM-1 
on intratumoral blood vessels than ductal breast carcinomas of 
no special type (76).

Inflammatory signals are required to upregulate expression of 
ICAM-1, which can be expressed by a range of cells in addition 
to endothelial cells, including fibroblasts, thymic epithelial cells, 
macrophages, and follicular DCs (70). In addition to mediating 
the adhesion of leukocytes to endothelial cells, ICAM-1:LFA-1 
interactions also participate in the formation of an immune syn-
apse between T cells and APCs (77). A mature immune synapse 
requires molecular interactions mediating adhesion, antigen 
presentation, and costimulation or inhibition. A synapse may also 
form within the docking structure forming the adhesion between 
endothelial cells and lymphocytes (78). Inflammatory cytokines 
IL-1, TNFα and, to a lesser degree, IFNγ, cause a rapid rise in 
the expression of ICAM-1 on cultured endothelial cells (79). 
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FigURe 2 | Molecular mechanisms contributing to the exclusion of immune cells from the tumor microenvironment. Tumor-derived angiogenic factors 
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Different cell types may vary as to which inflammatory signals 
are capable of inducing ICAM-1 expression (77).

Adhesion molecules including ICAM-1, VCAM-1, and 
E-selectin may be absent or expressed at low levels on tumor 
vasculature, despite the inflammatory microenvironment of the 
tumor. Pro-inflammatory pathways are induced in tumor cells 
by oncogenic activation of transcription factors such as HIF-1α 
and NFκB, resulting in the high levels of inflammatory mediators 
detected in most solid tumors (80). However, this inflammatory 
environment appears to fail to induce the expression of vascular 
adhesion molecules on intratumoral vessels. This has been dem-
onstrated in experimental models of melanoma and carcinoma 
(81), as well as in human cutaneous squamous cell carcinoma, 

Merkel cell carcinoma, and metastatic melanoma tissue (74, 75, 
82). This lack of responsiveness to inflammatory signals has been 
termed endothelial anergy (83) and may play an important role in 
the exclusion of antitumor immune effector cells from the tumor 
microenvironment.

Evidence suggests that endothelial anergy is due at least in 
part to angiogenic factors (84, 85), a range of molecules includ-
ing vascular endothelial growth factor-A (VEGF-A), VEGF-C, 
VEGF-D, and basic fibroblast growth factor (bFGF), some of 
which are produced in response to tissue hypoxia. The tumor 
microenvironment is characteristically hypoxic due to disordered 
and loosely regulated angiogenesis that fails to adequately supply 
the expanding tumor mass (86). This hypoxia leads to stabilization 
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and nuclear accumulation of hypoxia-inducible factors (HIF-1α 
and HIF-2α), transcription factors that lead to upregulation of 
angiogenic factors, and other molecules that act to improve tissue 
oxygenation. VEGF-A can be secreted by tumor cells and TAMs 
and is overexpressed in the majority of solid tumors (87, 88). 
VEGF-A and bFGF, also a strong mitogenic factor for endothe-
lium produced by tumor cells, contribute to the suppression of 
ICAM-1 in tumors (84). This downregulation of adhesion mol-
ecules in response to angiogenic factors has been demonstrated 
in vitro (83, 84, 89, 90) and in mouse tumor models (85, 91, 92). 
As described above, tumor vasculature appears unresponsive to 
inflammatory signals that mediate the expression of adhesion 
molecules through the NFκB signaling pathway. bFGF can block 
this stimulation by preventing the degradation of pathway inhibi-
tor Iκβα, thus stopping the translocation of NFκB to the nucleus 
and activation of target gene transcription (93).

The concept of endothelial anergy and the downregulation of 
adhesion molecules mediated by angiogenic factors is supported 
by the evidence that antiangiogenic therapy results in increased 
expression of adhesion molecules on tumor vasculature (94). 
Angiostatic therapy using platelet factor 4, anginex, angiostatin, 
or endostatin results in upregulation of ICAM-1, VCAM-1, 
and E-selectin in animal models and in vitro (94, 95) and also 
reinstates the responsiveness of the endothelium to inflammatory 
signals (94). These anti-angiogenic peptides showed promising 
anti-tumor effects in initial pre-clinical trials, however have failed 
to demonstrate efficacy in human cancers and are no longer being 
clinically investigated (96). Multi-target tyrosine kinase inhibi-
tors such as SU6668, sunitinib, and sorafenib are a more promis-
ing antiangiogenic treatment approach and are approved for the 
treatment of some human cancers such as the highly angiogenic 
renal cell carcinoma (96). These small molecules inhibit the acti-
vation of a range of tyrosine kinase receptors, including vascular 
endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, 
and fibroblast growth factor receptor (FGFR-1), receptors for 
angiogenic factors VEGF-A, VEGF-C, and VEGF-D, and bFGF, 
as well as growth factor receptors such as platelet-derived growth 
factor receptor-β (PDGFRβ) and c-kit. Use of SU6668, a small 
molecule inhibitor of VEGFR-2, FGFR-1, and PDGFRβ, blocked 
the actions of bFGF and showed reversal of adhesion molecule 
downregulation in a mouse model of metastatic breast cancer 
(89). A number of pre-clinical studies have shown that various 
antiangiogenic therapies, including tyrosine kinase inhibitors and 
inhibitory monoclonal antibodies against VEGF-A and VEGFR-2, 
may help to increase tumor infiltration by lymphocytes (97–108). 
These are summarized in Table 1 and discussed further in Section 
“Implications for Treatment Strategies”. It would be of interest to 
delineate the extent to which this increased infiltration is due to 
reversal of endothelial anergy or alternatively due to blockade 
of the direct effects of VEGF-A on tumor cells, stromal cells, or 
immune cells, or alteration of the hypoxic microenvironment. 
Initial clinical studies also support an increase in tumor infiltra-
tion by immune cells with the combination of immunotherapies 
and antiangiogenic agents, summarized in Table 2 and discussed 
further in Section “Implications for Treatment Strategies” (109, 
110). To the best of our knowledge, reversal of endothelial 
anergy in human tumors by antiangiogenic agents remains to be 

conclusively demonstrated. Further investigations of changes in 
adhesion molecule expression and lymphocyte infiltration result-
ing from antiangiogenic drugs currently approved for use in the 
clinic, which largely target the VEGF-VEGFR signaling pathway, 
may provide useful information and should be a high priority.

In addition to VEGF-A and bFGF, other angiogenic and 
tumor-associated factors may also contribute to the exclusion 
of TILs. VEGF-C and VEGF-D are closely related members of 
the VEGF family that promote angiogenesis, lymphangiogenesis, 
and cancer metastasis (118–122). These factors can be secreted 
by tumor cells, immune cells, and tumor-associated fibroblasts 
(123–125). In human breast carcinoma, higher levels of VEGF-C 
and VEGF-D were seen in ductal carcinomas compared to 
medullary carcinomas and correlated with decreased ICAM-1 
expression and lower numbers of infiltrating lymphocytes (76). 
Other growth factors including placenta growth factor (PlGF) and 
epidermal growth factor have also been shown to downregulate 
ICAM-1 expression in vitro (126). Epidermal growth factor-like 
domain 7 (EGFL7) is secreted by normal blood endothelial cells, 
at sites of pathological angiogenesis, and by tumor cells (127, 
128). Higher levels of EGFL7 have been correlated with poor 
prognosis in some tumor types such as colorectal cancer (127). 
Delfortrie et al. have shown that EGFL7 also functions to decrease 
levels of adhesion molecules ICAM-1 and VCAM-1, resulting in 
a reduction in TILs (128).

Endothelin-1 (ET-1) is a molecule that plays a role in both 
angiogenesis and controlling the trafficking of immune cells. 
ET-1 acts through two receptors, the endothelin A receptor 
(ETAR) and the endothelin B receptor (ETBR) (129). ET-1, 
ETAR, and ETBR expression is correlated with VEGF-A expres-
sion and microvessel density in breast and ovarian carcinoma 
(130). Messenger RNA profiling of microdissected endothelial 
cells from ovarian cancer showed overexpression of ETBR in 
tumors lacking infiltrating lymphocytes (131). The binding of 
ET-1 to ETBR prevented T cell adhesion to endothelium, even in 
the presence of the inflammatory cytokine TNFα, an additional 
mechanism of endothelial anergy (131). Findings suggesting 
selectivity in lymphocyte extravasation due to ETBR expression 
were reported for glial tumors (132). Glioblastomas with higher 
numbers of ETBR-expressing vessels showed lower infiltration 
by cytotoxic T cells and higher numbers of regulatory T cells. 
Cytotoxic T cells infiltrated around ETBR-negative blood vessels, 
but were absent around vessels expressing ETBR (132). Similar 
findings were seen in primary central nervous system lymphoma, 
in which both endothelial and tumor cells expressed ETBR (133). 
However, no correlation between ETBR expression and TILs was 
seen in oral squamous cell carcinoma (134). Blockade of ETBR 
increased T cell adhesion to endothelium through the upregu-
lation and clustering of ICAM-1 (131). Blockade of ETBR was 
also shown to increase T cell homing to tumors and increase the 
effectiveness of cancer vaccines in mice (131).

Selective extravasation of different leukocyte subsets may 
also be mediated by additional molecules including common 
lymphatic endothelial and vascular endothelial receptor-1 
(CLEVER-1) (135) and Fas ligand (FasL) (136). CLEVER-1, also 
known as stabilin-1 and FEEL-1, is a multifunctional scavenging 
receptor expressed constitutively on lymphatic endothelial cells 
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TABLe 1 | Summary of pre-clinical studies combining antiangiogenic therapies and immunotherapy.

Antiangiogenic therapy immunotherapy Tumor model Results of combination therapies compared 
with immunotherapy alone

Reference

Neutralizing anti-vegF-A antibodies

Anti-mouse VEGF-A antibody Peptide-pulsed dendritic  
cell vaccination

MethA sarcoma and D549 
xenograft in mice

 – Decreased tumor growth
 – Improved survival

Gabrilovich  
et al. (111)

Anti-mouse VEGF-A antibody, 
B20-4.1.1-PHAGE

Adoptive transfer of  
tumor-specific T cells

B16 melanoma in syngeneic 
C57BL/6J mice

 – Decreased tumor growth
 – Improved survival
 – Increased T cell infiltration into tumor
 – Different effects with different doses

Shrimali  
et al. (97)

Bevacizumab Adoptive transfer of 
cytokine-induced killer cells 
(CIK)

Human lung adenocarcinoma 
xenografts (A549) in mice

 – Improved CIK homing and infiltration Tao  
et al. (98)

Ligand traps

sVEGFR-1/R-2 GM-CSF secreting tumor 
cell vaccination

Melanoma (B16) and colon 
carcinoma (CT26) in mice

 – Improved survival
 – Increased number of activated DCs and TILs
 – Decreased number of regulatory T cells

Li  
et al. (99)

Aflibercept Recombinant TMEV  
Xho1-OVA8 antitumor
vaccine

Glioma (GL261) in mice  – Delayed tumor progression
 – Improved survival

Renner  
et al. (112)

Neutralizing anti-vegFR-2 antibodies

Anti-VEGFR-2 antibody, DC101 HER2/Neu targeted 
vaccination

Spontaneous breast 
carcinoma in FVB and  
Neu-N mice

 – Reduction in tumor growth and improved 
immune responses in FVB mice

 – Efficacy in Neu-N mice required depletion of Tregs

Manning  
et al. (100)

Anti-VEGFR-2 antibody, DC101 Whole cancer tissue cell 
vaccination

Breast carcinoma  
(MMTV-PyVT) in mice

 – Improved survival
 – Polarized macrophages to M1 phenotype
 – Improved T cell infiltration

Huang  
et al. (101)

Angiostatic peptides

Recombinant adenovirus 
expressing antiangiogenic factors 
endostatin and PEDF

Recombinant adenovirus 
expressing IL-12 and 
GM-CSF

Viral-induced woodchuck 
hepatocellular carcinoma

 – Reduction in tumor volume
 – Increased apoptosis
 – Increased TILs

Huang  
et al. (102)

Recombinant adenovirus 
expressing antiangiogenic factors 
endostatin and PEDF

Recombinant adenovirus 
expressing IL-12 and 
GM-CSF

Implanted hepatocellular 
carcinoma (BNL) in mice and 
chemically induced HCC in 
rats

 – Reduction in tumor volume
 – Increased apoptosis
 – Increased TILs
 – Immunotherapy alone was effective for smaller 

tumors, but combination therapy more effective 
against larger tumors 

Chan  
et al. (103)

Recombinant human endostatin Adoptive transfer of CIK Lung adenocarcinoma 
xenografts (A549, SPC-A1, 
Lewis lung carcinoma) in mice

 – Increased CIK homing
 – Increased TILs
 – Decreased immunosuppressive cells

Shi  
et al. (113)

Aginex, peptide targeting galectin-1 Adoptive T cell transfer Melanoma (B16) in mice  – Restored adhesion molecule expression and T 
cell infiltration

 – Significant reduction in tumor growth 

Dings  
et al. (105)

Multi-target tyrosine kinase inhibitors

SU6668 B7.2-IgG/TC vaccination Breast carcinoma (4T1) in mice  – Increased CD8+ TILs
 – Decreased tumor growth
 – Decreased formation of distant metastasis

Huang  
et al. (106)

Sunitinib IL-12 and 4-1BB activation Colon carcinoma xenografts 
(MCA26) in mice

 – Modulation of immune infiltrate composition and 
polarization toward effector phenotype

 – Improved survival

Ozao-Choy  
et al. (114)

(Continued)
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Antiangiogenic therapy immunotherapy Tumor model Results of combination therapies compared 
with immunotherapy alone

Reference

Sunitinib or sorafenib rMVA–CEA–TRICOM 
vaccine

Colon carcinoma (MC38-CEA) 
and breast cancer (4T1) in 
mice

 – Marked reduction in tumor volume
 – Increase in tumor antigen-specific TILs

Farsaci  
et al. (107)

Sunitinib Glucocorticoid-induced 
TNFR-related protein (GITR)

Liver metastasis of renal cell 
carcinoma (RENCA) in mice

 – Reduction in number and size of tumors
 – Increased activation of immune cells

Yu  
et al. (115)

Others

TNFα-RGR protein fusion Adoptive T cell transfer and 
anti-Tag vaccination

RIP1-Tag5 transgenic mouse 
(pancreatic insulinomas)

 – Improved survival
 – Increased TILs
 – Promotes M1 polarization of macrophages

Johansson  
et al. (108)

Trebananib (blocks interaction 
between angiogenic factors 
angiopoietin 1 and 2 with receptor 
Tie2)

Antigen-specific cytotoxic 
T cell transfer

Carcinoma cell lines  
MDA-MB-231 (breast),  
LNCaP (prostate), and OV17-1 
(ovarian)

 – Increased ICAM-1 expression
 – Improved CTL lysis

Grenga  
et al. (116)

TABLe 1 | Continued
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(LECs) and type 2 macrophages and induced by inflammation 
on blood endothelial cells (137, 138). Functions have been 
demonstrated to include both lymphocyte trafficking and adher-
ence of cancer cells to lymphatic endothelium (139, 140). In a 
mouse model of melanoma, levels of CLEVER-1 correlated with 
increased infiltration by FoxP3+ Tregs and type II macrophages. 
Following administration of anti-CLEVER-1 antibody, numbers 
of Tregs and type II macrophages were reduced, and there was 
increased immune activation and decreased tumor growth (135). 
FasL mediates T  cell apoptosis and can be induced on blood 
vascular endothelial cells in solid tumors by tumor-derived 
VEGF-A, prostaglandin E2, and IL-10 (136). Endothelial FasL is 
able to kill activated T lymphocytes, but CD4+CD25+ regulatory 
T cells are resistant to FasL-mediated killing due to high levels 
of antiapoptotic protein c-FLIP (136). Endothelial FasL expres-
sion correlated with lower numbers of CD8+ T cells in a range 
of cancer types. Blockade of VEGF-A, prostaglandins, or FasL 
resulted in increased CD8+ T cell infiltration and impaired tumor 
growth (136).

In addition to effects on the tumor vasculature, hypoxia and 
angiogenic factors such as VEGF-A also have direct immu-
nomodulatory effects, which are summarized in Figure  3. As 
mentioned above, hypoxia-inducible factors are transcription 
factors activated by low tissue oxygen levels sensed by hydroxylase 
enzymes (141). HIFs control the transcription of various genes 
involved in the adaptation to hypoxic conditions, and also have 
a number of direct effects on immune cells. In hypoxic tumors, 
macrophages are polarized toward an immunosuppressive M2 
phenotype, MDSCs accumulate and DC maturation and dif-
ferentiation is impaired, inhibiting the activation of T cells (41). 
Cytotoxic T cells show increased lytic capacity under hypoxic 
conditions, but decreased proliferation and differentiation (41). 
Hypoxic stress increases secretion of CCL28 and CXCL12 by 
tumor cells, thereby attracting regulatory T cells (142, 143). 
HIF-1α also directly binds to a hypoxia response element in the 
promoter of the gene encoding immune checkpoint molecule 

PD-L1, and hypoxia thereby increases expression of PD-L1 on 
MDSCs, tumor cells, DCs, and macrophages (144). VEGF-A also 
directly enhances the expression of PD-1, TIM-3, and CTLA-4 
on intratumoral CD8+ T cells, contributing to T cell anergy (145). 
These data suggest an important role for hypoxia, angiogenesis, 
and the endothelium in creating a permissive microenvironment 
to prevent the immune rejection of tumors.

Mechanical Properties
The tumor vasculature may also contribute to the exclusion of 
effector lymphocytes from the tumor microenvironment by 
physical means. In normal immune responses, T cells exit the 
vasculature predominantly in the post-capillary venule, a site 
of low shear stress where adhesion molecules are preferentially 
expressed (78, 146). Newly formed blood vessels within tumors, 
however, are structurally and functionally abnormal, lacking 
the specialized organization of normal tissue vasculature (147). 
Tumor vessels are heterogeneous, tortuous, and irregularly 
branched (148, 149). The vessel walls are leaky with wide junc-
tions between endothelial cells, increased fenestrations and loss, 
or abnormalities of the surrounding pericytes and basement 
membranes. Tumor endothelial cells lose polarity, can detach, and 
stratify (149). The normal laminar flow of blood is disrupted, and 
with it, the margination, rolling, and adhesion of lymphocytes. 
Areas of stagnation and increased interstitial fluid pressure are 
also present, resulting in heterogeneous tumor perfusion (150). 
The delivery of chemotherapeutic agents is hampered by this 
chaotic and inefficient tumor blood flow (149, 151), and access of 
antitumor lymphocytes may also be impaired.

Shear stress, the parallel force applied to the endothelial lining 
of blood vessels by laminar blood flow in normal vasculature, is 
a key regulator of vascular physiology (152). Endothelial cells 
respond to shear stress through mechanosensory molecules 
including CD31 (platelet endothelial adhesion molecule) and 
VE-cadherin, which can activate various signaling pathways 
leading to complex and context-dependent effects on endothelial 
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TABLe 2 | Summary of published and ongoing clinical trials combining antiangiogenic therapies and immunotherapy.

Antiangiogenic therapy immunotherapy Tumor type Results/status Reference; trial number

Bevacizumab  
(anti-VEGF-A antibody)

Ipilimumab (CTLA-4 inhibitor) Metastatic melanoma  – Increased CD8+ TILs and 
macrophages

 – Changes in circulating immune 
cell composition

 – Mild increase in toxicity 
compared to level expected for 
ipilimumab alone

 – Overall response rate 11%

Hodi et al. (109); Phase I

Bevacizumab Ipilimumab Glioblastoma  – Partial response rate 31%
 – Stable disease 31%
 – Treatment well tolerated

Carter et al. (117); Phase I

Bevacizumab Atezolizumab (PD-L1 inhibitor) Metastatic renal cell carcinoma  – Partial response rate 40%
 – Stable disease 40%
 – Treatment well tolerated
 – Increased immune cell infiltrate 

and Th1 gene expression

Wallin et al. (110); Phase I

Bevacizumab Ipilimumab Metastatic melanoma Completed NCT01743157; Phase I–II

Bevacizumab Ipilimumab Unresectable stage III or IV 
melanoma

Active NCT00790010; Phase I

Bevacizumab Ipilimumab Unresectable stage III or IV 
melanoma

Recruiting NCT01950390; Phase II

Bevacizumab Nivolumab (PD-1 inhibitor) Metastatic renal cell carcinoma Recruiting NCT02210117; Phase I

Bevacizumab Pembrolizumab (PD-1 inhibitor) Brain metastasis in melanoma 
or non-small cell lung cancer

Recruiting NCT02681549; Phase II

Bevacizumab Pembrolizumab Recurrent glioblastoma Active NCT02337491; Phase II

Bevacizumab Pembrolizumab Metastatic renal cell carcinoma Active NCT02348008;  
Phase Ib and II

Bevacizumab and 
hypofractionated stereotactic 
irradiation

Pembrolizumab Glioblastoma Recruiting NCT02313272; Phase I

Bevacizumab or sunitinib Atezolizumab Metastatic renal cell carcinoma Recruiting NCT02420821; Phase III

Bevacizumab Atezolizumab Stage IV non-squamous,  
non-small cell lung cancer

Recruiting NCT02366143; Phase III

Ziv-aflibercept (ligand trap) Pembrolizumab Advanced solid tumors Recruiting NCT02298959; Phase I

MEDI3617 (anti-angiopoietin-2 
antibody)

Tremelimumab (CTLA-4 inhibitor) Advanced solid tumors Recruiting NCT02141542; Phase I
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adhesion molecule expression (153). In tumors, the disrupted 
and sluggish blood flow in tumors due to abnormal vasculature 
results in lower levels of shear stress (154). A threshold level of 
shear stress is required for the expression of E-selectin, P-selectin, 
and L-selectin, which mediate leukocyte rolling (67). Low 
shear stress can enhance expression of adhesion molecules on 
endothelial cells, particularly ICAM-1, but can also decrease the 
responsiveness of the endothelium to inflammatory signals such 
as TNFα, thus becoming an additional promoter of endothelial 
anergy (155). Low shear can also upregulate VEGF-A expression 
by tumor cells (154), which may modulate adhesion molecule 

expression and perpetuate angiogenesis. The direct effects of 
the mechanical properties of abnormal tumor blood vessels on 
immune cell extravasation remain to be fully elucidated.

Pericytes and vascular smooth muscle cells are contractile 
cells that surround and interact with the endothelial cell layer of 
blood vessels. Pericytes are required for vessel stabilization and 
maturation, and in tumor vessels they are often immature, less 
abundant, and loosely attached (156). Recruitment of pericytes to 
immature and proliferating blood vessels involves, among others, 
the PDGF/PDGFRβ and angiopoietin (Ang)-1/Tie2 signaling 
pathways (157). Disrupting pericyte coverage through targeting 
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FigURe 3 | Hypoxia contributes to the recruitment of suppressive immune cells, restricts the maturation and migration of dendritic cells, reduces 
proliferation and differentiation of effector CTLs, and leads to the upregulation of immune checkpoint molecules such as PD-L1. These effects are 
mediated through gene regulation by hypoxia-inducible factors and secreted factors such as VEGF-A. CTL, cytotoxic T lymphocyte; DC, dendritic cell; HIF, 
hypoxia-inducible factor; IL-10, interleukin-10; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; VEGF-A, vascular endothelial growth factor-A.
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of the PDGF/PDGFRβ pathway results in increased vessel leaki-
ness, decreased tumor vascularity, and decreased tumor growth, 
particularly when combined with anti-VEGF-A treatment 
(158–160). Conversely, promotion of pericyte coverage and peri-
cyte–endothelial cell interactions through activation of VEGFR 
and PDGFRβ has been proposed to enhance vessel stabilization 
and normalization (160). During changes in oxygen availability, 
Ang2 can bind to Tie2 on endothelial cells, thus blocking the 
binding of Ang1, releasing the pericyte, and destabilizing the ves-
sel (161). Inhibition of Ang2 can improve pericyte coverage and 
normalize tumor vessels in mouse models (162). Clinical trials 
of pericyte modulation by PDGFRβ inhibition alone have been 
largely disappointing (163, 164). Other approaches to modulate 
pericyte coverage require further investigation in the clinic. To 
the best of our knowledge, no clinical trials have yet examined the 
effect of vascular normalization due to pericyte modulation on 
lymphocyte infiltration. However, pericytes may however have 
additional immunomodulatory effects. Hong et al. demonstrated 
an increase in MDSCs in tumors grown in a pericyte deficient 
mouse model, due to IL-6 production in the hypoxic tumor 
microenvironment (165). MDSC levels decreased when pericyte 
coverage was restored (165). In human breast cancers, MDSC gene 
expression correlated with decreased pericyte gene expression 
and poor prognosis (165). Pericyte coverage is thus an important 

consideration in vascular normalization studies and may play a 
role in creation of the immunosuppressive tumor microenviron-
ment. Rgs5, one of a family of molecules that inhibits signaling 
by G protein-coupled receptors, is expressed by pericytes and 
hypoxic endothelial cells and has been shown to be overexpressed 
in tumor vasculature (166, 167). Loss of Rgs5 in mice results in 
pericyte maturation, vascular normalization, improved oxygena-
tion, and reduced vessel leakiness (166). Importantly, it was also 
found that tumor infiltration by both endogenous and adoptively 
transferred lymphocytes was increased in Rgs5-deficient mice 
(166). This finding supports the hypothesis that physical normali-
zation of the blood vessels and their supporting cells improves 
immune cell extravasation. Human RGS5 shows high homology 
to the mouse gene and appears to perform similar functions (168), 
although data describing its role in human tumors are limited.

The abnormal, poorly organized structure of tumor blood 
vessel walls results in leakiness and extravasation of fluid into the 
tumor microenvironment (169). Angiogenic factors also contrib-
ute to this leakiness. VEGF-A was initially described as vascular 
permeability factor (170) due to its marked enhancement of ves-
sel permeability and is found in high levels in malignant effusions 
(171). However, data appear to suggest that this permeability of 
tumor blood vessels does not result in increased lymphocyte 
extravasation. As discussed above, expression of angiogenic 
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factors instead correlates with reduced TILs (76, 172). Use of 
antiangiogenic therapy and vascular normalization can improve 
lymphocyte infiltration into tumors, discussed further below. 
Lymphocyte extravasation requires controlled molecular regula-
tion and as such increased vessel wall permeability, and fluid 
extravasation alone may not increase the lymphocyte infiltration 
in the tumor.

HigH eNDOTHeLiAL veNULeS AND THe 
ReCRUiTMeNT OF NAÏve T CeLLS

High endothelial venules (HEVs) are specialized post-capillary 
venules normally found in secondary lymphoid organs including 
lymph nodes and Peyer’s patches, characterized histologically 
by their cuboidal “high” endothelial lining. They are adapted 
to promote trafficking of naïve lymphocytes into the lymphoid 
organ, expressing specific addressins including peripheral 
node addressin (PNAd) and mucosal addressin (MAdCAM-1). 
Activated lymphocytes, including effector T cells and memory 
T cells, can also be recruited by HEVs into lymph nodes under 
inflammatory conditions through the upregulation of VCAM-1, 
E-selectin, and P-selectin (173). Blood vessels with morpho-
logical and immunohistochemical features of HEVs have been 
identified in a range of human tumors, including breast, ovarian, 
colorectal, and lung cancers (174). The presence of HEVs cor-
relates strongly with the presence of CD8+ effector T cells as 
well as B cells and Th1 cells (174), often organized as tertiary 
lymphoid structures, that is, ectopic lymphoid structures with 
all the characteristics of lymph nodes (175). Evidence suggests 
that these local tertiary lymphoid structures may play a role in 
recruitment and priming of naïve T cells and promote differ-
entiation into tumor-specific effector T cells, within the tumor 
microenvironment itself (176). Interestingly, both positive 
and negative effects on antitumor immunity have been associ-
ated with tertiary lymphoid structures and lymph node-like 
vasculature (177, 178). The recruitment of naïve T cells and 
differentiation into effector T cells seen in some settings (177) 
contrasts with the recruitment of MDSCs and differentiation of 
Tregs seen in others (178). The inflammatory context in which 
these tertiary lymphoid structures develop may help to explain 
these findings.

LYMPHANgiOgeNeSiS, iNTeRSTiTiAL 
FLUiD PReSSURe, AND iMMUNe 
evASiON

Recent work has established a key role of LECs in inducing 
immune tolerance, both in peripheral tissues and the draining 
lymph node. Tumors and their microenvironments promote 
lymphangiogenesis and lymphatic remodeling through both 
molecular and mechanical means. VEGF-C and VEGF-D signal-
ing via interactions with VEGFR-2 and VEGFR-3 are important 
drivers of tumor lymphangiogenesis, promoting intratumoral 
and peritumoral lymphatic growth and metastasis (179). These 
growth factors may be secreted by tumor cells, immune cells, and 
stromal cells (123–125).

As described in previous sections, loosely regulated angio-
genesis in tumors results in abnormal, leaky blood vessels. In 
conjunction with alterations in the stroma and extracellular 
matrix surrounding the tumor, this results in increased inter-
stitial fluid pressure within the tumor (180). Interstitial fluid 
pressure within tumors can measure up to 60 mmHg, whereas 
normal tissue has a range of −3 to +3 mmHg (180). This pres-
sure gradient causes an increase in interstitial flow at the tumor 
margin, and increased lymphatic drainage by peritumoral 
lymphatics (181). Increased interstitial fluid and lymphatic 
flow has a number of effects on the tumor microenvironment, 
contributing to peritumoral lymphangiogenesis, altering the 
extracellular matrix and fibroblast differentiation, and promot-
ing the development of lymphoid-like features (178, 181). 
These lymphoid-like stromal features such as CCL21 expres-
sion, required for the homing of naïve T cells, are important 
components of the tertiary lymphoid structures seen in tumors, 
which, as discussed above, can show both positive and negative 
associations with antitumor immunity. Lymphatic flow can also 
induce the upregulation of transforming growth factor beta 
(TGFβ) by fibroblasts, leading to myofibroblast differentiation, 
contraction, and matrix stiffening (182). TGFβ also dampens 
the innate immune response through effects on the matura-
tion of DCs, natural killer (NK) cells, T cells, neutrophils, and 
macrophages and supports the differentiation and induction 
of regulatory T cells (183). TGFβ has been suggested as a link 
between the mechanics of interstitial fluid pressure, lymphatic 
flow, and the development of an immunosuppressive tumor 
microenvironment (181).

ROLe OF LeCs iN iMMUNe 
SUPPReSSiON AND TOLeRANCe

Peripheral tolerance is the process by which self-reactive T cells 
that escape thymic selection are deleted or rendered anergic. 
Lymphatic flow and the delivery of lymph fluid to the lymph 
node are required for the induction of new peripheral tolerance 
(184, 185). Hence, the increased lymphatic flow seen draining 
tumors may play a critical role in the development of a permissive 
immune microenvironment. Induction of peripheral tolerance 
in the draining lymph node is a multistep process involving the 
transport of antigens and APCs to the lymph node, antigen pres-
entation in the lymph node, and activation of inhibitory pathways 
including deletion of reactive T cells, anergy, and Treg induction. 
LECs, both in peripheral tissues and in the lymph node, and 
lymph node stromal cells have important roles in the induction 
of tolerance, which is summarized in Figure 4.

The development of peripheral tolerance depends on the deliv-
ery of soluble antigens and tissue-resident APCs to the draining 
lymph node. Migration of tissue DCs into initial lymphatics is 
dependent on CCR7 expression by activated DCs and CCL21 
expression on LECs (178). Antigens are carried in the interstitial 
fluid through the button junctions of the initial lymphatics. Once 
at the draining lymph node, DCs are guided to the paracortical 
T cell zone by CCL21 and CCL19. Small antigens are directed 
into the lymph node via intricate conduits, then taken up and 
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FigURe 4 | Lymphatic endothelial cells may contribute to the development of tolerance to tumor antigens by antigen presentation to CD8+ T cells in 
the absence of costimulatory molecules such as CD80/CD86, or in the presence of co-inhibitory molecules such as PD-L1 and LAg3. Peripheral tissue 
antigens or tumor antigens may be transferred from LECs to dendritic cells, which present these antigens to CD4+ T cells in the absence of costimulatory molecules, 
thereby inducing anergy. Stimulation of LECs by VEGF-C and inflammatory cytokines TNFα and IFNγ can reduce CD86 expression on dendritic cells and produce 
IDO, which depletes tryptophan from the microenvironment, thereby preventing the activation of T cells. DC, dendritic cell; IDO, indoleamine 2,3-dioxygenase; IFNγ, 
interferon-gamma; LEC, lymphatic endothelial cell; PTA, peripheral tissue antigen; TNFα, tumor necrosis factor-alpha; VEGF-C, vascular endothelial growth factor-C.
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processed by lymph node-resident DCs, while larger antigens are 
captured and processed by sinus macrophages (186, 187).

Stromal cells within the lymph node, including LECs and 
fibroblast reticular cells (FRCs), play important structural and 
physiological roles in the functions of the node. LECs and FRCs 
express MHC class I molecules as do nearly all nucleated cells (188). 
However, LECs and FRCs participate in the process of peripheral 
immune tolerance through ectopic expression of tissue-specific 
antigens on MHC class I, for example, antigens usually restricted 
to melanocytes, intestinal epithelium or pancreas, and presenta-
tion of these antigens to CD8+ T cells (188, 189). These antigens 
are not scavenged from the lymph fluid but directly expressed 
in both an autoimmune regulator (Aire)-dependent manner, as 
is seen in central tolerance in the thymus, and also in an Aire-
independent manner (188). The costimulatory molecules CD40, 
CD80, and CD86 are not expressed on LECs and FRCs; however, 
the inhibitory molecule PD-L1 is expressed at high levels (190). 
Hence, presentation of antigens by LECs and FRCs can result in 
deletional tolerance of the reactive CD8+ T cells. In addition to 
this presentation of self-antigens, LECs activated by VEGF-C have 

also been shown to scavenge and cross-present tumor antigens, 
leading to the apoptosis of tumor-specific CD8+ T cells (181). 
MHC class II, expressed by professional APCs including DCs 
and B cells, is also expressed at low levels by lymph node LECs 
but not tissue LECs. LECs do not appear to present endogenous 
antigen on MHC class II molecules but instead act as a reservoir 
for transfer of antigen to DCs for effective presentation to CD4+ 
T cells (191). In addition, MHC class II may be a ligand for the co-
inhibitory molecule LAG3, resulting in induction of CD8+ T cell 
tolerance through synergy with PD-1/PD-L1 signaling (191).

Lymphatic endothelial cells and FRCs also prevent the expan-
sion of the activated T cell pool in lymph nodes by expression 
of NOS 2 and production of nitric oxide (192). LECs stimulated 
by inflammatory cytokines TNFα and IFNγ can also suppress 
the ability of DCs to activate and induce T cell proliferation by 
reducing the expression of the costimulatory molecule CD86 
(193) and activating production of IDO (194), an enzyme of the 
innate immune system that depletes tryptophan, an amino acid 
essential for the activation of T cells. These features of lymph node 
stromal cells contribute to ongoing suppression of any immune 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


13

Hendry et al. Vasculature in Antitumor Immune Responses

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 621

reactions to self-antigens and may contribute to suppression of 
responses to tumor antigens.

The contribution of lymphatic flow to tumor immune evasion 
is supported by the evidence that a permissive environment is 
created in tumor-draining lymph nodes, the so-called “metastatic 
niche” [reviewed elsewhere (195)]. The presence of tumor cells in 
the sentinel lymph node, that is, the first lymph node draining 
the region of the tumor, is associated with disease progression 
and often changes clinical management. It is now well established 
that the sentinel node undergoes changes in stromal and immune 
cell composition, even before the arrival of tumor cells (196). 
Lymphangiogenesis and lymphatic remodeling in the lymph 
node, driven by VEGF-A, VEGF-C, and VEGF-D, are important 
components of the pre-metastatic niche (197–199). HEVs, which 
normally support extravasation of naïve lymphocytes into the 
lymph node parenchyme, are also remodeled, becoming dilated 
and losing their typical “high” morphology and other molecular 
characteristics important for lymphocyte trafficking (199, 200). 
VEGF-D can suppress the proliferation of typical versus remod-
eled HEVs in the draining lymph node (199). In addition, the 
recruitment of naïve lymphocytes to the lymph node is impaired 
in tumor-draining nodes through loss of expression of CCL21 
in HEVs, whereas recruitment of inflammatory cell subsets is 
enhanced in larger venules (201). While tumor-secreted factors 
such as VEGFs can act directly on LECs and HEVs in lymph 
nodes, HEV morphology and function are known to be depend-
ent on lymphatic drainage, particularly the trafficking of DCs 
(202). Therefore, it is likely that lymphatic flow, HEV function, 
and immune cell composition in tumor-draining lymph nodes are 
strongly interrelated. The composition and function of immune 
cells is known to be altered in tumor-draining lymph nodes, with 
a lower percentage of effector T cells, loss or immaturity of DCs, 
and higher numbers of Tregs (196). In addition, effector T cells in 
tumor-draining lymph nodes may be functionally tolerant (203). 
In a mouse melanoma model, tumor cells implanted into lymph 
nodes unrelated to the primary tumor were rejected by a specific 
CD8+ T cell response (204). However, tumor cells introduced 
into the tumor-draining lymph nodes were able to successfully 
implant following anergy of the reactive T cells due to MHC class 
I presentation of tumor antigens (204).

The relationship between tumor lymphangiogenesis, lymphatic 
remodeling, and the immune response is not yet fully elucidated 
with some apparently contradictory reports in the literature. 
Lymphatic vessel density at the invasive margins of tumors has 
been shown to correlate with metastasis and reduced overall sur-
vival in many tumor types, including melanoma, breast cancer, 
colorectal cancer, and lung cancer [reviewed elsewhere (179)]. 
Expression of lymphangiogenic factors and their receptors can 
also be prognostic and predictive of metastatic disease in these 
tumors. Interactions between VEGF-D and VEGFR-3 can pro-
mote the early events of lymphatic metastasis, as demonstrated 
in a VEGF-D-driven mouse tumor model (205). The proximity 
of tumor cells expressing VEGF-D to small lymphatic vessels can 
also be an important determinant of metastasis (206). For the 
reasons outlined above, increased lymphatic vessel density and 
lymphatic flow is thought to increase peripheral tolerance and 
enhance the immunosuppressive microenvironment of both the 

tumor site and the draining lymph node. Surprisingly, a recent 
study of human colorectal cancers found that lymphatic vessel 
density at the invasive margin correlated with the cytotoxic T cell 
density and inversely correlated with the risk of metastasis (207). 
Recent analysis of The Cancer Genome Atlas data of human meta-
static melanoma samples has shown a correlation between levels 
of lymphatic gene expression and expression of genes associated 
with immune infiltration (208). In a mouse model of melanoma, 
it was found that mice lacking dermal lymphatics showed a lower 
immune cell infiltrate than mice with intact lymphatic drainage, 
but that adoptive T cell transfer was more effective in the absence 
of lymphatic vessels (208). This finding was hypothesized to be 
due to the lack of Tregs and suppressive macrophages in the tumor 
microenvironment, allowing the transferred T cells to exert their 
cytotoxic effects (208). Further investigation of the contribution 
of lymphatic vessels to the immune infiltrate in tumors and the 
development of an immunosuppressive environment is needed.

ROLe OF BLOOD vASCULAR 
eNDOTHeLiAL CeLLS iN iMMUNe 
SUPPReSSiON AND TOLeRANCe

Blood vessel endothelial cells (BECs) also function as semi- 
professional APCs and can modulate the T cell response. BECs 
constitutively express both MHC class I and MHC class II mol-
ecules and upregulate these in response to inflammatory signals 
(78). They possess antigen-processing machinery and have been 
shown to take up and present antigens in vivo and in vitro (209). 
Critical costimulatory molecules CD80 and CD86 are not expressed 
on cultured human endothelial cells, rendering them unable to 
stimulate naïve CD8+ T cells (210). However, limited activation 
of memory CD8+ T cells that have less stringent costimulatory 
requirements has been observed (210). Co-inhibitory molecules 
including PD-L1 and PD-L2 can be expressed by endothelial cells 
(209, 211). Expression of these immune checkpoint molecules 
is upregulated by TNFα and can inhibit CD8+ T cell activation 
(211). Huang et  al. demonstrated that endothelial cells derived 
from B cell lymphomas can express the co-inhibitory molecule 
TIM-3, which correlated with increased growth and dissemina-
tion of lymphoma in a mouse model (212). Expression of the 
immunosuppressive enzyme IDO has also been demonstrated in 
endothelial cells in renal cell carcinoma (213).

B7-H3 and B7-H4 are members of the B7 family of immune 
regulatory molecules, which includes PD-L1 (B7-H1) and 
PD-L2 (B7-DC) (214). Both molecules are thought to function 
as co-inhibitory signals limiting T cell activation (215, 216). 
Expression of B7-H3 on tumor cells and the endothelium of 
tumor-associated vasculature has been described in ovarian, 
endometrial, and cervical carcinomas and correlated with higher 
grade and poor prognosis (217–219). Interestingly, in cervical 
carcinomas, endothelial B7-H3 expression inversely correlated 
with CD8+ T cell infiltration (219), whereas there was no cor-
relation in endometrial carcinomas (218). Expression of B7-H3 
and B7-H4 has also been demonstrated on tumor vasculature 
in renal cell carcinomas and is associated with poor prognosis 
(220, 221). Correlation with TILs has not been reported in this 
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setting. Clearly the endothelial lining of tumor blood vessels 
has immunomodulatory capabilities, but it remains to be dem-
onstrated conclusively in vivo that tumor endothelial cells take 
up and present tumor-specific antigens and contribute to the 
immunosuppressive tumor microenvironment.

iMPLiCATiONS FOR TReATMeNT 
STRATegieS

Current clinical therapeutic approaches targeting the tumor 
vasculature include neutralizing antibodies to VEGF-A (beva-
cizumab), neutralizing antibodies to VEGFR-2 (ramucirumab), 
ligand traps (aflibercept), and multi-target tyrosine kinase 
inhibitors such as sunitinib and sorafenib, which target a range 
of receptor tyrosine kinases including the VEGF receptors, PDGF 
receptors, Flt3, and c-kit (222, 223). The ligand trap aflibercept 
is a recombinant protein containing regions of the extracellular 
domain of VEGFR-1 and VEGFR-2 fused to the Fc portion of 
IgG and functions to prevent the binding of VEGF-A, VEGF-B, 
and PlGF to VEGF receptors, on the cell surface (96). In addition, 
tyrosine kinase inhibitors targeting the epidermal growth factor 
receptor (EGFR), now widely used in the treatment of EGFR-
mutant lung adenocarcinoma, have also been shown to decrease 
production of VEGF-A, reduce tumor hypoxia, and possibly have 
a direct effect on tumor endothelial cells (224, 225). Bevacizumab 
is the most commonly used and well-studied agent, approved for 
use in combination with conventional chemotherapy in colorectal, 
lung, renal cell, and ovarian cancer [reviewed elsewhere (226)]. 
The mechanism of action of these antiangiogenic therapies is not 
yet fully understood. Rather than purely starving the tumor of 
nutrients, these antiangiogenic therapies are also thought to exert 
their effect by physical normalization of the tumor vasculature 
and alleviation of hypoxia (147). VEGF-A inhibitors have been 
shown to reduce the size and tortuosity of tumor vessels, enhance 
vessel maturation, recruit pericytes, and normalize the basement 
membrane (149). This results in improved oxygenation and drug 
delivery to tumors, in part through the ability of normalized 
vessels to sustain a pressure gradient (151). Vascular normaliza-
tion has been difficult to demonstrate clinically, as effects may be 
transient, variable in response to different doses, and occur in 
only a proportion of tumors. However, studies using advanced 
magnetic resonance imaging techniques have demonstrated that 
antiangiogenic therapy can improve tumor perfusion in the clini-
cal setting (227). In a study of cytotoxic chemotherapy combined 
with VEGF receptor inhibition for the treatment of glioblastoma, 
patients in whom this improved perfusion was demonstrated had 
an improved overall survival (227). This finding suggests that 
vascular normalization can indeed improve access of chemo-
therapeutic agents to tumors and therefore may also improve 
the delivery of immunotherapies and the trafficking of immune 
effector cells. Blocking the VEGF signaling pathway may also act 
to reduce immunosuppression in the tumor environment.

As outlined in previous sections, the tumor vasculature and 
the immune microenvironment are intricately linked, with the 
blood and lymphatic vessels both regulating access of immune 
cells to the tumor and showing direct immunosuppressive actions 

through angiogenic factors and endothelial cells. The combination 
of antiangiogenic therapy and immunotherapy has been explored 
in a variety of pre-clinical models (Table 1) and forms the basis 
for a number of current clinical trials (Table 2). Much of the pre-
clinical evidence relates to adoptive cell transfer and vaccination 
strategies, in combination with a wide variety of antiangiogenic 
therapies including VEGF-A blockade (97, 98, 111), VEGFR-2 
blockade (100, 101), ligand traps (99, 112), receptor tyrosine 
kinase inhibitors (106, 107, 114, 115), irradiation (166), and 
angiostatic peptides (102, 103, 105, 113). For example, Shrimali 
et al. demonstrated enhanced tumor infiltration, decreased tumor 
size, and improved survival when adoptive T cell transfer was 
combined with treatment with an anti-mouse VEGF-A antibody 
in a mouse model of melanoma (97). Results from these pre-
clinical models suggest that vascular normalization can improve 
lymphocyte infiltration into tumors and combining antiangio-
genic therapy and CAR T cell transfer in solid tumors may be 
worthy of further investigation in clinical trials.

In the clinical setting, interactions between immune check-
point inhibitors and the tumor vasculature are beginning to be 
described. Ipilimumab, an anti-CTLA-4 antibody, shows durable 
responses in up to 30% of patients with metastatic melanoma 
(2) and can result in an immune-mediated lymphocytic vascu-
lopathy with resultant vessel obstruction and tumor necrosis 
(228). In a cohort of patients with advanced melanoma, pre-
treatment serum levels of VEGF-A correlated with poor overall 
survival and poor response to immune checkpoint therapy with 
ipilimumab (229). Initial promising results have been reported 
in phase I clinical trials combining ipilimumab and the anti-
VEGF-A antibody bevacizumab in advanced melanoma and 
glioblastoma (109, 117). This combination appears safe and well 
tolerated (109, 117) and warrants further investigation and com-
parison to current treatment regimens. Tumor endothelial cells 
isolated from melanoma patients treated with this combination 
of ipilimumab and bevacizumab showed variable upregulation 
of adhesion molecules E-selectin, ICAM-1, and VCAM-1, with 
resulting enhancement of T cell infiltration into the tumor (109, 
230). Changes in levels of circulating chemokines, cytokines, 
and growth factors were seen following treatment, includ-
ing increased levels of chemoattractant IP-10 (CXCL10) and 
decreased levels of VEGF-A (230). Endothelial anergy induced 
by VEGF-A could be demonstrated in these samples and reversed 
by the addition of bevacizumab (230). A recent report describes 
results from a phase I study combining bevacizumab and the 
anti-PD-L1 antibody atezolizumab in the treatment of advanced 
renal cell carcinoma (110). Before the addition of atezolizumab, 
bevacizumab treatment increased the Th1 gene expression 
signature, which is associated with CD8 T+ cells, NK cells, and 
Th1 chemokines (110). There was a pronounced increase in 
intratumoral T cells following combination therapy, suggested 
to be related to an increase in expression of both CX3CL1 (frac-
talkine) and its receptor (110). Although not a primary endpoint 
of this small single-arm study, clinical activity was higher with 
combination therapy than that has been previously reported with 
either bevacizumab or atezolizumab alone (110). Each drug may 
potentiate the effects of the other, controlling tumor angiogenesis 
and counteracting the immunosuppressive microenvironment. 
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These studies provide important clinical and laboratory data to 
support further investigation of the use of antiangiogenic agents 
to enhance immunotherapy.

Following the description of the role of lymphangiogenesis, 
lymphatic remodeling, and lymphangiogenic factors in promot-
ing tumor metastasis, targeting this signaling axis has been 
suggested as an adjunct to conventional cancer treatments (231). 
Analogous to the targeting of angiogenesis through anti-VEGF-A 
antibody bevacizumab, monoclonal antibodies to VEGF-C (232), 
VEGF-D (233, 234), and VEGFR-3 (235) have been developed 
and are being evaluated in both pre-clinical models and clinical 
trials. Ligand traps that contain components of VEGFR-2 (236) 
and VEGFR-3 (237) have also been developed, which are 
designed to block the binding of VEGF-C and VEGF-D to cell 
surface receptors. Multi-target receptor tyrosine kinase inhibi-
tors such as sunitinib and sorafenib, described above, can also 
block signaling through VEGFR-3 on LECs (238). As detailed in 
previous sections, LECs and lymphangiogenic factors can also 
influence the host immune response to cancer. Consideration 
should be given to the potential to enhance immunotherapy by 
targeting lymphangiogenesis through monoclonal antibodies 
or ligand traps. Blocking the immunomodulatory functions of 
VEGF-C and VEGF-D and decreasing lymphangiogenesis to 
reduce the tolerance-promoting effects of LECs may be effective 
ways to improve immunotherapy approaches such as checkpoint 
inhibitors or adoptive cell transfer. Pre-clinical evaluation of 
these combinations will help to delineate the contribution of the 
lymphatic vasculature to evasion of the host immune response 
and explore the potential benefit of targeting this component of 
the microenvironment.

CONCLUSiON

Physiological processes such as the growth and remodeling of 
blood and lymphatic vessels and the immune response to foreign 
antigens are altered in the tumor microenvironment, and these 
alterations contribute to the establishment and progression of 
cancer. Significant interactions between endothelial cells and 
immune cells alter the extent and composition of the immune 

infiltrate in tumors, through both molecular and mechanical 
means. In addition, lymphangiogenesis and LECs have important 
roles in the development of tolerance to peripheral tissue antigens, 
including tumor antigens. The contribution of blood and lym-
phatic vessels to the modification of the antitumor host immune 
response in human cancer remains to be fully described. It is not 
known whether aspects of the tumor vasculature are different in 
tumors that respond to immunotherapy and those that do not, 
and if features such as hypoxia, production of angiogenic factors, 
or lymphatic vessel density may serve as predictive biomarkers. 
Immunotherapy and antiangiogenic therapy both target aspects 
of the tumor microenvironment rather than specifically targeting 
the tumor cells themselves. As such, combination approaches may 
be required to obtain the full benefit of these therapies. Further 
investigation of antiangiogenic and antilymphangiogenic therapy 
as a potential adjunct to immunotherapy may see improvement 
in the access of CAR T cell therapy to solid tumors and expand 
the benefits of immune checkpoint inhibition to non-inflamed 
tumors.
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