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ABSTRACT

The yeast Saccharomyces cerevisiae is a prevalent
system for the analysis of transcriptional networks.
As a result, multiple DNA-binding sequence
specificities (motifs) have been derived for most
yeast transcription factors (TFs). However, motifs
from different studies are often inconsistent with
each other, making subsequent analyses com-
plicated and confusing. Here, we have created
YeTFaSCo (The Yeast Transcription Factor
Specificity Compendium, http://yetfasco.ccbr
.utoronto.ca/), an extensive collection of
S. cerevisiae TF specificities. YeTFaSCo differs
from related databases by being more comprehen-
sive (including 1709 motifs for 256 proteins or
protein complexes), and by evaluating the motifs
using multiple objective quality metrics. The
metrics include correlation between motif matches
and ChIP-chip data, gene expression patterns, and
GO terms, as well as motif agreement between dif-
ferent studies. YeTFaSCo also features an index of
‘expert-curated’ motifs, each associated with a
confidence assessment. In addition, the database
website features tools for motif analysis, including
a sequence scanning function and precomputed
genome-browser tracks of motif occurrences
across the entire yeast genome. Users can also
search the database for motifs that are similar to a
query motif.

INTRODUCTION

The yeast Saccharomyces cerevisiae is a powerful model
for the study of gene regulation, and one in which
numerous computational and experimental approaches
to the study of transcriptional networks have been
field-tested and applied on a large scale (1–7). As a
result, there has been some level of characterization of

the sequence specificity of most yeast transcription
factors (TFs). A TF’s sequence specificity, or ‘motif’, is fre-
quently represented as a Position Weight Matrix (PWM)
whose entries represent the log-odds ratio of bases being
part of the motif, relative to the background sequence,
which is generally taken to represent the relative prefer-
ence of the corresponding protein for that sequence (8).
It is desirable to have a comprehensive collection of yeast
TF motifs for use in a variety of purposes, including the
computational analysis of transcriptional networks [e.g.
(9)] and study of genome evolution [e.g. (10)]. However,
different published motifs for the same TF often conflict
and may not represent the TF’s true intrinsic sequence
preferences, thus potentially confounding many studies
that use the motifs.
Here, we have created YeTFaSCo, a database of yeast

TF sequence specificities, obtained from diverse sources.
We have evaluated the motifs’ predictive power and con-
sistency with a variety of sources, including genome-wide
studies, knowledge of the types of sites that different struc-
tural classes of TFs can and cannot bind, and detailed
studies from the literature. To our knowledge, no similar
resources exist: UniPROBE (11) contains only Protein
Binding Microarray (PBM) data, while YEASTRACT
(12) does not contain any PBM data. YPA (13) and
MYBS (14) have collected motifs from several different
sources, but concentrate on using these motifs to predict
genomic binding sites and regulatory associations.
Perhaps the most commonly used index of yeast TF
motifs—the MacIsaac collection (15)—contains only
motifs from ChIP-chip data. While TRANSFAC (16)
and JASPAR (17) compile motifs from the literature,
neither these nor the aforementioned collections evaluate
the motifs for predictive power. Other recent studies (18–
22) have also compiled motifs, and in some cases
evaluated them for consistency with external information,
but do not aim to comprehensively survey the literature,
or to evaluate the motifs against each other and against
multiple data types. Our evaluation methods go beyond
previous studies because (i) we evaluate the motifs using
four independent criteria, and (ii) we include a manual

*To whom correspondence should be addressed. Tel: +416 946 8260; Fax: +416 978 8528; Email: t.hughes@utoronto.ca

Published online 18 November 2011 Nucleic Acids Research, 2012, Vol. 40, Database issue D169–D179
doi:10.1093/nar/gkr993

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://yetfasco.ccbr.utoronto.ca/
http://yetfasco.ccbr.utoronto.ca/


curation step, producing a collection of non-redundant
motifs that are annotated with expert confidence ratings.
YeTFaSCo also incorporates tools for scanning new se-
quences for PWM matches, browsing the genome for po-
tential binding sites, and comparing among motifs. We
anticipate that, as a unique resource, YeTFaSCo will be
invaluable to a wide variety of researchers.

GENERATION OF THE DATABASE

YeTFaSCo has two central tables that are related to each
other. One is a table of all genes/proteins and their
encoded DNA-binding domains (DBDs), if any, and the
other is a table of motifs assigned to these proteins. There
are often multiple motifs associated with each TF, but
typically only a single TF associated with each distinct
motif, unless the TF binds as a part of a complex. We
considered any yeast protein with either a DBD or an
associated DNA-binding motif to be a potential TF. The
current version of YeTFaSCo contains 264 known and
putative TFs (248 with motifs+16 with DBDs, but no
motifs yet described) and eight TF complexes (with
motifs).
To assign DBDs, the union of three sets of domain pre-

dictions was taken, including those from Badis et al. (4),
those from Weirauch et al. (23), and our own predictions
made by scanning all yeast genes with the HMMs from the
Pfam (24), SMART (25) and SUPFAM (26) databases
that correspond to the Weirauch DBD set (23).
Similarly, we populated the database with motifs using
several approaches. First, existing databases containing
motifs were used to direct the search for motifs
(4,11,12,19–22,27). We re-extracted motifs in these data-
bases from the primary literature and documented the
assays used to derive them. Next, we performed general
searches of the literature, looking for papers that had
derived motifs for any yeast proteins (Table 1—Query
Type ‘General’). Next, a reference-directed approach was
taken. Here, for each popular biochemical assay from
which motifs can be derived, we searched for publications
that included the original publication to describe this
method as a reference. This limited our search to those
papers which were likely to derive motifs using these
methods (Table 1—Query Type ‘Reference-directed’).
These methods included: ChIP-chip (2), BIAcore (28),
DIP-chip (29), MITOMI (30), PBMs (31), SELEX (32),
CSI (33), CASTing (34), HT-SELEX (35), Bind-n-Seq
(36), PIch (37), DNase I-seq (38), ChIP-seq (39), DamID
(40). Finally, for every putative TF in the collection that
had zero or one motifs derived for it, we performed a
directed search, looking for motifs specifically for these
factors (Table 1—Query type ‘Gene-directed’).
For each motif, we converted from the provided form to

a position frequency matrix (PFM), the standard motif
form used in this database. The entries in a PFM represent
the frequency of observing each base at a given position in
the motif, and thus the sum of frequencies for each
position in the motif sum to 1. We chose this motif form
because it is a simple, yet robust model of TF specificity,
most other motif representations can be converted to

PFMs with relative ease, and there are many tools de-
veloped which use either PFMs or position weight
matrices (PWMs). PFMs can easily be converted to
PWMs by dividing each entry by the corresponding back-
ground base frequency and changing to a log scale (8). The
PWM format facilitates scanning DNA sequences by, for
every possible alignment of the motif to the sequence,
providing the log-odds ratio of the subsequence being an
instance of the motif, versus part of the genomic back-
ground (8). Thus, scores above zero represent sequences
more likely to be an instance of the motif than random
DNA. As noted above, the same calculation is widely
taken to represent the relative affinity of a TF to a par-
ticular sequence the same width as the PFM/PWM. Some
of the motifs in the database have flanking bases with low
information content. Trimming the motifs to remove low
information content bases did not on average improve the
motifs by our criteria, however (data not shown), so the
motifs were left in their original form.

In total, YeTFaSCo currently contains 1709 motifs for
256 proteins or protein complexes, which were derived
from 133 publications. As many as 445 motifs come
from a single publication (19), and individual TFs have
as many as 40 different associated motifs (Ste12). The
motifs present in the database were derived from diverse
data types, but ChIP-chip has by far the greatest number
of motifs (1189), with many of these motifs being derived
using different algorithms from the same source data (1),
resulting in many TFs with multiple ChIP-derived motifs
(Figure 1A).

EVALUTION OF MOTIFS: OBJECTIVE CRITERIA

We used four objective criteria to give a confidence value
for the accuracy of each motif. These criteria include the
correlation of predicted binding sites and ChIP-chip data,
the correlation between predicted binding sites in pro-
moters and expression changes in TF mutants, the enrich-
ment of GO terms in genes whose promoters have binding
sites, and the agreement between different studies. These
criteria are described in more detail here.

ChIP-chip enrichment

For 212 proteins in the database, genome-wide chromatin
immunoprecipitation data is available (1,41–43). We used
these data to test the quality of the motifs by calculating
the Spearman correlation coefficient between the relative
probe intensities and the probability of the probe region
being bound by the motif. When the ChIP experiments
used entire intergenic regions as microarray probes, the
‘probe region’ to be scanned was defined as the entire
probe sequence, and when the probes represented
equally sized short sequences, the ‘probe region’ was
defined as the maximum range of DNA around the
probe that could fully hybridize to the microarray probe
given the published upper size limit of the sheared ChIPed
DNA (e.g. if the DNA was sheared to a maximum size of
300 bp, and the probe was 60 bp and started at x, the
‘probe region’ was taken as x� 240 to x+300). The prob-
ability of the probe region being bound is calculated as the
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probability that at least one binding site in the sequence is
occupied, given the motif (44). The P-value of the correl-
ation between relative probe intensities and the probabil-
ity of that probe region being bound was calculated using
the Edgeworth series approximation method (45). As a
summary score for each motif, we calculated the average
�log(P-value) for the correlations over all ChIP-chip data
sets. The distribution of these scores, in comparison to the
scores for 1000 permutations of the probe intensities for
each ChIP experiment, is shown in Figure 2A. Only 1% of
the randomized data scored above 1.4, in contrast to 67%
of the actual data. Thus, we use a cutoff of 1.4 to distin-
guish motifs that significantly correlate with ChIP data
from those that do not, representing an empirically
determined �1% FDR.

Many of the motifs in the database were derived from
the same ChIP-chip data being used to evaluate it (1). This
circularity would be expected to bias the analyses in
favour of ChIP-chip motifs. However, comparison of the
highest-scoring motif for each TF derived by ChIP-chip to
the highest-scoring motif derived by PBM (the second
most abundant motif derivation method in the database)
revealed that, for the 112 TFs with motifs derived by both
methods, PBMs perform slightly better overall; 60 of the
112 motifs have a higher total score for PBMs (Figure 1B).
This is in spite of the fact that there is a much larger pool
of ChIP-chip motifs from which to choose the best motif
(Figure 1A). One possible explanation is that motif deriv-
ation from ChIP-chip data faces the inherent difficulty of
searching for short motifs in long stretches of non-random
DNA. However, we cannot exclude a bias in the evalu-
ation criteria, or the binding model in favour of
PBM-derived motifs.

Correlation with gene expression data

Several studies have used microarrays to systematically
examine the effects of TF over-expression and/or
deletion (46,47), and many others have analyzed one or
a few TF mutants. We downloaded expression data from

systematic studies (46,47) and individual studies included
in the SPELL collection (48), giving us data from 58
sources that include mutant expression data for 212 of
the TFs in YeTFaSCo. These data are useful for
evaluating motif quality since we expect that genes with
TF binding sites in their promoters will have their expres-
sion perturbed in the corresponding TF mutant. We
scanned promoters (taken from �500 to +100 relative
the transcription start site) using the same binding
model described for the ChIP-chip Enrichment criterion
to yield a probability of each promoter being bound by the
TF, for each motif. Similar to the ChIP-chip metric, we
then calculated the Spearman correlation coefficient
between the probabilities of the TF binding each
promoter and the log expression changes in the corres-
ponding genes, with a P-value being derived as above.
The summary score for this criterion is the mean of the
correlation �log(P-value)s for all available mutant expres-
sion data sets. The distribution of these scores, in com-
parison to the scores derived from 1000 permutations of
the fold expression changes for each experiment, is shown
in Figure 2B. Only 1% of the randomized data scored
above a threshold of 1.3, compared with 36% of the
actual data.

GO term enrichment

TFs often regulate specific pathways and processes (46).
To test for enrichment of binding sites in promoters of
functionally related genes, we calculated the probability
of the TF binding to each promoter for each motif, and
performed AUROC and ranksum tests for each motif-GO
slim term combination to ask whether binding pro-
babilities differ between genes which are annotated with
the GO term and those which are not. Both enriched and
depleted ROCs are considered because, in addition to
having certain TFs responsible for activating certain
processes, it is possible that there are certain processes
which specifically lack certain motifs. In general, one
would expect this latter case to be uncommon. Indeed,

Table 1. Example motif search queries

Query type Engine Example query

General Scholar Yeast OR saccharomyces OR cerevisiae motif OR pfm OR logo OR pwm ‘transcription factor’ OR
‘DNA-binding’ -intitle:ahuman -intitle:drosophila

Scholar Motif specificity sequence ‘transcription factor’ saccharomyces OR cerevisiae ‘DNA binding’ -intitle:ar-
abidopsis -intitle:subtilis -intitle:drosophila -intitle:human -intitle:prokaryotic -intitle:mouse -intitle:albicans
logo OR PWM OR PSSM OR PFM

Scholar Motif specificity sequence ‘transcription factor’ saccharomyces OR cerevisiae ‘DNA binding’ -intitle:ar-
abidopsis -intitle:subtilis -intitle:drosophila -intitle:human -intitle:prokaryotic -intitle:mouse -intitle:albicans
-intitle:brucei -intitle:trypanosome

Scholar ‘Transcription factor’ motif specificity cerevisiae ‘DNA-binding’ -intitle:drosophila -intitle:human
-intitle:plant -intitle:mammal

Pubmed Transcription factor (motif OR specificity OR pwm OR PFM) (cerevisiae OR yeast) ‘DNA-binding’
Reference-directed Scholar DNA binding cerevisiae ‘transcription factor’ PWM OR PFM OR PSAM OR PSSM OR ‘sequence

specificity’ motif
Gene-directed Scholar <GeneName> OR <SysName>b DNA binding cerevisiae ‘transcription factor’ motif OR PWM OR PFM

OR PSAM OR PSSM OR consensus OR ‘sequence specificity’ OR ‘binding site’

aThe ‘-intitle:’ term is used to exclude papers with a given term in the title.
b<GeneName> and <SysName> were replaced with the gene and systematic name of the gene being searched for.
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using a 1% FDR, only 49 motifs show a significant deple-
tion in a GO slim term, compared with 216 which are
enriched. Most of these former motifs are depleted in
either ‘ribosome biogenesis’ (18/49) or ‘RNA metabolic
process’ (13/49), and many (5/18 and 12/13, respectively)
of these are very similar to AGGGG, the ‘stress response
element’ and known Msn2/Msn4 binding site (49).

Since Msn2 and Msn4 are activated in stress conditions
(50), it is not surprising that these sites are generally
absent from genes involved in ribosome biogenesis, since
these genes are generally repressed under times of envir-
onmental stress (51,52). The score for this criterion is the
�log(P-value) of the ranksum test for the most signifi-
cantly enriched/depleted GO term. The distribution of

Figure 1. Comparison of ChIP and PBM-derived motifs. (A) Histogram showing the number of motifs per TF broken down by derivation method.
(B) Comparison of summary scores (see text) for the highest-scoring motifs derived independently by both PBMs and ChIP-chip for 112 TFs
common to both. Each point represents a single TF for one of the four scoring measures, the total score, or the average of all ChIP data, excluding
the Harbison et al. (1) data, from which most of the ChIP motifs were derived.
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these scores, in comparison to 1000 permutations of the
GO term labels, is shown in Figure 2C. Only 1% of this
randomized data scored above 4.0, in contrast to 25% of
the actual data.

Inter-study concurrence

We used the concurrence between independent studies as a
measure of a motif’s reliability. For instance, if two studies
independently characterize the same specificity for the
same protein, this is strong evidence that the motif is
correct. Using Tomtom (version 4.1.0) (53), we
compared each motif to the other motifs derived for the
same TF (from independent data) using the Euclidean
distance metric, yielding a P-value representing how
likely each match is, given the similarity of the two

motifs. This P-value, negated and logged, is used as the
score for this metric. The distribution of these scores, in
comparison to 1000 permutations of the gene labels for
the motifs, is shown in Figure 2D. While 1% of the
randomized data scored above a threshold of 5.3, 26%
of the actual data surpassed this same threshold.

MANUAL EVALUTION OF MOTIFS: SUBJECTIVE
DERIVATION OF AN ‘EXPERT CURATED’ SET

For most purposes, a library of TF motifs would ideally
include the single most accurate motif for each TF. For
example, in computational modelling, it is desirable to
have as few features as possible, while still having a com-
prehensive list of relevant features. With this motivation,

Figure 2. Comparison of the distributions of actual motif evaluation scores with randomized data. For each plot, the actual data is shown in red and
the permuted data is in blue with error bars (representing one SD across motifs) shown in black. (A) Mean ChIP-chip enrichment score. (B) Mean
expression enrichment score. (C) GO-term enrichment score. (D) Inter-study concurrence score.
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we created an ‘Expert Curated’ motif set, which consisted
of one motif for each TF, or more than one if the
TF appears to have multiple binding modes (e.g. some
GAL4-class TFs appear to tolerate more than one
spacing between the half-sites, and/or can bind as either
monomers or dimers (54), while some bZIP proteins
appear to tolerate different spacings between the half-sites,
and can heterodimerize in different combinations).
We emphasize that the data available differs for each

TF, and that in many cases the data is not easily compar-
able among TFs or even for the same TF. Consequently,
no one-size-fits-all objective system can be applied auto-
matically to all TFs; this fact is what motivated the expert
curation step. Consequently, the expert curations are sub-
jective to a degree. We did, however, employ the following
procedure. First, using the Table tools described below,
we manually examined all of the motifs and scores for
each TF in the database. We also considered additional
information in the literature (such as DNaseI footprinting
and reporter assays), as well as knowledge regarding the
types of sites that are normally bound by the different
structural classes of DNA-binding domains. For
example, monomeric GAL4-class zinc clusters typically
bind sequences containing CGG, and these proteins also
often bind as dimers that prefer a specific spacing and
orientation of the two CGG subsites (54). We attempted
to avoid selecting motifs that were likely due to cofactors
(e.g. some of the motifs that have been reported for Ace2,
Fhl1, Yap5, Pdr1 and Sfp1 are in fact Rap1 motifs; see
Table 2). We also considered whether or not the motifs
were supported by more than one criterion (e.g. if a motif
was scoring highly simply because of a high correlation to
ChIP-chip data, but did not perform well by any other
measure), and whether the data used to derive the motif
reflects the protein binding directly to the DNA. As part
of our manual analysis, we gave the selected motifs a con-
fidence score (high, medium, or low). Some putative TFs
were also assigned ‘Dubious’ status in our database, due
to lack of evidence that they bind DNA directly or in a

sequence-specific manner; motifs for these TFs are not
included in the expert curated set. The full details of the
Expert Curated set are available from the ‘Expert
Curation’ link on the side bar of the YeTFaSCo home
page. In total, the expert curated set contains 218 motifs
for 190 TFs (most of which are a 1-to-1 mapping; there are
five instances of protein complexes and 28 TFs that have
multiple motifs, due to evidence for multiple binding
modes such as monomeric versus dimeric). 139 of the
motifs are high confidence, 61 are medium confidence,
and 22 are low confidence. If we consider the set of all
246 known+putative yeast TFs to include those that
either have a motif in our database or contain one of
the canonical eukaryotic TF DBDs (23), and are not
‘Dubious’ in our judgment, then 85% of all known+pu-
tative yeast TFs have a motif in the ‘expert curated’ set,
52% of which are high confidence.

CONTENT AND INFORMATION RETRIEVAL

From the main YeTFaSCo page (http://yetfasco.ccbr
.utoronto.ca), there are links to the five table views, a
downloads page, a place for users to submit data, a cart,
help pages, a website tour and sequence analysis tools
(described below). The table views contain all the data
in the database and provide links between tables for
easy navigation. While navigating the database tables,
the cart can be used for keeping track of specific motifs
of interest, which can then be downloaded. Alternatively,
the downloads page provides access to all the motifs in the
database in multiple formats. These three features are
described here in more detail.

Tables

The data in the database is accessible through several
tables, which are the primary means of browsing the
motifs. The ‘Motifs’ table displays an abbreviated
version of the data in the database (Figure 3). This is
the primary method of seeing which motifs are in the
database and displays the TF names, motif IDs, a logo
representation of the motif (55), the score for that motif,
any DBDs that TF might have, the study responsible for
derivation of the motif, what biochemical approach was
taken to generate the motif, and the expert confidence in
the motif (if it is in the ‘expert curated’ set). This page
links to several other tables in the database, including
the ‘Gene’ table, which shows more information about
the genes, the ‘Expert Curation’ table, which shows the
details of the expert curation, the ‘Reference’ table,
which shows more details about the particular study
from which the motif is derived, and the ‘Motifs –
Details’ table which shows all the information of the
‘Motifs’ table, with additional details of how that motif
scored for the various evaluation criteria. Additionally,
the ‘Motifs – Details’ table provides links to the detailed
breakdown of the ChIP-chip and expression enrichment
scores, broken down by dataset. Each of these tables can
be filtered and sorted by adding criteria to the filter bar
and by clicking the header links, respectively.

Table 2. Examples of potential TF cofactors

Potential
co-factor

Motif IDs TF known to
bind motif

Ash1 648, 932 Mcm1
Rlm1 1079 Mcm1
Ndd1 366 Mcm1
Arg81 1507 Mcm1
Arg80a 1483 Mcm1
Fhl1 406, 629, 893, 1196, 1504, 1618 Rap1
Sfp1 357, 621, 1100, 1710 Rap1
Pdr1 899 Rap1
Yap5 896 Rap1
Ace2 918 Rap1
Cha4 1607 Rap1
YDR026Ca 408, 696, 1160, 1581, 1921 Reb1
Stb2 710 Reb1
Rpn4 1090 Reb1
Pho2 1680 Abf1

All motifs were derived from ChIP-chip data.
aHomologs to TF known to bind motif.
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Cart

In the ‘Motifs’ and ‘Motifs – Details’ tables, the final
column has buttons to allow the user to add motifs to
their cart. This cart is useful for downloading only a
subset of motifs as PFMs. The contents of the cart can
be viewed through the ‘View Cart’ link in the header,
which leads to a page where its contents can be edited
or downloaded; in addition, users can scan a custom
DNA sequence with the motifs contained in the cart.

Downloads

There are several downloads available from the
downloads page, including all the motifs in the database
as IUPAC, PFM, PWM (using the S. cerevisiae base
content) and logo (55) representations. In addition,
PFM and PWM sets are available for the ‘Expert
Curated’ set, which should facilitate the use of the
motifs in the database for custom sequence analysis. The
download page also provides access to all microarray and
ChIP-chip data used in this study, as well as the in vivo,
in vitro and predicted nucleosome occupancy tracks, and

conservation track present in the genome browser (see
below).

ANALYSIS TOOLS

The YeTFaSCo website provides several analysis tools,
which include sequence scanning with user-defined se-
quences, a utility for comparing a user-specified motif to
the motifs in the database, and precomputed genome-wide
TF binding sites available in a Genome Browser.

Sequence scanning

The sequence scanner identifies potential TF binding sites
in user-defined sequences by scanning with different
subsets of motifs in the database for sites that are more
like the motif than like the background. This can be
customized to be more or less stringent by specifying a
percent of the maximum PWM score to use as a threshold
(e.g. a threshold of 100% would show only perfect motif
matches, while 0% shows all potential matches). By
default this threshold is set to 75%. In addition, the user

Figure 3. The ‘Motif’ table of YeTFaSCo. For each of the database tables, there is a link to the help pages associated with that table in the upper
right (1). In the help, there is an explanation of the meanings of each column. For all tables, results can be filtered by entering criteria into the filter
bar (2) and pressing ‘Filter!’. The sort order can be changed by clicking on the various header links (3). For the motif table views, there is an option
to add (or remove) motifs from the cart (4). There are also links provided for downloading the table data in various formats (5). The ‘To Detailed
View . . .’ button (6) switches to the ‘Motifs – Details’ view, with the same filters applied. This view can also be reached for an individual motif entry
by clicking the logo (7). The table also links to several different pages, including the expert curation (8) where additional details of the expert
curation are provided, the gene entry (9) where details of the particular gene can be accessed and a link to SGD (27) is provided, and the reference
entry (10) where more details of the study can be viewed, together with links to the corresponding PubMed entry. In addition, the DBDs (11) link to
the corresponding entry in Interpro (65) (or other domain databases).
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can also change the background base content to suit their
needs.
There are three ways to choose subsets of motifs with

which to scan. The first is to use one of the provided motif
sets (e.g. ‘all motifs’ or ‘Expert Curated’). The second is to
select individual motifs by adding them to the cart, and
then scanning with the cart contents. The third is to select
a single TF to scan with, using all or one of the available
motifs. The sequence scanner outputs a graphical repre-
sentation of the motif matches along the given DNA
sequence, a table containing all the hits, including details
of the score, position and orientation of the match, as well
as a table containing all the motifs that were searched
for, but had no hits in the sequence. As an example
of the sequence scanner output, we scanned the well-
characterized Gal1-10 intergenic region for instances of
TF motifs from the ‘Expert Curated’ set using a 75%
score cutoff. The sequence scanner correctly identified
the previously characterized Gal4, Mig1 and Rsc3
binding sites, as well as numerous other potential TF
binding sites (Figure 4). Note that many of the motif
matches are for proteins with similar binding sites to
those of the known Gal1-10 regulatory factors (e.g.
GAL4-class proteins, Mig2 and Mig3).

Motif similarity search

The YeTFaSCo website also has a tool for finding motifs
that are similar to a user-provided motif. We anticipate
this will be useful for instances where a potential regula-
tory motif is found, but the trans-acting factor is not
known. To use this tool, users can input an IUPAC con-
sensus motif, sequence alignment, or PFM. Using
Tomtom (53) (as before), the most similar motifs are

found and provided in table format in descending order
of significance (until P> 0.05).

Genome browser

We scanned the yeast genome with the ‘Expert Curated’
set using an 80% of the maximum PWM score threshold
(except in cases where there were fewer than 1000 or
greater than 20 000 binding sites genome wide, in which
cases we, respectively, repeatedly lowered or raised the
thresholds by 5% until there at least 1000 or fewer than
20 000 sites were found or 0% or 100% were reached).
YeTFaSCo provides these results in an implementation
of the GBrowse genome browser (56). In addition to
genome wide TF binding sites, YeTFaSCo provides
tracks for in vivo, in vitro and predicted nucleosome occu-
pancy (57–59). These tracks are provided as a reference
because TFs are known to preferentially bind nucleosome
free regions (60,61). We have also included a track repre-
senting the degree of conservation between closely related
yeast species (62) because functional binding sites are
more likely to be conserved (63). These data could help
users to identify binding sites which are used in vivo. The
YeTFaSCo genome browser uses version 64 (2011-02-03)
of the S. cerevisiae genome.

FUTURE PLANS

In the process of constructing the YeTFaSCo database
and manually curating the motif collection, we compiled
a list of additional features and further analyses to incorp-
orate into future versions of the database. One particular-
ly important step will be to revisit the motif derivation
steps. Browsing YeTFaSCo, it is clear that different
motif-finding algorithms can yield dramatically different

Figure 4. Sequence scan of GAL1-10 promoter region. Only binding sites that achieve �75% of the maximum PWM score are shown. Previously
characterized binding sites (66,67) are boxed in red and blue. The numbers next to the TF name represent the motif ID, while the ± represents the
binding site orientation.
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motifs from the same ChIP-chip data. The same may be
true of motifs from PBMs and possibly also MITOMI: a
recent analysis described a method for obtaining motifs
that are demonstrably more accurate than those derived
from previous approaches (35). More sophisticated motif
evaluation methods might also yield higher correspond-
ence between data sets; for example, correspondence
between TF motifs and ChIP-chip or expression data
may be higher if nucleosome occupancy over the motif
match is considered, as well as the presence of General
Regulatory Factor (GRF) binding sites in proximity
(57,60). It is known that open chromatin is a major deter-
minant of TF binding in vivo (61), suggesting that most
TFs rely on additional cues—some of which are known
and can be incorporated into computational models.

We also note that there are 16 putative TFs that still
have no motif. In addition, we categorized 55 proteins that
were previously annotated as known or putative TFs as
‘dubious’ and excluded them from the final manually
curated list, because there is, as yet, no formal demonstra-
tion that these proteins have intrinsic sequence-specific
DNA-binding activity—although there is at least some
suggestion that they may. Thus, the sequence specificities
of yeast TFs will, we hope, remain an active area of
research, and future iterations of YeTFaSCo will incorp-
orate emerging data. Many of these ‘dubious’ TFs with
motifs assigned to them are known to be an upstream
signalling component or downstream effector. For at
least some such cases, the motif derived for these
proteins corresponds to a known co-acting TF, suggesting
that the signalling/effector protein is specific to this TF
(e.g. all ChIP-chip-derived Fhl1 motifs are in fact
binding sites for Rap1; see Table 2 and (64) for additional
examples). It would likely be valuable for the mapping and
mechanistic understanding of transcriptional networks to
have, in addition to an index of TF sequence specificities,
an index of which cofactors and chromatin factors are
recruited by each of the individual TFs, or are involved
in its recruitment.

CONCLUSIONS

As a unified and comprehensive resource of manually
curated TF motifs, YeTFaSCo addresses a fundamental
need in the analysis of yeast transcriptional networks. We
anticipate that this database will be an extremely useful
resource for the yeast community and will facilitate a
greater understanding of transcriptional regulation.
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Sá-Correia,I. (2006) The YEASTRACT database: a tool for the
analysis of transcription regulatory associations in Saccharomyces
cerevisiae. Nucleic Acids Res., 34, D446–D451.

13. Chang,D.T., Huang,C.Y., Wu,C.Y. and Wu,W.S. (2011) YPA: an
integrated repository of promoter features in Saccharomyces
cerevisiae. Nucleic Acids Res., 39, D647–D652.

14. Tsai,H.K., Chou,M.Y., Shih,C.H., Huang,G.T., Chang,T.H. and
Li,W.H. (2007) MYBS: a comprehensive web server for mining
transcription factor binding sites in yeast. Nucleic Acids Res., 35,
W221–W226.

15. MacIsaac,K.D., Wang,T., Gordon,D.B., Gifford,D.K.,
Stormo,G.D. and Fraenkel,E. (2006) An improved map of
conserved regulatory sites for Saccharomyces cerevisiae. BMC
Bioinformatics, 7, 113.

16. Matys,V., Kel-Margoulis,O.V., Fricke,E., Liebich,I., Land,S.,
Barre-Dirrie,A., Reuter,I., Chekmenev,D., Krull,M.,
Hornischer,K. et al. (2006) TRANSFAC and its module
TRANSCompel: transcriptional gene regulation in eukaryotes.
Nucleic Acids Res., 34, D108–D110.

Nucleic Acids Research, 2012, Vol. 40, Database issue D177



17. Sandelin,A., Alkema,W., Engstrom,P., Wasserman,W.W. and
Lenhard,B. (2004) JASPAR: an open-access database for
eukaryotic transcription factor binding profiles. Nucleic Acids
Res., 32, D91–D94.

18. Chen,K., van Nimwegen,E., Rajewsky,N. and Siegal,M.L. (2010)
Correlating gene expression variation with cis-regulatory
polymorphism in Saccharomyces cerevisiae. Genome Biol. Evol., 2,
697–707.

19. Foat,B.C., Tepper,R.G. and Bussemaker,H.J. (2008)
TransfactomeDB: a resource for exploring the nucleotide sequence
specificity and condition-specific regulatory activity of trans-acting
factors. Nucleic Acids Res., 36, D125–D131.

20. Morozov,A.V. and Siggia,E.D. (2007) Connecting protein
structure with predictions of regulatory sites.
Proc. Natl Acad. Sci. USA, 104, 7068–7073.

21. Pachkov,M., Erb,I., Molina,N. and van Nimwegen,E. (2007)
SwissRegulon: a database of genome-wide annotations of
regulatory sites. Nucleic Acids Res., 35, D127–D131.

22. Zhu,J. and Zhang,M.Q. (1999) SCPD: a promoter database of
the yeast Saccharomyces cerevisiae. Bioinformatics, 15, 607–611.

23. Weirauch,M.T. and Hughes,T.R. (2011) A catalogue of
eukaryotic transcription factor types, their evolutionary origin,
and species distribution. Subcell. Biochem., 52, 25–73.

24. Finn,R.D., Mistry,J., Tate,J., Coggill,P., Heger,A., Pollington,J.E.,
Gavin,O.L., Gunasekaran,P., Ceric,G., Forslund,K. et al. (2010)
The Pfam protein families database. Nucleic Acids Res., 38,
D211–D222.

25. Letunic,I., Doerks,T. and Bork,P. (2009) SMART 6: recent
updates and new developments. Nucleic Acids Res., 37,
D229–D232.

26. Pandit,S.B., Bhadra,R., Gowri,V.S., Balaji,S., Anand,B. and
Srinivasan,N. (2004) SUPFAM: a database of sequence
superfamilies of protein domains. BMC Bioinformatics, 5, 28.

27. Engel,S.R., Balakrishnan,R., Binkley,G., Christie,K.R.,
Costanzo,M.C., Dwight,S.S., Fisk,D.G., Hirschman,J.E.,
Hitz,B.C., Hong,E.L. et al. (2010) Saccharomyces Genome
Database provides mutant phenotype data. Nucleic Acids Res.,
38, D433–D436.

28. Fagerstam,L.G., Frostell-Karlsson,A., Karlsson,R., Persson,B. and
Ronnberg,I. (1992) Biospecific interaction analysis using surface
plasmon resonance detection applied to kinetic, binding site and
concentration analysis. J. Chromatogr., 597, 397–410.

29. Liu,X., Noll,D.M., Lieb,J.D. and Clarke,N.D. (2005) DIP-chip:
rapid and accurate determination of DNA-binding specificity.
Genome Res., 15, 421–427.

30. Maerkl,S.J. and Quake,S.R. (2007) A systems approach to
measuring the binding energy landscapes of transcription factors.
Science, 315, 233–237.

31. Mukherjee,S., Berger,M.F., Jona,G., Wang,X.S., Muzzey,D.,
Snyder,M., Young,R.A. and Bulyk,M.L. (2004) Rapid analysis of
the DNA-binding specificities of transcription factors with DNA
microarrays. Nat. Genet., 36, 1331–1339.

32. Tuerk,C. and Gold,L. (1990) Systematic evolution of ligands by
exponential enrichment: RNA ligands to bacteriophage T4 DNA
polymerase. Science, 249, 505–510.

33. Warren,C.L., Kratochvil,N.C., Hauschild,K.E., Foister,S.,
Brezinski,M.L., Dervan,P.B., Phillips,G.N. Jr and Ansari,A.Z.
(2006) Defining the sequence-recognition profile of DNA-binding
molecules. Proc. Natl Acad. Sci. USA, 103, 867–872.

34. Wright,W.E., Binder,M. and Funk,W. (1991) Cyclic amplification
and selection of targets (CASTing) for the myogenin consensus
binding site. Mol. Cell. Biol., 11, 4104–4110.

35. Zhao,Y., Granas,D. and Stormo,G.D. (2009) Inferring binding
energies from selected binding sites. PLoS Comput. Biol., 5,
e1000590.

36. Zykovich,A., Korf,I. and Segal,D.J. (2009) Bind-n-Seq:
high-throughput analysis of in vitro protein-DNA interactions
using massively parallel sequencing. Nucleic Acids Res., 37, e151.

37. Dejardin,J. and Kingston,R.E. (2009) Purification of proteins
associated with specific genomic Loci. Cell, 136, 175–186.

38. Hesselberth,J.R., Chen,X., Zhang,Z., Sabo,P.J., Sandstrom,R.,
Reynolds,A.P., Thurman,R.E., Neph,S., Kuehn,M.S., Noble,W.S.
et al. (2009) Global mapping of protein-DNA interactions in vivo
by digital genomic footprinting. Nat. Methods, 6, 283–289.

39. Johnson,D.S., Mortazavi,A., Myers,R.M. and Wold,B. (2007)
Genome-wide mapping of in vivo protein-DNA interactions.
Science, 316, 1497–1502.

40. van Steensel,B. and Henikoff,S. (2000) Identification of in vivo
DNA targets of chromatin proteins using tethered dam
methyltransferase. Nat. Biotechnol., 18, 424–428.

41. Workman,C.T., Mak,H.C., McCuine,S., Tagne,J.-B., Agarwal,M.,
Ozier,O., Begley,T.J., Samson,L.D. and Ideker,T. (2006) A
systems approach to mapping DNA damage response pathways.
Science, 312, 1054–1059.

42. Tan,K., Feizi,H., Luo,C., Fan,S.H., Ravasi,T. and Ideker,T.G.
(2008) A systems approach to delineate functions of paralogous
transcription factors: role of the Yap family in the DNA damage
response. Proc. Natl Acad. Sci. USA, 105, 2934–2939.

43. Venters,B.J., Wachi,S., Mavrich,T.N., Andersen,B.E., Jena,P.,
Sinnamon,A.J., Jain,P., Rolleri,N.S., Jiang,C., Hemeryck-Walsh,C.
et al. (2011) A comprehensive genomic binding map of gene and
chromatin regulatory proteins in Saccharomyces. Mol. Cell, 41,
480–492.

44. Chen,X., Hughes,T.R. and Morris,Q. (2007) RankMotif++: a
motif-search algorithm that accounts for relative ranks of K-mers
in binding transcription factors. Bioinformatics, 23, i72–i79.

45. Best,D.J. and Roberts,D.E. (1975) Algorithm AS 89: the upper
tail probabilities of Spearman’s rho. J. Roy. Stat. Soc. Ser. C
Appl. Stat., 24, 377–379.

46. Chua,G., Morris,Q.D., Sopko,R., Robinson,M.D., Ryan,O.,
Chan,E.T., Frey,B.J., Andrews,B.J., Boone,C. and Hughes,T.R.
(2006) Identifying transcription factor functions and targets by
phenotypic activation. Proc. Natl Acad. Sci. USA, 103,
12045–12050.

47. Hu,Z., Killion,P.J. and Iyer,V.R. (2007) Genetic reconstruction of
a functional transcriptional regulatory network. Nat. Genet., 39,
683–687.

48. Hibbs,M.A., Hess,D.C., Myers,C.L., Huttenhower,C., Li,K. and
Troyanskaya,O.G. (2007) Exploring the functional landscape of
gene expression: directed search of large microarray compendia.
Bioinformatics, 23, 2692–2699.

49. Martı́nez-Pastor,M.T., Marchler,G., Schüller,C., Marchler-
Bauer,A., Ruis,H. and Estruch,F. (1996) The Saccharomyces
cerevisiae zinc finger proteins Msn2p and Msn4p are required for
transcriptional induction through the stress response element
(STRE). EMBO J., 15, 2227–2235.

50. Gorner,W., Durchschlag,E., Martinez-Pastor,M.T., Estruch,F.,
Ammerer,G., Hamilton,B., Ruis,H. and Schuller,C. (1998)
Nuclear localization of the C2H2 zinc finger protein Msn2p is
regulated by stress and protein kinase A activity. Genes Dev., 12,
586–597.

51. Causton,H.C., Ren,B., Koh,S.S., Harbison,C.T., Kanin,E.,
Jennings,E.G., Lee,T.I., True,H.L., Lander,E.S. and Young,R.a.
(2001) Remodeling of yeast genome expression in response
to environmental changes. Mol. Biol. Cell, 12, 323–337.

52. Gasch,a.P., Spellman,P.T., Kao,C.M., Carmel-Harel,O.,
Eisen,M.B., Storz,G., Botstein,D. and Brown,P.O. (2000)
Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell, 11, 4241–4257.

53. Gupta,S., Stamatoyannopoulos,J.a., Bailey,T.L. and Noble,W.S.
(2007) Quantifying similarity between motifs. Genome Biol., 8,
R24.

54. MacPherson,S., Larochelle,M. and Turcotte,B. (2006) A fungal
family of transcriptional regulators: the zinc cluster proteins.
Microbiol. Mol. Biol. Rev., 70, 583–604.

55. Workman,C.T., Yin,Y., Corcoran,D.L., Ideker,T., Stormo,G.D.
and Benos,P.V. (2005) enoLOGOS: a versatile web tool for
energy normalized sequence logos. Nucleic Acids Res., 33,
W389–W392.

56. Stein,L.D., Mungall,C., Shu,S., Caudy,M., Mangone,M., Day,A.,
Nickerson,E., Stajich,J.E., Harris,T.W., Arva,A. et al. (2002) The
generic genome browser: a building block for a model organism
system database. Genome Res., 12, 1599–1610.

57. Kaplan,N., Moore,I.K., Fondufe-Mittendorf,Y., Gossett,A.J.,
Tillo,D., Field,Y., LeProust,E.M., Hughes,T.R., Lieb,J.D.,
Widom,J. et al. (2009) The DNA-encoded nucleosome
organization of a eukaryotic genome. Nature, 458, 362–366.

D178 Nucleic Acids Research, 2012, Vol. 40, Database issue



58. Tillo,D. and Hughes,T.R. (2009) G+C content dominates
intrinsic nucleosome occupancy. BMC Bioinformatics,
10, 442.

59. Lee,W., Tillo,D., Bray,N., Morse,R.H., Davis,R.W., Hughes,T.R.
and Nislow,C. (2007) A high-resolution atlas of nucleosome
occupancy in yeast. Nat. Genet., 39, 1235–1244.

60. Liu,X., Lee,C.K., Granek,J.A., Clarke,N.D. and Lieb,J.D. (2006)
Whole-genome comparison of Leu3 binding in vitro and in vivo
reveals the importance of nucleosome occupancy in target site
selection. Genome Res., 16, 1517–1528.

61. Yuan,G.C., Liu,Y.J., Dion,M.F., Slack,M.D., Wu,L.F.,
Altschuler,S.J. and Rando,O.J. (2005) Genome-scale identification
of nucleosome positions in S. cerevisiae. Science, 309, 626–630.

62. Fujita,P.A., Rhead,B., Zweig,A.S., Hinrichs,A.S., Karolchik,D.,
Cline,M.S., Goldman,M., Barber,G.P., Clawson,H., Coelho,A.
et al. (2011) The UCSC Genome Browser database: update 2011.
Nucleic Acids Res., 39, D876–D882.

63. Cliften,P.F., Hillier,L.W., Fulton,L., Graves,T., Miner,T.,
Gish,W.R., Waterston,R.H. and Johnston,M. (2001) Surveying

Saccharomyces genomes to identify functional elements by
comparative DNA sequence analysis. Genome Res., 11,
1175–1186.

64. Gordan,R., Hartemink,A.J. and Bulyk,M.L. (2009) Distinguishing
direct versus indirect transcription factor-DNA interactions.
Genome Res., 19, 2090–2100.

65. Hunter,S., Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A.,
Binns,D., Bork,P., Das,U., Daugherty,L., Duquenne,L. et al.
(2009) InterPro: the integrative protein signature database.
Nucleic Acids Res., 37, D211–D215.

66. Kellis,M., Patterson,N., Endrizzi,M., Birren,B. and Lander,E.S.
(2003) Sequencing and comparison of yeast species to identify
genes and regulatory elements. Nature, 423, 241–254.

67. Floer,M., Wang,X., Prabhu,V., Berrozpe,G., Narayan,S.,
Spagna,D., Alvarez,D., Kendall,J., Krasnitz,A., Stepansky,A.
et al. (2010) A RSC/nucleosome complex determines
chromatin architecture and facilitates activator binding. Cell, 141,
407–418.

Nucleic Acids Research, 2012, Vol. 40, Database issue D179


