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Coronary computed tomography angiography (CCTA) is a comprehensive, non-invasive

and cost-effective imaging assessment approach, which can provide the ability to identify

the characteristics and morphology of high-risk atherosclerotic plaques associated

with acute coronary syndrome (ACS). The development of CCTA and latest advances

in emerging technologies, such as computational fluid dynamics (CFD), have made

it possible not only to identify the morphological characteristics of high-risk plaques

non-invasively, but also to assess the hemodynamic parameters, the environment

surrounding coronaries and so on, which may help to predict the risk of ACS. In this

review, we present howCCTAwas used to characterize the composition andmorphology

of high-risk plaques prone to ACS and the current role of CCTA, including emerging CCTA

technologies, advanced analysis, and characterization techniques in prognosticating the

occurrence of ACS.

Keywords: coronary computed tomography angiography (CCTA), high-risk plaque, acute coronary syndrome

(ACS), computational fluid dynamics–CFD, pericoronary adipose tissue attenuation, coronary artery

INTRODUCTION

Acute coronary syndrome (ACS) may be the first manifestation of coronary artery disease (CAD),
mainly caused by the rupture or erosion of unstable plaques (1–4), which is the leading cause of
death for most of the world’s population. Therefore, it has been a driving force to identify these
high-risk plaques prone to rupture whichmay lead to ACS. Substantial study efforts have confirmed
that virtual histology intravascular ultrasound (IVUS) or optical coherence tomography (OCT) can
be valuable (5).

However, these invasive diagnostic approaches with low positive predictive value and unclear
cost-effectiveness have not been widely used in clinical practice (6). Coronary computed
tomography angiography (CCTA), as a comprehensive non-invasive imaging assessment approach,
which allows for the quantification and characterization of coronary atherosclerosis, can effectively
evaluate the condition of all coronary arteries and the branches in the whole-heart, and has great
clinical application value in identifying adverse plaque characteristics (7, 8). The high accuracy and
high efficiency of CCTA are well-confirmed in previous studies, as well as its higher diagnostic
performance compared with invasive reference standards (7, 9, 10). CCTA has been used to
identify the characteristics and morphology of high-risk atherosclerotic plaques associated with
ACS in previous studies, including positive remodeling, low attenuation, spotty calcification, and
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the napkin-ring sign (8, 10, 11). The development of CCTA and
latest advances in emerging technologies, such as computational
fluid dynamics (CFD), have made it possible to simultaneously
perform the comprehensive evaluation of anatomical severity
degree, lesion geometry, plaque characteristics, quantification
of hemodynamic parameters and detection of vascular
inflammation, which may help to identify the high-risk
plaques and predict the risk of ACS (12).

In this review, we delineate the current understanding
of the pathology of the atherosclerotic plaques associated
with ACS and corresponding manifestations on CCTA in
clinical practice. The application of CCTA in characterizing
the composition and morphology of high-risk plaques
prone to ACS and prognosticating the occurrence of ACS
are further described. Finally, the progress in emerging
CCTA technologies, advanced analysis and characterization
techniques are also reviewed. The new techniques can provide
the comprehensive assessment of high-risk plaques and
surrounding environment, and may provide personalized
risk assessment of future ACS events and further guide
clinical decision-making.

FROM HIGH-RISK PLAQUE
HISTOPATHOLOGY TO CCTA

The detection and characterization of plaque by CCTA is based
on histopathology, therefore, and therefore it is vital to grasp
the histopathological characteristics and evolution process of
high-risk atherosclerotic plaque.

Atherosclerosis, most often observed at the branch points
and low shear stress areas of blood vessels, is a multifactorial
systemic disease and has a chronic and progressive process
(13). About two-thirds of ACS results from the rupture of
atherosclerotic plaque (14, 15). The early manifestations of
atherosclerosis are non-atherosclerotic intimal lesions, which
include intimal thickening and xanthoma. Subsequently, starting
from pathological intimal thickening, they further develop into
increasingly vulnerable and rupture-prone lesions, and progress
into fibroatheroma or even thin cap fibroatheroma, which is
considered to be the precursor of plaque rupture (16). Moreover,
the development of lesions before rupture can be explained
by the histopathological nature of unstable lesions, including
intraplaque hemorrhage, neo-vascularization, plaque healing,
and recurrent rupture (17, 18). Compared with plaque erosion
and stable CAD, intraplaque hemorrhage is the most common
finding in plaque rupture, which includes numerous foam cells
(lipid-laden macrophage), cholesterol clefts, and an expanding
necrotic core, contributing to the vulnerability of plaque (19).

The characteristics of high-risk plaques are related to the
vulnerability of plaques (18). Based on the histopathologic
composition of vulnerable plaques, including thin cap
fibroatheroma, macrophage infiltration, and necrotic core
(20, 21), the corresponding typical manifestations of high-risk
plaques in CCTA are listed as follows: positive remodeling, low
attenuation, spotty calcification, and napkin-ring sign (22–24)
(Figure 1).

FROM HIGH-RISK PLAQUE CCTA
FEATURES TO ACUTE CORONARY
SYNDROME

CCTA Assessment of High-Risk Plaque
Features
The percentage of stenosis is important information on CCTA.
When coronary heart disease cannot be ruled out clinically,
the percentage of stenosis on CCTA can help to rule out
patients in stable condition and with low possibility of coronary
heart disease (25–27). However, the main cause of ACS is
plaque rupture and erosion rather than fixed stenosis. Given
that plaque instability and plaque progression are important
factors leading to subsequent acute coronary events, identifying
high-risk plaque characteristics is necessary (17, 25, 28–31). As
a comprehensive non-invasive imaging assessment approach,
CCTA has been used to identify themorphological characteristics
of high-risk plaques prone to rupture that may lead to
ACS (32–35).

Positive Remodeling
Clinically, coronary artery remodeling refers to be the
compensatory changes of cross-sectional area and structure
of coronary artery in the progression of coronary atherosclerosis.
In pathological findings, the lumen of some coronary arteries
was found to be increased during atherogenesis in autopsy (36).
For in vivo detection of coronary artery, IVUS examination
confirmed that the cross-sectional area of the vessel at the
atherosclerotic site was significantly larger than that at the
proximal reference segment, then the concept of positive
remodeling was proposed which refers to the compensatory
increase of vessel wall when atherosclerotic plaque volume
increases continuously, thus maintaining the effective area in
the lumen (37). While on CT, the outer vessel wall dimension
could be measured. The remodeling index (RI) is calculated
by dividing the vessel cross-sectional area/diameter of the
largest stenosis (or maximum vessel area/diameter) by the
average cross-sectional area/diameter of the proximal and distal
reference segments (7, 38, 39) (Figure 2Aa). At present, positive
remodeling is generally defined as RI ≥ 1.1 in CCTA (8, 40, 41),
while some researchers prefer other cut-off point (42, 43). In
addition, automatic software makes it easier to quantify the
RI (44).

Low Attenuation
The composition of plaques can be reflected by CT attenuation
value, with the highest CT attenuation value for calcification,
followed by fibrous tissue, and the lowest CT value for lipid. Low-
attenuation plaques refer to those with the lowest CT attenuation
value and the most easily ruptured lipid composition (a lipid-
rich necrotic core), which is defined as mean attenuation <30
Hounsfield units (HU) of at least three regions of interest (ROIs)
in general (39, 45) (Figure 2Bb). However, the CT attenuation
value of lipid plaques overlaps with that of fibrous plaques, so
it is difficult to distinguish the plaques only by CT attenuation
value alone. In addition, the CT value of plaques is affected
by many factors, such as contrast agent, plaque volume, slice
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FIGURE 1 | From high-risk plaque histopathology to CCTA. The figure shows the histopathologic components of vulnerable plaques (colored illustrations) and the

corresponding typical CT features of high-risk plaques: (A) positive remodeling, (B) low attenuation, (C) spotty calcification, and (D) napkin-ring sign. CCTA, coronary

computed tomography angiography.

FIGURE 2 | High-risk plaque characteristics on CCTA. (A) Positive remodeling of a non-calcified plaque in the proximal left anterior descending coronary artery. The

two short red lines indicate the vessel diameters of the proximal and distal of the plaque (both 1.0mm), and the long red line indicates the maximum vessel diameter in

the middle of the plaque (1.6mm). The remodeling index is 1.6. Picture a is the cross section of picture (A). (B) A low-attenuation plaque (yellow area) in the mid

segment of the left anterior descending coronary artery with a mean CT attenuation value of 21 HU in the three regions of interest (red circles). Picture b is the original

picture (B). (C) Spotty calcification of a partially calcified plaque surrounded by non-calcified components in the proximal left anterior descending coronary artery with

a diameter <3mm in all directions (yellow arrow). Picture c is the cross section of picture (C). (D) A napkin-ring sign plaque in the proximal right coronary artery. The

yellow star shows the central area of the plaque with a low HU close to the lumen, which is surrounded by the peripheral edge of higher CT attenuation. Picture d is

the multiplanar reconstructed image of picture (D). CCTA, coronary computed tomography angiography; HU, Hounsfield units.

thickness, tube voltage, and so on. Therefore, the current research
mainly relies on special procedures to identify which plaque is
low-attenuation (7, 45).

Spotty Calcification
Spotty calcification is the initial state of calcification. Since
calcification is one of the consequences of local inflammation,
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spotty calcification may indicate active local inflammation.
Mechanical stimulation on fibrous cap caused by spotty
calcification and local inflammation may lead to the plaque with
spotty calcification easy to rupture, thereby accelerating disease
progression (46–48). Therefore, spotty calcification is considered
to be one of the characteristics of high-risk plaques. In CCTA,
spotty calcification is generally manifested as calcification in
plaques with a density of more than 130 HU and a diameter
of <3mm surrounded by non-calcified components (42, 49, 50)
(Figure 2Cc). However, only calcification more than 0.5mm in
diameter is visible on CT, so nearly two-thirds of the calcifications
cannot be recognized on CT (51, 52).

Napkin-Ring Sign
The napkin ring sign is a qualitative plaque feature that can be
defined by the presence of two features on the cross section of
non-calcified plaques: the low-attenuation central area obviously
contacting with the coronary artery lumen and the annular high
attenuation plaque tissue surrounding the central area (7, 34)
(Figure 2Dd). Histologically, the low-density area corresponds
to the large necrotic nucleus, while the “annular” outer area is
associated with fibrous tissue. The necrotic core area in plaque
with the napkin-ring sign may be more than twice that without
napkin ring sign (1.10 vs. 0.46 mm²) (53) corresponding to some
studies’ indications that a necrotic core area >1 mm² when
plaque is prone to rupture (14). The density of the ring is greater
than that of the inner core but <130 HU in CT scans. Currently,
the napkin-ring sign is considered to be a special CT feature of
plaque with a large necrotic core, and it is a reliable marker of
plaque instability (7, 14).

High-Risk Plaque Features on CCTA in
Prediction of Acute Coronary Syndrome
Although the risk of plaque instability increases with the degree
of coronary stenosis, most of the culprit lesions found in ACS
are considered non-obstructive before rupture. Previous studies
indicated that the characteristics of high-risk plaques identified
by CCTA have a prognostic value independent of stenosis and
atherosclerotic burden (41) (see Table 1).

In 2007, Motoyama et al. found that compared with SA
lesions, the frequency of positive remodeling, non-calcified
plaques or low-attenuation plaques (<30 HU) and spotty
calcification on CCTA was higher in ACS culprit lesions,
and these three characteristics could independently predict the
occurrence of ACS. Moreover, among the three plaque features,
positive remodeling has the highest accuracy in ACS prediction
(22). In addition, an increase in the RI of culprit lesions in ACS
patients compared with stable plaques in ACS and stable angina
(SA) patients was also observed in other cross-sectional studies
(11, 43, 54, 55).

In a subsequent study, Ozaki et al. compared the
characteristics of lesions with intact fibrous caps and ruptured
fibrous cap in ACS patients. The results revealed 88% of ruptured
plaques had low-attenuation characteristics (P = 0.01) (56).
These results were consistent with previous studies (43, 54, 55).
Recently, a post-mortem multiple comparison analysis based
on the SCOT-HEART study which included 1,769 patients with

median follow up of 4.7 years identified the predictive effect of
low-attenuation plaques on future cardiovascular events. They
found that 4% was the cut-off value of low-attenuation plaque
load as well as the strongest predictor of myocardial infarction.
The predictive effect was independent of cardiovascular risk
factors, calcification score and percentage of stenosis (45).

In a number of cross-sectional studies, investigators found
that spotty calcification was associated with culprit lesions in ACS
(49–52, 55). Compared with ACS, large calcification (≥3mm)
was more common in SA (22, 43). However, the predictive value
of spotty calcification for plaque rupture is still controversial
due to the huge heterogeneity in results (57). In addition, the
definition and pathophysiological role of spotty calcification were
questioned in studies using other imaging technologies such as
OCT (58).

On CCTA, another manifestation of high-risk plaques is
napkin ring sign. In a prospective study, Otsuka et al. recruited
895 patients and found that the hazard ratio (HR) of ACS in
patients with the napkin ring sign was 5.55 [95% confidence
interval (CI), 2.0–14.70; P < 0.001], which indicated napkin
ring sign was an independent predictor of ACS (34). In a long-
term follow-up study using ACS as one of the primary points,
a strong prognostic implication of napkin-ring sign was also
demonstrated by Feuchtner et al. (59).

Combining the characteristics of high-risk plaques could
better predict the risk of ACS in the future (10, 42). The result of
another study, which included 1,059 patients with follow-up for
27± 10 months also showed that PR or low-attenuation plaques,
especially in combination, was independent predictors of future
ACS events (49). Subsequently, this result was confirmed in a
follow-up study (8). Furthermore, in the post-hoc analysis of
the SCOT-HEART study, the adverse plaque was defined as a
plaque with one or more of the features above observed. The
results revealed that patients with adverse plaques had three
times higher risk of myocardial infarction than patients without
adverse plaques, and the prediction effect was stronger when
combined with the presence of stenosis (23).

Although there remain some controversies regarding the
definition of high-risk plaques on CCTA and the predictive
efficacy of different high-risk plaque characteristics in future ACS
events to date (5, 8, 25, 41, 60–63), the correlation between the
existence of high-risk plaques and the occurrence of future ACS
events is generally obtained.

EMERGING CCTA TECHNOLOGIES AND
ACUTE CORONARY SYNDROME

The emerging technologies have promoted the clinical
application of CCTA. Right now, CCTA can not only identify
the morphological characteristics of high-risk plaques non-
invasively, but also enable the intracoronary and extracoronary
imaging, so as to realize the comprehensive assessment of
high-risk plaques and surrounding environment, which may
provide personalized risk assessment of future ACS events and
further guide clinical decision-making (12).
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TABLE 1 | Prediction of acute coronary syndrome by high-risk plaque CCTA features.

Study author Study method Number of

included patients

Type of CT equipment Analyzed high-risk plaque features

Hoffmann et al. (11) ACS vs. SA 14/9 16-slice Positive remodeling

Motoyama et al. (22) ACS vs. SA 38/33 16-slice Positive remodeling, low-attenuation NCP (<30 HU), and

spotty calcification

Motoyama et al. (49) ACS vs. non-ACS 15/1,044 16/64-slice Positive remodeling and low attenuation

Kitagawa et al. (54) ACS vs. non-ACS 21/80 64-slice NCPs (<40 HU), positive remodeling and spotty calcification

Pflederer et al. (55) ACS vs. SA 55/55 DSCT Positive remodeling, lower attenuation and spotty calcification

Kim et al. (43) ACS vs. SA 35/36 64-slice Spotty calcification, low attenuation (≤60 HU) and positive

remodeling (RI ≥ 1.05)

Ferencik et al. (42) ACS vs. non-ACS 21/13 64-slice Positive remodeling (RI > 1.05), low attenuation (< 90/30HU)

and spotty calcification

Otsuka et al. (34) ACS vs. non-ACS 24/871 64-slice Positive remodeling (RI > 1.1), low attenuation (<30 HU), and

napkin-ring sign

Puchner et al. (10) ACS vs. non-ACS 37/435 64/128/256-slice/DSCT Positive remodeling, low attenuation (<30 HU), napkin-ring

sign and spotty calcification

Motoyama et al. (8) ACS vs. non-ACS 88/3,070 16/64/320-slice Positive remodeling (RI ≥ 1.1), low attenuation (≤30 HU) and

plaque progression

Chang et al. (41) ACS vs. non-ACS 234/234 64-slice/DSCT/Other Positive remodeling (RI ≥ 1.1), low attenuation (<30 HU) and

spotty calcification

Williams et al. (45) MI vs. non-MI 41/1,728 64/320-slice low attenuation (<30 HU)

ACS, acute coronary syndrome; CCTA, coronary computed tomography angiography; SA, stable angina; NCP, non-calcified plaque; HU, Hounsfield units; DSCT, dual-source computed

tomography; RI, remodeling index; MI, myocardial infarction.

Computational Fluid Dynamics and Acute
Coronary Syndrome
Plaque rupture happens when the stress inside the plaque
exceeds its strength (64), while rupture of plaques is a complex
biomechanical process, which is affected by the plaque structure
and composition, external forces, and hemodynamic factors.
Even if the plaque manifests the same vulnerable characteristics,
the risk of rupture is different due to the heterogeneity of
hemodynamic press exerting on the plaque (13, 65). Therefore,
in addition to the assessment of plaque characteristics, accurate
evaluation of plaque hemodynamic parameters is also vital for the
identification of high-risk plaques and the prediction of ACS risk.

Fractional flow reserve (FFR) is the ratio of the pressure at
the distal end of the stenosis to the pressure at the proximal
end of the normal vessel in a state of maximum hyperemic
condition. In recent years, FFR derived from CCTA (FFRCT) has
used advanced fluid dynamics analysis method which combines
the advantages of CCTA and traditional FFR (Figure 3). It is
an image post-processing technology that applies hemodynamics
to CCTA examination, which uses conventional standardized
CCTA image data to evaluate the hemodynamic differences
of coronary artery stenosis (66). Assuming that blood is an
incompressible Newtonian fluid with constant density and
viscosity, the flow and pressure in the coronary model volume
can be calculated by the Navier-Stokes equations (12, 58). Three
prospective clinical trials (67–69) all have verified that FFRCT

can evaluate coronary artery stenosis from both anatomy and
function. In addition, it has avoided the invasive operations
of traditional FFR and the complications such as coronary
artery tearing, bleeding, arrhythmia, myocardial infarction, and

so on (70). This “one-stop” technology can fundamentally
avoid unnecessary coronary angiography and revascularization.
Moreover, it can provide more information for clinical practice
and has the potential to replace other traditional methods
recommended in clinical guidelines. As a long-term gatekeeper
to guide revascularization, FFRCT is a new hot spot in clinical
research (69, 71, 72).

FFRCT, change in FFRCT across the lesion (1FFRCT), wall
shear stress (WSS) and axial plaque stress are important
hemodynamic parameters, which has been reported to be
associated with the occurrence of adverse clinical events (13,
65, 66, 73–75). Lee et al. had demonstrated the role of these
non-invasive hemodynamic parameters in identifying high-
risk plaques leading to ACS by comparing adverse plaque
characteristics and non-invasive hemodynamics parameters
between culprit and non-culprit lesions (76). The adverse
hemodynamics were defined as FFRCT ≤ 0.80, 1FFRCT ≥ 0.06,
WSS ≥ 154.7 dyn/cm ² or axial play stress ≥ 1606.6 dyn/cm².
The results showed that the FFRCT of culprit lesions was lower
compared with non-culprit lesions, which was consistent with
the findings of Ferencik et al. (77). While 1FFRCT, WSS, and
axial plaque stress are higher in culprit lesions, and 1FFRCT

has the highest incremental value. Moreover, Park et al. proved
that 1FFRCT has a powerful value in ACS risk prediction (78),
indicating that lesion-specific hemodynamic parameters have
greater influence on the occurrence of plaque rupture and ACS
than that in vascular level. The value of WSS in identifying
high-risk plaques has also been confirmed (79–81).

Compared with plaques with high-risk anatomical
characteristics or high-risk hemodynamic characteristics,
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plaques with both characteristics have a significantly higher risk
of progressing to ACS (HR: 3.22; 95%CI: 1.86 to 5.55; P < 0.001;
and HR: 11.75; 95%CI: 2.85–48.51; P = 0.001, respectively) (76).
These studies are very valuable because they identified adverse
hemodynamic characteristics before the onset of ACS. On the
basis of anatomic severity and adverse plaque characteristics,
the non-invasive evaluation of hemodynamic parameters was
added, which improved the C-index and reclassification ability
in identifying the high-risk plaques that led to ACS. In the
future, the evaluation of non-invasive hemodynamic parameters
may improve the identification of plaques prone to rupture as
well as the prediction efficiency of high-risk plaques for ACS,
and help to make the risk stratification. Further studies need to
explore and determine the optimal hemodynamic parameters or
combination of different patients and lesion subgroups.

Pericoronary Fat and Acute Coronary
Syndrome
Vascular inflammation can promote the progression of coronary
atherosclerosis and vulnerable plaque rupture, leading to the
occurrence of ACS (64). Epicardial pericoronary adipose tissue
(PCAT) is a special type of adipose tissue. It interacts with the
adjacent vascular wall, regulates the cardiovascular biological
function in a paracrine manner, and changes its phenotype in
response to signals from vascular walls (82–86). Antonopoulos
et al. (84) studied the gene expression, histology and CT
imaging of adipose tissue samples collected during cardiac
surgery, and considered that the CT density of adipose tissue
(usually defined as −190 to −30 HU) reflects the balance of
lipid and water phase, which is a marker of adipocyte size
and lipid content. Inflammatory signals released by inflamed
blood vessels are directly spread to PCAT, which can induce
local lipolysis and inhibit fat formation, and also increase
microvascular permeability, thus promoting perivascular edema.
With the decrease of lipid content and morphology in adipocytes
of PCAT, the lipid phase in adipose tissue decreases and the water
phase increases, resulting in different gradients of adipocytes
around the coronary artery. A further study confirmed that
PCAT CT attenuation measured by CCTA can detect vascular
inflammation confirmed by biopsy, and the fat attenuation index
(FAI) was proposed (84). Pericoronary FAI was used to track
and quantify the composition changes of PCAT by evaluating
the spatial changes of peripheral fat attenuation by CCTA, which
was the average density of adipose tissue in the target area (84)
(Figure 4), reflecting inflammatory burden of target coronary
segment (A higher pericoronary FAI was associated with a higher
inflammatory burden).

Inflammation of adipose tissue around the plaque will directly
affect the formation and stability of coronary plaque. Therefore,
PCAT attenuation measured by CCTA is a promising indicator
for identifying high-risk plaques. In patients with ACS, cases
of PCAT stranding have been reported around culprit lesions
(87). Goeller et al. retrospectively recruited 19 patients with ACS
and 16 patients with stable CAD (88). They found that culprit
lesions were associated with increased FAI around the lesions.
The frequency of pericoronary FAI ≥-68.2 HU of culprit lesions

FIGURE 3 | Comprehensive assessment of the characteristics of high-risk

plaque with CCTA. (A) The lesion in the proximal of the left anterior descending

coronary artery has positive remodeling and low attenuation. (B) The FFRCT

map derived from computational fluid dynamics shows a value of 0.56 distal to

the stenosis, which indicates lesion ischemia. The transition from blue to red

along the left anterior descending coronary artery indicates the decreasing

trend of the FFRCT. (C) The 3D model diagram of the coronary artery, and the

yellow arrow indicates the location of the high-risk plaque. (D) The curve of the

FFRCT value from the proximal to distal of the left anterior descending branch.

CCTA, coronary computed tomography angiography; FFRCT, fractional flow

reserve derived from CCTA.

in ACS is higher, which can be used as a potential cut-off value
to distinguish culprit lesions and non-culprit lesions. Therefore,
combining the characteristics of high-risk plaques with the FAI
around the plaques can be more reliable in identifying the
high-risk plaques leading to ACS. Goeller et al. further studied
the correlation between pericoronary FAI and coronary plaque
progression (89). They found that the increased non-calcified
plaque burden was related to the increased FAI, on the contrary,
the decreased non-calcified plaque burden was related to the
decreased FAI, and FAI ≥ −75 HU around the proximal end
of right coronary artery (RCA) was an independent predictor
of increased load of non-calcified plaques and total plaques.
Therefore, PCAT is helpful to identify patients with high risk of
plaque progression.

Although FAI can detect the changes of PCAT composition
caused by coronary artery inflammation, it can only measure
the average density of the ROI and cannot fully reflect the fine
structural characteristics of the ROI. Inflammation, fibrosis, and
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FIGURE 4 | Quantification of PCAT CT attenuation of low-attenuation plaques in the proximal-mid right coronary artery. (A) The multiplanar reconstructed image of

PCAT measured with the range from −190 to −30 HU. (B) Cross-section images of PCAT measure. (C) Straightened image of PCAT measure. PCAT, pericoronary

adipose tissue; HU, Hounsfield units.

angiogenesis are three main causes of adipose tissue dysfunction
(90). Advanced imaging omics analysis can supplement the
deficiency of FAI, revealing the structural changes of PCAT
that cannot be recognized by the naked eye, so as to carry
out more personalized assessment, and finally provide new
biological insights into the pathogenesis of the disease. Recently,
some researchers have verified the feasibility of PCAT image
transcriptomics (91). They collected adipose tissue biopsies
from 167 patients undergoing CCTA and cardiac surgery. In
addition, they used image transcriptomics to correlate the
gene expression of inflammation, fibrosis, and microvascular
remodeling with the image omics features extracted from
CT images. They proposed a new machine learning derived
biomarker-fat radiomic profile (FRP), which was trained and
validated to discover the PCAT imaging features related to
inflammation, fibrosis, and microvascular remodeling associated
with an increased cardiovascular risk. The FRP turned out to
be affected by a series of factors such as scanning conditions,
and the analysis was time-consuming (91). At present, a new
application is being developed to automatically detect the
coronary artery and pericardium, and may realize pericoronary
space segmentation and feature extraction, so as to calculate FRP
and FAI, and simultaneously correct the technical and anatomical
information. The calculation time can be reduced to 5min.
In conclusion, PCAT imaging analysis is a new field, and its
application in assessing the risk of ACS needs to be explored.

LIMITATIONS AND FUTURE DIRECTIONS
OF CCTA IN ACUTE CORONARY
SYNDROME

Modern CCTA assessment provides a series of advantages
by combining the coronary anatomy, plaque morphology,
atherosclerotic plaque load and coronary blood flow, which

allows for the evaluation of morphological and functional
characteristics of high-risk plaques, and the individual risk
of ACS.

In addition to CCTA, positron emission tomography (PET),
magnetic resonance coronary angiography (MRCA), IVUS, OCT,
and other imaging modalities are also effective methods to assess
coronary atherosclerotic plaques (92–98). Notably, CCTA has
irreplaceable advantages over other examinations. Firstly, CCTA
can quickly provide powerful diagnostic information. Secondly,
compared to coronary angiography, IVUS, and OCT, CCTA
is a relatively non-invasive method with low requirements for
practitioners and high universality of clinical application. In
addition, CCTA has a higher spatial resolution in identifying
high-risk plaque characteristics and more stable image quality
than MRCA and PET. With the development of advanced
hardware technology, such as photon count detectors and
novel contrast agents, potential applications of multi-parameter
techniques may make the plaque characterization more precise.
Moreover, in previous studies, CCTA has been confirmed as a
cost-effective imaging strategy (99–103).

However, there still remain certain drawbacks in CCTA.
Compared with IVUS and OCT (92–98), CCTA has relatively
lower spatial resolution, which hindered the detection of
microscopic structure in histology (9, 104), such as the fibrous
cap thickness or plaque rupture. Further CCTA studies are
needed to investigate pathophysiology of rapid progression of
high-risk coronary plaques leading to ACS, which will offer
clinical utility on the management of patients with CAD.
Recent development of intravascular imaging enables to evaluate
biomechanical plaque rupture stress in vivo, offering prognostic
implication of patients at higher risk of ACS (105, 106). The
combination of intravascular imaging and CCTA may help
development a novel methodology for plaque assessment of
the probability of coronary plaque rupture. In addition, the
beam hardening and related halo caused by the high attenuation
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structure may affect the image quality (107–109), causing
reduced accuracy when identifying heavily calcified lesions.
Moreover, the temporal resolution of CCTA can be affected by
heart cycle as well as respiration, and it is not uncommon to find
the motion artifacts in images of CCTA. Another limitation is
the potential increased radiation exposure (110). While recent
development of CCTA enables to reduce radiation doses by
increasing the use of low-end potential scans, high-pitch scan
protocols, and iterative image reconstruction. The true cardiac-
capable photon-count detector will be likely available soon (111–
113). The emergence of wide-detector technology, dual source
X-ray and high-pitch acquisition platforms has made it possible
for end-diastolic and end-systolic acquisition in a single heartbeat
and with sub-millisievert dose (114–116).

Although the presence of high-risk plaque features has
been widely recognized in the prediction of clinical ACS,
its positive predictive value for ACS is still limited (60).
In previous studies, there was a relatively long-time span
between CCTA and ACS events, so the changes in drug
treatment during this period have considerable heterogeneity.
In addition, the clinical significance of these findings may be
uncertain in the case of patients having received the effective
medication. Therefore, these high-risk plaque characteristics
should be further investigated in cohort studies and prospective
ACS prevention trials. In addition, multicenter randomized
controlled trials are needed to determine whether drug
treatment and/or intervention based on high-risk plaque
CCTA characteristics can improve the clinical outcomes
of patients.

Recently, some technological innovations in image
acquisition, post-processing and other imaging biomarkers
have become more and more important, which may affect
the implementation, interpretation and clinical application
of CCTA. To achieve high image quality should continue to
be emphasized in the future, so as to accurately apply new
methods such as functional assessment and plaque quantification
to CCTA imaging (117). Moreover, artificial intelligence and
machine learning methods may get more attention (118–
120). Currently, emerging technologies such as CCTA-based
identification of high-risk plaque features and FAI have not
been verified in randomized controlled trials. Therefore, in the
future, further studies are needed to prove the clinical benefits
of CCTA application. Furthermore, with the development of
hardware and advanced analysis tools, and true clinical and
cost-effectiveness data, it will continue to popularize in clinical
practice (121).

CONCLUSION

Current findings support more attention and careful
management of patients with high-risk atherosclerotic lesions,
and monitoring plaque progression for individualized treatment.
CCTA has an important significance in research and daily clinical
practice, which allows for not only predicting the occurrence
of ACS by analyzing the characteristics of high-risk plaques
but also improving the predictive value in future ACS through
emerging technologies such as computational fluid dynamics
and evaluation of pericoronary radiation group characteristics
(such as pericoronary FAI). Furthermore, combining multi-
dimensional methods can comprehensively evaluate the anatomy
and biology of the coronary artery, and further integrate CCTA
into clinical practice. However, the identification of high-risk
plaque characteristics based on CCTA and emerging technologies
such as FAI have not been verified in randomized controlled
trials with definite results, which requires verification of the
clinical benefits of CCTA applications in the future.
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