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Profiling of Short-Tandem-Repeat Disease Alleles
in 12,632 Human Whole Genomes

Haibao Tang,1 Ewen F. Kirkness,2 Christoph Lippert,1 William H. Biggs,2 Martin Fabani,2

Ernesto Guzman,2 Smriti Ramakrishnan,1 Victor Lavrenko,1 Boyko Kakaradov,2 Claire Hou,2

Barry Hicks,1 David Heckerman,1 Franz J. Och,1 C. Thomas Caskey,3 J. Craig Venter,2,*
and Amalio Telenti2,*

Short tandemrepeats (STRs) are hyper-mutable sequences in thehumangenome. They are oftenused in forensics andpopulationgenetics

and are also the underlying cause of many genetic diseases. There are challenges associated with accurately determining the length poly-

morphismofSTR loci in thegenomebynext-generationsequencing (NGS). Inparticular, accuratedetectionofpathological STRexpansion

is limited by the sequence read length during whole-genome analysis. We developed TREDPARSE, a software package that incorporates

various cues from read alignment and paired-end distance distribution, as well as a sequence stutter model, in a probabilistic framework

to infer repeat sizes for genetic loci, andweused this software to infer repeat sizes for 30 knowndisease loci. Using simulated data,we show

that TREDPARSE outperforms other available software. We sampled the full genome sequences of 12,632 individuals to an average read

depth of approximately 303 to 403with Illumina HiSeq X.We identified 138 individuals with risk alleles at 15 STR disease loci. We vali-

dated a representative subset of the samples (n ¼ 19) by Sanger and by Oxford Nanopore sequencing. Additionally, we validated the STR

calls against knownallele sizes in a set ofGeT-RMreference cell-linematerials (n¼6). Several STR loci that are entirely guanineor cytosines

(GorC)have insufficient read evidence for inference and therefore couldnot be assayedprecisely byTREDPARSE. TREDPARSE extends the

limit of STR size detection beyond the physical sequence read length. This extension is critical becausemany of the disease risk cutoffs are

close to or beyond the short sequence read length of 100 to 150 bases.
Introduction

Microsatellites, or short tandem repeats (STRs), are

stretches of simple nucleotide repetitions in the genome;

typical repeat units are 1–6 bp in length. Short tandem re-

peats are often polymorphic as a result of strand slippage

during DNA replication and are a common source of rare

genetic diseases.1 The mutation rates of STRs are typically

on the order of �10�4 mutations per generation per site,2

as compared to point mutation rates, which are on the or-

der of �10�8 mutations per generation per site for single-

nucleotide variants (SNVs).3 Because of the higher muta-

tion rate, STRs offer a different level of resolution at which

to study kinship and trait variations among individuals.

STRs are currently used in forensics to identify suspects

from DNA traces left at a crime scene. The amplification

targets the 13 CODIS (Combined DNA Index System)4

STR loci, and the sizes of the amplicons are analyzed by

electroporesis. The repeat number at each loci is inferred

from the size of the amplicon, and a DNA profile is gener-

ated. STRs also have a role in revealing genealogy. For

example, STR loci on the Y chromosomes (Y-STRs) are

used for defining haplotypes that predated the use of

Y-SNPs. The STR data, coupled with public genealogy

databases such as Y-search, can be used for ‘‘surname

inference.’’5

STRs have been shown to be involved in several human

genetic diseases.6 Several neural-degenerative disorders,

known as the ‘‘polyglutamine’’ (PolyQ) diseases, are caused
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by variable stretches of the repeated trinucleotide CAG

within protein-coding exons. Examples of PolyQ diseases

are Huntington disease (HD [MIM: 143100]) and several

forms of spinocerebellar ataxia (SCA). Huntington disease

is caused by an expansion of the CAG repeats in the first

exon of the Huntingtin gene (HTT [MIM: 613004]). Indi-

viduals carrying an expanded allele have motor, cognitive,

and psychological symptoms that typically appear at the

age of 40 years old or older, depending on the number of

repeats.

STRs also occur in non-coding regions and can regulate

gene expression and histone modifications, affecting the

expression of nearby genes in cis to the STR sites.7 Exam-

ples of these repeat disorders include Myotonic dystrophy

(DM1 [MIM: 160900]), caused by CTG repeats; Friedreich

Ataxia (FRDA [MIM: 229300]), caused by GAA repeats;

and Fragile X syndrome (FXS [MIM: 300624]), caused by

CGG repeats. STRs that regulate gene expression (e-STRs)

are mostly enriched in genes responsible for cognitive

functions and autoimmune responses.8

Whole-genome-scale analysis of human STR variation

in the presumably healthy 1000 Genomes Project individ-

uals suggests potential contributions of STRs to more

complex traits.8 Because most of these diseases are in

the form of tri-nucleotide repeats, they are termed tri-

nucleotide-repeat diseases (TREDs). Additionally, STR

mutations are known to be associated with susceptibility

to cancer.9 Microsatellite instability is also a well-known

hypermutability event that results from impaired DNA
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Figure 1. TREDPARSEWorkflow for Calling STR-Related Genetic
Disease
The workflow includes ploidy inference, read realignment, and
integration of various types of evidence in a probabilistic model.
mismatch repair, as often occurs in colorectal and gastric

cancer.10

Most STR loci are not usually included in routine ana-

lyses of the genetics of traits and diseases. Consequently,

STRsmight contribute to the ‘‘missing heritability’’ of com-

plex diseases and traits.11 One critical bottleneck in assay-

ing STR loci by conventional experimental approaches is a

dependency on targeting predefined sites for amplification

and subsequently directly sequencing or measuring the

size of the amplicons. Large-scale experimental assays are

limited because it is difficult to measure multiplex loci

within the same assay. Loci might also fail to amplify if

they are highly expanded or if there are additional variants

on the flanking regions. With whole-genome shotgun

sequencing (WGS), it is now possible to type many STR

loci on the basis of a single comprehensive sequencing

run without the need to design separate genetic assays.

Using WGS, one can use the sequencing reads that map

to STR loci to predict allele lengths. Variant calling software

(for example,12,13) can identify some short indels in reads

that span STRs. Other tools seek to identify STR variants

by specifically examining the sequencing reads that are

piled around a target STR region.14,15 A popular caller,

lobSTR, uses three separate steps: sensing, alignment, and

allelotyping, which explicitly model two possible alleles

(diploid) as well as sequencing errors typically associated

with STRs (because of stutter noise).15 However, lobSTR

only considers reads that fully span an STR locus. Owing

to the short length of Illumina reads (100–150 bases),

this imposes a major limitation on the length of STR alleles

that can be identified. A more recently developed STR

caller, ExpansionHunter, incorporates additional evidence

beyond spanning reads.16

It is also possible to estimate length variation at an STR

by combining information from a prior estimate and the

observed sizes of paired-end sequence fragments spanning

the STR, as in STRViper.14 However, STRViper assumes a

single allele at each site, and this approach is inadequate

for diploid human calls. Using long sequence reads such

as PacBio17 or Oxford Nanopore (ONP)18,19 could poten-

tially help to increase both the precision and the range of

detectable variants.20,21 However, the per-base cost of the

long-read technologies is greater than for short-read tech-

nologies for whole-genome sequencing, limiting its wide-

spread use for typing STRs. Indeed, few human genomes

have been sequenced with PacBio or ONP because of the

prohibitive costs associated with long-read sequencing

platforms.

Despite recent progress,14,15,20 high-throughput geno-

typing of STRs remains limited as a result of low effective

coverage, sequencing stutters, and a lack of robust

models with which to perform both haploid and diploid

calls while distinguishing true variation from technical

artifacts.11 We built TREDPARSE to assess multiple

sequence signatures suggested or implemented by previous

methods.14,15,20 Our testing on both simulated datasets,

and more than 10,000 sequenced full human genomes,22
The American
demonstrates that TREDPARSE yields highly accurate

typing of many disease-related STRs.
Material and Methods

TREDPARSE Overview
The goal of TREDPARSE is to identify each allele length at pre-

defined STR loci by using Illumina WGS sequence data that are

sampled at sufficient depth (discussion on the sequencing depth

is provided in later sections). Given a set of observed reads that

are mapped around a particular STR locus, our goal is to estimate

up to two haplotypes h1 and h2, where 1% h1% h2% hmax, that

represent the number of an individual’s repeat units that maxi-

mize the likelihood in our model.

The TREDPARSE workflow involves a number of key steps—

ploidy inference for a given locus, realignment of reads near the

STR region, classification of the reads into four key types of evi-

dence, and the deployment of a full probabilistic framework

(Figure 1). The input for the workflow is typically a BAM file that

contains mapped WGS reads, and the output is the maximum-

likelihood size estimates, distributrions over the number of re-

peats, and the associated probability of having each of the 30

STR-related diseases. The full probabilistic model is partitioned
Journal of Human Genetics 101, 700–715, November 2, 2017 701



into four major sources of evidence, which are considered

together. Consequently, we seek to find the maximum-likelihood

estimate ch1 ; ch2 for likelihood function Pðobservationsjh1; h2Þ.
Determine Ploidy for a Locus
A list of the 30 TREDs processed by TREDPARSE is provided in

Table 1 (OMIM information for all listed diseases and genes is

included). Fragile-X-associated tremor/ataxia syndrome (FXTAS)

and Fragile X syndrome (FXS) are both associated with the same

gene locus, FMR1; FXTAS occurs in individuals with 55–200

CGG repeats, and FXS occurs in individuals with 200þ repeats.

All STR loci that we type are either autosomal or X-linked. We

model the autosomal STRs as diploid loci, allowing two alleles to

be inferred per locus. For STRs on the X chromosome (X-linked),

we use a simple method to infer the gender for the given sample

by computing the median read depth on selected unique

regions on the Y chromosome. If the median depth on the

Y chromosome is less than 1, we consider the gender to be female

and enforce ploidyðXÞ ¼ 2; ploidyðYÞ ¼ 0; otherwise, we enforce

ploidyðXÞ ¼ 1; ploidyðYÞ ¼ 1, which is consistent with the ex-

pected ploidy number of sex chromosomes of a male individual.
Sequence Realignment for Accurate Repeat Counting in

Reads
We realign the reads that were mapped around the STR region

extracted from the BAM file. The goal for the realignment is to

obtain an accurate count of the occurrences of the repeat motifs.

Most read mapping methods, when aligning reads to a reference,

have a high penalty for long indels. This often results in alignment

misses or misalignments,20 leading to false predictions. The qual-

ity of sequence alignment is thereby crucial in accurately counting

the repeats in STR regions.23 When performing the alignment

across an STR region, one should lower or remove the penalties

from indels from the repeat motif itself in order to improve the

final motif count estimates.

In TREDPARSE, we use dynamic programming with the

Smith-Waterman (SW) algorithm to count the number of re-

peats. We use a ‘‘single-instruction-multiple-data’’ (SIMD) Smith-

Waterman library for fast alignment.24 The scoring scheme

we use in TREDPARSE is as follows: match ¼ 1; mismatch ¼ 5;

gap open ¼ 7; and gap extend ¼ 2; with a slightly higher penalty

for mismatches than the default alignment settings in the BWA

aligner.25 To accommodate potentially longer indels, we built

a series of STR-region references that are embedded with a variable

number of repeat units (‘‘multiple templates’’ method) (Figure S1).

The SW alignment yields a series of alignments with different

scores, which we then compare to determine the repeat size that

corresponds to the highest score (Figure S1B). The ‘‘multiple

templates’’ method implicitly utilizes the periodicity property of

STRs and can be more computationally efficient as a result of the

heavily optimized SIMD SSW library.24

TREDPARSE realigns two types of reads extracted from the BAM

file: (1) reads that are mapped within a read length from the

repeat location and (2) reads that are unmapped but have a

mate mapped within a distance of 1 kb from the repeat location.

The number of repeats is then determined for each read in the

STR region. The number of base pairs required for calling the

existence of a flank is 9 bp and plays an important role in the clas-

sification of various types of reads. During the alignment, each

read is classified as a prefix read (read with flanking sequence to

the left of the repeats) or a suffix read (read with flanking
702 The American Journal of Human Genetics 101, 700–715, Novem
sequence to the right of the repeats) depending on the positions

where the alignments start or end on the read. On the basis of the

alignment information, reads with both prefix and suffix are clas-

sified as spanning reads, and reads with either prefix or suffix but

not both are classified as partial reads. Reads that only consist of

repeats are repeat-only reads. These reads are sorted into a set of

observations that are integrated in a probabilistic model for STR

size inference (Figure 2).
Probabilistic Model for Calling STRs
Parameters in the Model

To fully model the uncertainties of observing a set of reads that are

generated by a certain repeat size, we built a probabilistic model

for predicting the size of STRs on the basis of evidence from

spanning reads, partial reads, repeat-only reads, and spanning

pairs. The spanning pairs are read pairs that cover the STR region,

i.e., they have one end on each side of the repeat. Each read type

has its own characteristics that reflect the unknown repeat size.

We will describe how these components affect STR calling sepa-

rately, with the following notations:

d L: read length in base pairs (bp), e.g., L ¼ 150 for 150 bp

reads

d D: haplotype depth, average sequencing depth divided by

ploidy. For a diploid locus, it is equal to half of the

sequencing depth

d F: number of base pairs required for calling a flanking

sequence. By default, TREDPARSE requires at least 9 bp

when matching flanking sequences, i.e., F ¼ 9

d R: number of repeat units in the reference sequence

d K: repeat unit length, e.g., K ¼ 3 for triplet CAG repeats

d S: observed number of repeat units in a spanning read

d T: observed number of repeat units in a partial read

d U: number of repeat-only reads

d V: observed paired-end distance in bp for a spanning pair

h1, h2: number of repeat units in two alleles, respectively.

Without loss of generality, we assume 1% h1% h2% hmax. For

a haploid locus (such as an X-linked locus in a male), we have

h1 ¼ h2.

To avoid confusion, we have repeat length ¼ repeat units ðRÞ3
repeat unit length ðKÞ. For example, the human reference genome

(hg38) has R ¼ 19 for the Huntington locus, which is a repeat of

CAG (K ¼ 3), so RK ¼ 57 is the total repeat length in base pairs.

Formally, our observations consist of a set of l spanning reads

with repeat units S1:l, m partial reads with repeat units T1:m, U

repeat-only reads, and n spanning pairs with a paired-end distance

in base pairs V1:n. Our goal is to estimate the h1 and h2 that maxi-

mize the likelihood of the set of observations fS1:l; T1:m; U; V1:ng.
Spanning Reads

The spanning reads are the reads that show both left and right

flanking sequences. Inferring the number of repeat units given

spanning reads is straightforward, and the counted size matches

or is close to the true size (Figure 2A). The spanning reads would

show exactly the size of the underlying allele if there were no noise

due to stuttering. The sharp peak becomes ‘‘fuzzier’’ after the stut-

tering noise is incorporated. We use the stuttering model trained

by lobSTR, which considers the periodicity of the repeat as well

as the GC content.15 The stuttering model allows a certain propor-

tion of the spanning reads to show a different size than the true

allele size.
ber 2, 2017



Table 1. A List of Trinucleotide Repeat Diseases (TREDs) That We Compiled for This Study

Abbreviation Title Gene Motif Repeat location (hg38) Inheritance
Risk
Cutoff

Number
of At-Risk
Individuals
(Families)a

DM1 Myotonic dystrophy 1 (MIM: 160900) DMPK (MIM: 605377) CTG chr19: 45770205–45770264 AD 50 15 (9)

DM2 Myotonic dystrophy 2 (MIM: 602668) ZNF9 (MIM: 116955) CCTG chr3: 129172577–129172656 AD 75 0

DRPLA Dentatorubro-pallidoluysian atrophy (MIM: 125370) ATN1 (MIM: 607462) CAG chr12: 6936729–6936773 AD 48 0

FXTAS Fragile X-associated tremor/ataxia syndrome (MIM: 300623) FMR1b (MIM: 309550) CGG chrX: 147912051–147912110 XLD 55 2 (1)

FXS Fragile X syndrome (MIM: 300624) FMR1b (MIM: 309550) CGG chrX: 147912051–147912110 XLD 200 0

FRAXE Mental retardation, FRAXE type (MIM: 309548) FMR2 (MIM: 300806) GCC chrX: 148500638–148500682 XLR 200 0

FRDA Friedreich ataxia (MIM: 229300) FXN (MIM: 606829) GAA chr9: 69037287–69037304 AR 66 0

HD Huntington disease (MIM: 143100) HTT (MIM: 613004) CAG chr4: 3074877–3074933 AD 40 5 (4)

HDL Huntington disease-like 2 (MIM: 606438) JPH3 (MIM: 605268) CTG chr16: 87604288–87604329 AD 40 0

ULD Unverricht-Lundborg Disease (MIM: 254800) CSTB (MIM: 601145) CCCCGCCCCGCG chr21: 43776444–43776479 AR 30 0

OPMD Oculopharyngeal muscular dystrophy (MIM: 164300) PABPN1 (MIM: 602279) GCN chr14: 23321473–23321502 AD 12 8 (7)

SBMA Spinal and bulbar muscular atrophy (MIM: 313200) AR (MIM: 313700) CAG chrX: 67545318–67545383 XLR 36 1 (1)

SCA1 Spinocerebellar ataxia 1 (MIM: 164400) ATXN1 (MIM: 601556) CAG chr6: 16327636–16327722 AD 39 26 (23)

SCA2 Spinocerebellar ataxia 2 (MIM: 183090) ATXN2 (MIM: 601517) CAG chr12: 111598951–111599019 AD 33 4 (4)

SCA3 Spinocerebellar ataxia 3 (MIM: 109150) ATXN3 (MIM: 607047) CAG chr14: 92071011–92071034 AD 60 0

SCA6 Spinocerebellar ataxia 6 (MIM: 183086) CACNA1A (MIM: 601011) CAG chr19: 13207859–13207897 AD 20 2 (2)

SCA7 Spinocerebellar ataxia 7 (MIM: 164500) ATXN7 (MIM: 607640) CAG chr3: 63912686–63912715 AD 34 0

SCA8 Spinocerebellar ataxia 8 (MIM: 603680) ATXN8OS (MIM: 603680) CTG/CAG chr13: 70139384–70139428 AD 80 3 (3)

SCA10 Spinocerebellar ataxia 10 (MIM: 603516) ATXN10 (MIM: 611150) ATTCT chr22: 45795355–45795424 AD 800 0

SCA12 Spinocerebellar ataxia 12 (MIM: 604326) PPP2R2B (MIM: 604325) CAG chr5: 146878729–146878758 AD 51 0

SCA17 Spinocerebellar ataxia 17 (MIM: 607136) TBP (MIM: 600075) CAG chr6: 170561908–170562021 AD 43 52 (48)

SCA36 Spinocerebellar ataxia 36 (MIM: 614153) NOP56 (MIM: 614154) GGCCTG chr20: 2652734–2652757 AD 650 0

EIEE1 Epileptic encephalopathy, early infantile, 1 (MIM: 308350) ARX (MIM: 300382) GCG chrX: 25013662–25013691 XLR 20 0

BPES Blepharophimosis, epicanthus inversus, and ptosis (MIM: 110100) FOXL2 (MIM: 605597) GCN chr3: 138946021–138946062 AD 19 1 (1)

CCD Cleidocranial dysplasia (MIM: 119600) RUNX2 (MIM: 600211) GCN chr6: 45422751–45422801 AD 27 5 (5)

CCHS Central hypoventilation syndrome (MIM: 209880) PHOX2B (MIM: 603851) GCN chr4: 41745972–41746031 AD 24 11 (11)

HFG Hand-foot-uterus syndrome (MIM: 140000) HOXA13 (MIM: 142959) GCN chr7: 27199925–27199966 AD 22 2 (2)

(Continued on next page)
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To account for the stutter noise, we use the following model,

similar to the stutter model used in lobSTR.15 With probability

pðKÞ, the read is a product of stutter noise, which is dependent

on the repeat unit length K and also the GC content of the

locus. If a read is a product of stutter, then with probability

Poissonðs; lKÞ, the noisy read deviates by s units from the original

allele, where Poissonðs; lKÞ is a Poisson distribution with mean

lK. Deviation can be either positive or negative with equal proba-

bility pðKÞ=2 . Parameters pðKÞ and lK were previously trained

by lobSTR15 for a range of values K. Hence, the probability of

generating a spanning read with S observed repeat units in the

STR region from a hemizygous locus with an STR with h repeat

units is

PSðS j hÞ ¼
8<
:

1� pðKÞ; if S ¼ h

pðKÞ
2

Poissonð j S� h j � 1Þ; lKÞ; otherwise
:

For a diploid STR locus with h1 and h2 repeat units, we then have

a mixed distribution with mixing rate pS:

pS ¼ sðh1Þ
sðh1Þ þ sðh2Þ

where

sðhÞ ¼
�
L� 2F � hK; if hK < L� 2F

0; otherwise

Note that there may not be any spanning reads expected when

sðh1Þ ¼ sðh2Þ ¼ 0 if both allele lengths are longer than L � 2F. In

that case, we set pS ¼ 0:5. We then have the mixing distribution

PSðS j h1; h2Þ ¼ pSPSðS j h1Þ þ ð1 � pSÞPSðS j h2Þ:

Partial Reads

The partial reads do not align all the way across the repeat region

and contain only one flanking sequence. The partial reads

have a probability mass function of discrete uniform distribution

between a single repeat unit and the true repeat length

(Figure 2B). Therefore, unlike the full spanning reads, which

show exactly or close to (in case of stuttering error) the number

of repeat units of the underlying allele, the partial reads only

show a lower bound for the number of repeat units of the under-

lying allele. The inference task is to infer the maximum number

of repeats, given observed allele sizes from partial reads. The

inference is analogous to the ‘‘German tank problem’’26 but

with replacement, under the condition that the allele cannot

exceed the read length minus the length of the flanking

sequence.

The probability of generating a partial read with T observed

repeat units in the STR region from a hemizygous locus with an

STR with h repeat units is

PTðT j hÞ ¼ Uniformð0; hÞ:

For a diploid STR locus with h1 and h2 repeat units, we have a

mixed distribution with mixing rate pT :

pT ¼ tðh1Þ
tðh1Þ þ tðh2Þ

where

tðhÞ ¼
�
L� F; if hK > L� F

hK; otherwise
:
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Figure 2. Integrated Probabilistic Model for Calling STRs with Four Types of Evidence
(A) Model based on spanning reads.
(B) Model based on partial reads.
(C) Model based on repeat-only reads.
(D) Model based on paired-end reads.
(E) Predictive power for each of the four evidence types on the range of STR repeat lengths. Darker shades of green represent higher con-
fidence of inference.
We then have the mixing distribution

PT ðT j h1; h2Þ ¼ pTPTðT j h1Þ þ ð1 � pTÞPTðT j h2Þ:

Repeat-Only Reads

Reads that consist almost entirely of repeat units are repeat-only

reads. Each repeat-only read often has a relatively unique mate

that allows it to be mapped (Figure 2C). Repeat-only reads are

possible only when repeat length is the same or longer than a

read length. Assuming each read is equally likely to start anywhere

in the genome, the expected number of repeat-only reads that fall

in a certain region follows a Poisson distribution:

PU ðU j h1; h2Þ ¼ PoissonðU ; uðh1Þ þ uðh2ÞÞ

where

uðhÞ ¼
8<
:

DðhK � LÞ
L

;

0;

if hK > L
otherwise

:
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These repeat-only reads are typically mapped in the STR region

because they have a read pair that mapped to a flanking site.

The repeat-only reads are critical because they allow the inference

of repeats longer than the read length.

Paired-End Reads

Additional information can be gathered from the group of paire-

end reads (sometimes called ‘‘mates’’) that span the STR region.

The observed distance between the two mate reads typically

follows a distribution pðVÞ for a specific sequencing library.

This distribution can be inferred from a compilation of the dis-

tances between all (or a representative subset of) the paired-

end reads across the genome. For alleles without indels in the

STR region, the distribution of the observed distances should

be distributed identically to pðVÞ.27 If there is a homozygous

insertion or deletion of repeat units in the STR region, the

distribution of pðVÞ would shift to pðV þ RK � hKÞ, where

R is the number of repeats in the reference and h is the number

of repeats in the sampled allele, such that h˛fh1; h2g. Expanded
Journal of Human Genetics 101, 700–715, November 2, 2017 705



repeats (or longer h), when mapped onto the reference, show

a compression of paired-end distances; conversely, shortened

repeats (or shorter h) show an expansion of paired-end distances.

The shift ðR � hÞK between the two distributions—pðVÞ and

pðV þ RK � hKÞ —should indicate the difference in repeat

length relative to the reference genome (Figure 2D). Then we have

PV ðV j hÞ ¼
�
C, pðV þ RK � hKÞ; if hK < V þ RK

0; otherwise
;

where C is a normalizing constant that ensures that all PV ðV jhÞ
sum to 1. Like repeat-only reads, the paired-end distance is also

useful for extending the prediction of allele size beyond the length

of a typical sequencing read because the paired-end distance is

often longer than the read length. For a diploid STR locus with

h1 and h2 repeat units, we have a mixed distribution with mixing

rate pV :

pV ¼ vðh1Þ
vðh1Þ þ vðh2Þ;

where

vðhÞ ¼ 1--
Xh
i¼1

pðiKÞ:

We then have the mixing distribution,

PVðV j h1; h2Þ ¼ pVPV ðV j h1Þ þ ð1 � pV ÞPV ðV j h2Þ:

The paired-end mode is only enabled when there are at least five

spanning pairs across the STR locus. With too few observations,

the variance of our maximum-likelihood estimates based on span-

ning pairs alone can be substantial.

Integrated Model

Each of the four types of read evidence has its own range of predic-

tive power across the range of likely STR repeat length, as limited

by either read length or paired-end distance of the sequencing

library (Figure 2E). We combine data from spanning reads, partial

reads, repeat-only reads, and spanning pairs under the assumption

that each type of evidence is independent given the true repeat

numbers:

logPðfS1:l; T1:m; U; V1:ng jh1; h2Þ ¼
X
i¼1:l

logPSðSi jh1; h2Þ

þ
X
i¼1:m

logPTðTi jh1; h2Þ

þ logPU ðU jh1; h2Þ
þ

X
i¼1:n

logPV ðVi jh1; h2Þ

The maximum-likelihood estimates ðch1 ; ch2Þ are then obtained

from the model through a grid search. Examples of typical likeli-

hood surface can be seen in (Figure 3). In TREDPARSE, we set

hmax ¼ 300, which is the detection limit of all of our evidence

types, so the full grid search is at most 300 for haploid and

300 3 300 for diploid loci.
Confidence of STR Calls and Calculation of PðdiseaseÞ
Given the Inheritance Model
We combine all the evidence in the integratedmodel and compute

the point estimates ðch1 ; ch2Þ on the basis of maximum likelihood.

We first compute the marginal distribution of Pðh1 j observationsÞ
and Pðh2 j observationsÞ. From these marginal distributions,

we can compute the 95% credible interval (95% CI) for ch1 and
706 The American Journal of Human Genetics 101, 700–715, Novem
ch2 (Figure 3). The 100ð1� aÞ%CI of a distribution with parameter

q is defined as

CI100ð1�aÞ% ¼ ðl; uÞ : ðl%q% uÞ ¼ a

The 95% CIs are not unique on a posterior distribution. In

TREDPARSE, we use the 95% CI where there is equal ð1 � aÞ=
2 ¼ 2:5% mass on each tail. Credible intervals for the estimates are

typically much wider for larger repeat sizes and are tighter with

datawithhigh sequencingdepthaccording toour simulationresults.

Additionally, we compute the probability that a sample is path-

ological (PP), given dominant and recessive inheritance models

under the assumption of complete penetrance and a point cutoff

of size c. We have

PP ¼

8>>>>><
>>>>>:

1

Z

Xhmax

h1¼c

Pðobservations jh1; h2Þ; if recessive inheritance

1

Z

Xhmax

h2¼c

Pðobservations jh1; h2Þ; if dominant inheritance

;

where Z is a normalizing constant. The inheritance model and

risk cutoff size c (Table 1) are both important in the calculation

of PP. Indeed, these models are idealized and are subject to valida-

tion in future studies for actual diseases. Recessive inheritance re-

quires the shorter allele h1 to be greater than or equal to the risk

cutoff size c, whereas dominant inheritance requires the longer

allele h2 to be greater than or equal to c. For X-linked recessive

inheritance, only one allele needs to be greater than or equal

to c in order for pathology to be shown. Both the 95% CI and

the pathological probability PP reflect the confidence of repeat-

size inference, with PP being more pertinent for a clinical state-

ment. In this study, we report all cases as ‘‘at risk’’ if PP > 50%.

Simulation
We simulated read data from individuals with varying lengths of

the Huntington disease (HD) locus. We performed the simulation

by using EAGLE, which is designed to simulate the behavior of

sequencing instruments by introducing various errors that are

characteristic of the Illumina sequencing platform. We simulated

with 23 150 bp reads with a paired-end distance of 500 bp (and

a standard deviation of 50 bp), at varying levels of sequencing

depth (between 53 and 803). EAGLE also uses empirical data to

determine variable sequence depth according to the variation of

the GC content along the template sequences.28 We have made

these simulated read data publicly available (see Web Resources).

After running EAGLE, we mapped the simulated reads onto

the human reference genome hg38 by using the BWA aligner25

and then ran TREDPARSE and popular variant calling soft-

wares (Manta,29 Isaac,12 GATK,13 lobSTR,15 and TREDPARSE) and

comparing the inferred lengthswith the true ones. For theHDlocus,

the pathological threshold (full-penetrance allele) is established at

40 CAGs,30 so there was significant interest in identifying STR

expansions that are greater than or equal to 40. As a limitation of

the current study, we have not simulated the STR stutter noise.

Genomes
The analysis used deep-sequence genome data of 12,623 individ-

uals (8,784 unrelated) as described in, and extended from, Telenti

et al.22 Participants were representative of major human popula-

tions and ancestries: 7,602 European, 1,428 African, 315 Middle

Eastern, 300 central/south Asian, 300 east Asian, 149 admixed

American, 2,243 admixed, and 490 other. The relatedness of
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Figure 3. Examples of Posterior Probability Density Function Based on the Integrated Model for Calling STRs
(A) Simulated diploid with h1 ¼ 20; h2 ¼ 140; there are no uncertainties around h1 and some uncertainties around h2.
(B) Simulated diploid with h1 ¼ 70; h2 ¼ 140, showing a slight negative dependence between h1 and h2.
individuals was established as previously reported.22 The study

population was not ascertained for a specific health status, and

specifically, there were no known diagnoses of STR diseases. New

and existing institutional review board (IRB)-approved consent

forms for participation in research and collection of biological

specimens and other data used in this publication were reviewed

and confirmed to be appropriate for use.

Experimental Validation with Other Sequencing

Technologies
The conventional standard for assay-to-size STR loci is PCR

amplification. Consequently, we validated our calls independently

by using Sanger sequencing at a CLIA-certified lab (Elim Bio-

pharmaceuticals). We observed that some samples failed to effi-
The American
ciently amplify both alleles during Sanger sequencing. For those

samples, we used Oxford Nanopore long-read (1D) sequencing

technology on the MinION device. To generate sequencing

libraries for the MinION, we followed the protocol provided by

Oxford Nanopore for generating 1D libraries. In brief, 50 ng of

genomic DNA was amplified, barcoded, and ligated to adapters.

The library was then loaded onto an Oxford Nanopore R9.4

SpotON Flow Cell and sequenced for 5 hr.

Implementation and Interactive Server
TREDPARSE outputs both VCF and JSON-formatted files that show

the final calls as well as the evidence and the confidence for the

calls. Two recent versions of the human reference genome are

currently supported: hg19 and hg38. Scripts for compiling results
Journal of Human Genetics 101, 700–715, November 2, 2017 707



from multiple samples and visualizations of posterior probability

density (similar to Figure 3) are provided as part of the software.

In addition, the posterior probability of the genotype calls is avail-

able as part of the output and could be used as confidence assess-

ment of the final calls.

We have also developed an interactive server that allows easier

access for non-technical users. A docker image that contains a

copy of TREDPARSE is run on the backend to handle all the com-

putations. There are two input fields for the interactive server: the

address to the BAM file and the STR locus identifier as one of the

loci in our list (Table 1). The BAM file needs to be accessible by

FTP, HTTP, or Amazon S3 storage. TREDPARSE requires both the

BAM file and the BAM index file to be present for fast access.

The STR server generates a rich set of information, useful for

visual proofing and validation of the STR calls. These contain

detailed information about the STR; such information includes

call results, probability density of the risk allele estimates, and

observations affecting the final calls, including various read-based

evidence, detailed information about each STR locus, and allele

frequency distribution within HLI samples (Figure S2).
Results

Accuracy of TREDPARSE on Simulated Data

Simulationwith synthetic data shows that TREDPARSE out-

performs many other callers of short tandem repeats. We

first compared TREDPARSE with commonly used general-

purpose variant callers, including Manta, Isaac, and GATK.

Not surprisingly, theyperformpoorlyon the simulateddata-

sets (Figure S3). These variant callers can detect small indels,

but in most cases they fail to recover the length of long al-

leles (i.e., large indels). Additionally, the indels could occur

at different locations within the repeat tract; it is not suffi-

cient to construct locus-based callers that inspect indels

collectively, making direct calling of the repeat size difficult

without further post-processing. On the basis of these com-

parisons, we found that most tools tested thus far were not

effective at quantifying the number of repeats.

As a tool that was specifically designed for STR variant

calling, lobSTR performed better than other variant callers

at short allele size ranges, up to 40 CAGs, which is close to

the risk threshold for HD30 but below the risk threshold of

12 other STR diseases (Table 1). We found that TREDPARSE

out-performed lobSTR at longer allele lengths, typically

above risk threshold, which were more critical for assessing

disease status, in either a haploid setting or a diploid

setting. Because the HD risk threshold (40 CAGs ¼
120 bp) is very close to a read length, lobSTR was unable

to correctly predict risk alleles, whereas TREDPARSE calls

were close to the truth and identified all long HD alleles

as risk alleles.

The TREDPARSE caller extended the calling of the size of

the allele beyond a typical read length to the extent of the

paired-end distance. Most truth values fell within the 95%

credible intervals (Figure 4B). For longer allele sizes, the

calls did not preciselymatch the true values but were none-

theless close. The main source of errors was mostly evi-

dence that was based on repeat-only reads and paired-
708 The American Journal of Human Genetics 101, 700–715, Novem
end distances, which have much more variation than full

spanning reads (Figure S4).

Most importantly, TREDPARSE extends the limit of STR

length detection well beyond the physical read length.

This extension is critical in many cases because several of

the disease risk cutoffs are close to or beyond the read

length—150 bp for mainstream Illumina sequencers. In

the simulations, we could accurately predict the alleles

that contain up to �160 triplet repeats (�500 bp), which

is close to the simulated paired-end distance. For repeats

that are longer than the paired-end distance, the predicted

lengths of the repeats remain close to the paired-end dis-

tance (Figure 4). When the repeat length exceeds the

paired-end distance, pairs of repeat-only reads become

available, but they often fail to get placed inside the repeat

locus by the aligner, leading to a signal loss that cannot be

recovered. On the basis of this limit, it is possible to detect

risk alleles for most loci listed in Table 1, with the excep-

tion of FXS, FRAXE, SCA10, and SCA36, which exceed

the paired-end distance in Illumina sequencing libraries.

Power of Each Type of Supporting Evidence to Predict

STRs of Varying Length

Each of the four types of evidence has its own range of pre-

dictive power across the spectrum of likely STR repeat

length. Overall, the maximum repeat length that each

type of evidence can identify is increasing from spanning

reads, partial reads, and paired-end reads to repeat-only

reads (Figure 2E). The repeat-only reads often cover the

longest range in a typical Illumina sequencing experiment

and are bounded by the paired-end distance.

In an effort to understand the contribution of each type

of evidence to the final TREDPARSE STR call, we reran

the simulation experiments by using just a single type of

evidence, for example, using only spanning reads and

ignoring all other evidence. This experiment permited us

to isolate the contribution of each type of evidence. As ex-

pected, the predictive power of spanning reads and partial

reads was roughly limited by the read length, whereas evi-

dence such as paired-end reads and repeat-only reads were

both limited by roughly the paired distance (Figure 2E,

Figure S4). Notably, no evidence covered the complete

range of STR repeat sizes, so it was important to make use

of all four types of evidence for more accurate estimates.

Sequencing depth strongly influenced the accuracy of

the repeat-number inference. In the simulated diploids

with 53haploid depth (or 103 diploid depth), TREDPARSE

inferences became highly inaccurate in comparison to in-

ferences in simulated diploids with 203 haploid depth

and showed wide credible intervals for most of the repeat

sizes above the risk cutoff of 40CAGs in the caseofHunting-

tondisease (Figure 4C). Becausemost of the public genomes

from the 1000 Genomes Project are of low coverage of

mostly diploid depth of less than 103 (mean depth ¼
7.43),31 we could not reliably call STR allele sizes in the

1000 Genomes Project datasets. At haploid depth of 803,

the credible intervals of the estimates becomemuch smaller
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Figure 4. Simulations with Synthetic Datasets of Implanted STR Alleles at the Huntington Locus
(A) Performance comparison of TREDPARSE and lobSTR on a simulated haploid with one single allele with h number of CAGs, where h
varies from 1 to 300.
(B) Performance comparison of TREDPARSE and lobSTR on a simulated diploid with two alleles, one allele fixed with 20 CAGs and
another allele with h units of CAGs.
(C) Performance of TREDPARSE on a simulated diploid with a low haploid depth of 53.
(D) Performance of TREDPARSE on a simulated diploid with a high haploid depth of 803. Shaded regions represent a 95% credible

interval for TREDPARSE estimates of h. RMSD represents the root-mean-square deviation, calculated as RMSD ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðhi � bhiÞ2

q
,

where N ¼ 150.
(Figure 4D), but high-coverage sequencing data are expen-

sive to generate.

In case of the extremely long repeats, where repeats are

longer than the paired-end distance, many of the repeat-

only reads were unmapped, so the number of repeat-only
The American
reads would be underestimated. It was not reasonable to

use those reads from the ‘‘unmapped’’ portion of the

genome because they might have been derived from other

alternative loci in the genome with similar repeat patterns

andmight not have been distinct enough to be assigned to
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12,632 human whole genome sequenced by HLI at 30-40

TREDPARSE identified 138 at-risk individuals in 15 disease loci

Validation set (n = 19) in 7 disease loci

Confirmation failed by Sanger
(n = 4)

Confirmed by Sanger
(n = 15)

Confirmed by Oxford Nanopore
(n = 4)

4 HD    1 SBMA    3 SCA1    1 SCA2 2 SCA8    6 SCA17    1 DM1

5 HD    1 SBMA    26 SCA1    4 SCA2    3 SCA8    52 SCA17    15 DM1
2 FXTAS    8 OPMD    2 SCA6    1 BPES    5 CCD    11 CCHS    2 HFG    1 SD5

Figure 5. Testing and Validation of
TREDPARSE on 12,632 Whole-Genome
Sequences
We ran TREDPARSE on sequence data from
12,632 individuals and identified 138 indi-
viduals with risk alleles at a total of 15 dis-
ease loci. A subset of the inferred at-risk
samples were validated by complementary
sequencing experiments.
the right location. For example, an unmapped read that

consists entirely of CAGs might come from an expanded

HD locus, SCA1, SCA2, etc., that shares the same repeat

pattern (Table 1). Although they might reflect an expan-

sion somewhere in the genome, those reads could not be

confidently assigned to the HD locus and counted toward

HD repeats, leading to a loss of required signals fromwhich

to make accurate calls at extremely long repeat lengths.

Dependencies between h1 and h2

We simulated various combinations of h1 and h2 and stud-

ied the joint posterior probability distributions that our

model generated. In most simulated cases, particularly

when h1 was relatively short, there was little dependence

between h1 and h2 so that the joint distribution could

well be represented by two marginal distributions over h1

and h2 (Figure 3). However, because both alleles contrib-

uted to the repeat-only reads, which was the only signal

left to be identified (Figure 2E), when both h1 and h2

were longer than the read length our model could not

accurately distribute the fixed signal among the two alleles,

so there appeared to be a strong negative correlation be-

tween h1 and h2 (Figure 3B). Of course, cases where both

h1 and h2 are expanded pathological alleles are rare.

STRs in 12,632 Genomes

We ran TREDPARSE on sequence data from 12,632 individ-

uals (expanded dataset from Telenti et al.22) and identified

a total of 138 individuals with risk alleles at a total of 15

disease loci (Figure 5), as well as 54 individuals inferred

to be ‘‘carriers’’ who are capable of passing a recessive risk
710 The American Journal of Human Genetics 101, 700–715, November 2, 2017
allele on to their offspring (Table S1).

Specifically, we inferred 15 DM1,

2 FXTAS, 5 HD, 8 OPMD, 1 SBMA, 26

SCA1, 4 SCA2, 2 SCA6, 3 SCA8, 52

SCA17, 1 BPES, 5 CCD, 11 CCHS,

2 HFG, and 1 SD5 at-risk individuals

(Table 1). Various types of supporting

read evidences for the inferred risk in-

dividuals are included in Table S2.

To understand the strength of corre-

lation of each signal to the inferred

allele size, we measured the evidence

available after analysis of WGS data

from these individuals, who were

sequenced at �30–403 with Illumina

instruments. The evidence per sample
is correlated to the sequencing coverage of each individual

and the length of the inferred longer STR allele. All correla-

tions increased linearly with the sample mean coverage.

However, the increase was more pronounced for paired-

end reads than for partial reads and spanning reads

(Figure S5). As expected, long STR repeat alleles had fewer

full spanning reads and more partial reads. The amount

of paired-end evidence was largely unaffected by the repeat

length (Figure S5). These observations on read depth versus

allele size support our probabilistic model.

Validation with GeT-RM Cell-Line Reference Materials

The Genetic Testing Reference Materials Coordination

Program (GeT-RM) has characterized reference materials

for quality control, test development, and validation.

GeT-RM provides cell lines or DNA that can be used as

reference materials for genotyping inherited diseases,

including myotonic dystrophy, fragile X syndrome, and

Huntington disease.32We sequenced six cell lines obtained

from GeT-RM; these included two DM1, two FXTAS/FXS,

and two HD cell lines with known true allele sizes

confirmed by several different labs (Table S3).

TREDPARSE was able to predict risk alleles for five out of

the six cell lines. Sample NA20236, which is known to

have allele sizes of 31/53 in the FXTAS locus, was missed

by TREDPARSE; sample NA05164, which is known to

have allele sizes of 21/340 in the DM1 locus, has the size

of the long allele under-predicted by TREDPARSE. The pre-

dictions wih regard to the four other cell lines exactly or

closely match the truth (Table S3). In contrast, lobSTR

failed to predict long allelels in all cases and failed to



generate any predictions for the two FXTAS cell lines.

ExpansionHunter predictions were close to the truth on

the HD cases but failed on both the two DM1 and the

FXTAS cell lines, where TREDPARSE yielded predictions

much closer to the truth (Table S3).

Validation with Sanger and Oxford Nanopore

Sequencing

Weselected a subset (n¼ 19) of 138 individualswhowere re-

ported by TREDPARSE to contain a risk allele (Figure 5). The

cases for which we have confirmed that there was sufficient

DNA available were subjected to CLIA Sanger sequencing

(Table S4). Out of 19 cases, 11 had identical lengths for

Sanger and TREDPARSE, four did not match exactly but

were called ‘‘at risk’’ by both Sanger and TREDPARSE, and

four were discordant (an example is given in Figure S6).

In all four discordant cases, Sanger sequencing identified

only the shorter allele, suggesting that these cases only

contain shorter allele(s). We hypothesized that the amplifi-

cation step makes shorter alleles more likely to be repre-

sented than longer alleles, suggesting the possibility of

‘‘allelic dropout’’ in Sanger-sequencing reactions.33

To resolve the discrepancy between TREDPARSE predic-

tions and Sanger validation results, we ran Oxford Nano-

pore sequencing (ONP)18 on samples that failed Sanger

validation (Figure S6C). Oxford Nanopore sequencing

yielded an approximation of the repeat size but nonethe-

less qualitatively validated the existence of long alleles

for validation purposes (Table S4). Overall, TREDPARSE

was validated in all 19 cases. In contrast, only four of the

19 validated cases were called with lobSTR, and long alleles

were missing from all inferences. The recently developed

STR caller, ExpansionHunter,16 predicted expanded alleles

in 17 of the 19 cases but had a tendency to overestimate

the length of the expanded allele in five of the 17 predicted

cases (Table S4).

Transmission of STR Alleles in Pedigrees

Even though the inferences of STR alleleswere independent

across individualswhenweusedTREDPARSE,we confirmed

that the pathological alleles were consistently calledwithin

pedigrees. Among the 12,623 individuals, we have a total of

2,257 families with at least two sequencedmembers, as well

as 6,527 single individuals with no related family members

in the dataset. In total, there are 8,784 families and single

individuals who are unrelated to one another and could

be viewed as independent. Some families contain more

than one individual inferred by TREDPARSE to be ‘‘at risk’’

at a given locus (Table 1).

We describe three pedigrees here. The first family had a

father-to-daughter transmission of a risk allele for the Hun-

tington locus, which has 41 CAG repeats in the father and

40 repeats in the daughter (Figure 6A). These alleles have

been experimentally validated through Sanger sequencing

(Table S3). The second family showed a putative DM1 risk

allele transmitted from mother to both kids, whereas the

father was unaffected (Figure 6B). Although the exact size
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estimates for the putative risk allele were different as

a result of uncertainties associated with repeat alleles

exceeding the read length, the 95% CIs of these estimates

were overlapping. The third family showed the putative

SCA17 risk allele transmitted from father to both kids,

whereas the mother was unaffected (Figure 6C). None of

the ‘‘at risk’’ individuals in these families had reported

phenotypes associated with symptoms of HD, DM1, or

SCA17, although several individuals could be within the

range of age of onset for these disorders.

We carried out an independent accuracy analysis, based

on the family information, by assessing the rate of Mende-

lian errors (MEs). Mendelian errors refer to the cases where

the child genotype cannot be explained by Mendelian

inheritance patterns given the genotypes of both parents.

It is only possible to determine whether an allele was trans-

mitted if the allele size exactly matches that of some allele

in the parents.

Within the HLI samples, we have compiled 802 trio fam-

ilies (mom-dad-kid) and compared the STR calls within the

family. The full set of data, including all calls and support-

ing read counts for mom, dad, and kid, are included for

each of the 30 loci (Table S5). The median ME rate across

the 30 STR loci is 4.25% (Figure S7). A total of 23 STR

loci has a ME rate lower than 10%, whereas seven loci,

including FXTAS/FXS, FRAXE, ALS, SCA7, CCHS, SCA17,

and EIEE1, have a ME rate of more than 10%, and tend

to yield inexact estimates (Table 2).

For FXTAS/FXS and FRAXE, the ME rate is extremely

high because of substantial read dropout; often no full

spanning reads and only partial reads are available, and

these only give lower bounds of the size estimates

(Figure S8). The low level of read support could be due to

the GC content bias in Illumina sequencing. Indeed, out

of the five STR loci that are entirely G or C, four loci

showed a ME rate of more than 10%.

These ME estimates are much higher than the ME rate

of <1% reported in Gymrek et al.,15 where the rate was

based on a single trio but an averaged error rate was

computed over all STR sites across the entire genome. In

addition to the several high GC loci that had substantial

read dropout, the relatively high level of MEs in our study

could be due to either genotyping errors in TREDPARSE or

de novomutations. It is likely that the selected STRs related

to disorders (Table 1) are biased toward a higher de novo

mutation rate than the genome average. Our stringent

requirement of identical size matches also causes the ME

rate to be higher, especially for the disease STR loci that

typically show a higher level of allelic mosaicism or stutters

than other STR loci.11

Varying Confidence with Regard to STR Loci

Because some TREDs lacked outlier samples, not all TREDs

were considered fully validated. TREDs that are considered

reliable and had at least 1 validated sample included

HD, DM1, FXTAS, SBMA, SCA1, SCA2, SCA8, and SCA17

(Figure 5; Table 2). We are most confident about these
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C

B

15 / 41

21 / 40

21 / 27

15 / 21 DZ twins

CI 95%: 15-15/41-54
Age: unknown

CI 95%: 21-21/40-40
Age: 47.5y

CI 95%: 21-21/27-27
Age: unknown

CI 95%: 15-15/21-21
Age: 47.5y

A

37 / 44

36 / 44

36 / 37

37 / 44

CI 95%: 37-37/44-50
Age: 37.5y

CI 95%: 37-37/44-50
Age: 5.2y

CI 95%: 36-36/37-37
Age: 43y

CI 95%: 37-37/44-50
Age: 10.5y

5 / 24

24 / 73

5 / 62

5 / 67

CI 95%: 5-5/24-24
Age: unknown

CI 95%: 24-24/63-91
Age: 13y

CI 95%: 5-5/56-74
Age: unknown

CI 95%: 5-5/59-81
Age: 8y

DM1 (Myotonic dystrophy 1), cutoff 50 CAGs

SCA17 (Spinocerebellar ataxia 17), cutoff 43 CAGs

Figure 6. Individuals with Risk Alleles at
the Huntington Disease Locus in Whole-
Genome Samples
(A) A family with the putative HD risk allele
transmitted between generations.
(B) A second family with the putative DM1
risk allele transmitted between generations.
(C) A third family with the putative SCA17
allele transmitted between generations.
The expanded risk alleles are highlighted in
red. For both alleles, the 95% credible inter-
vals are provided below the estimates. Age
refers to the biological age of the individual
at the time when the DNA sample was
taken.
STR loci because we have observed at-risk individuals in

our HLI samples, the loci were experimentally validated,

and these loci had support from in silico simulation.

Our list contained a total of eight TRED diseases for

which we have observed risk alleles but have not obtained

experimental validation because of a lack of DNAmaterial.

Nonetheless, simulation analysis offers good support and

concordant calls within families. These loci included

OPMD, SCA6, BPES, CCD, CCHS, HFG, SD5, and FRDA.

Additionally, we did not identify any at-risk individuals

for 15 diseases in our list (Table 2). For TRED disease loci
712 The American Journal of Human Genetics 101, 700–715, November 2, 2017
FXS, FRAXE, SCA10, and SCA36, the

risk allele exceeded the detection limit

of the software.

The varying confidence with which

we could identify the various TRED

disease loci is highly correlated with

the amount of evidence available for

inference. High-GC-repeat loci show

substantially fewer spanning reads,

partial reads, and paired-end reads

than loci with lower GC content,

such as the CAG motif (Figure S8).

Whereas the loci identified with low

confidence tend to yield imprecise

estimates, TREDPARSE could still be

useful as a quick screen to indicate

potential pathological expansions,

although clinical follow-ups in those

cases are certainly recommended.

Discussion

Salient Features of TREDPARSE

The distinguishing features of

TREDPARSE include (1) automatic

determination of the correct ploidy

level to account for X-linked and auto-

somal loci; (2) re-alignment of reads,

leading to a more precise counting

of repeat elements; (3) use of a
full probabilistic model that incorporates four types of

evidence—spanning, partial, repeat-only, and paired-end

reads—whereas most competing software programs only

consider spanning reads, and so calls are limited by read

length; and (4) computation of likelihood of disease under

the proper inheritance model (dominant or recessive). The

combination of all these features enables TREDPARSE to

create clinically relevant profiles of STR-related diseases.

Among all existing STR callers, ExpansionHunter,

recently reported in pre-print,16 is the most similar to

TREDPARSE in that it also collects partial reads that could



Table 2. Confidence about STR Calls for Each Disease Locus through Experimental Validations, Simulation Support, and Mendelian Error
Analysis

Experimental
Validation

Risk Allele Observed
in This Study

Simulation Supports Inference
of Risk Alleles? Loci

YES YES YES HD, SBMA, SCA1, SCA2, SCA8, SCA17, DM1, FXTAS

NO YES YES OPMD, SCA6, BPES, CCD, CCHS, HFG, SD5, FRDA (carriers)

NO NO YES DM2, DRPLA, HDL, ULD, SCA3, SCA7, SCA12, EIEE1, HPE5, XLMR, ALS

NO NO NO FXS, FRAXE, SCA10, SCA36 (risk allele exceeding 500 bp, or typical paired-end
distance for Illumina libraries)

Imprecise size estimates (Mendelian error rate > 10%) FXTAS/FXS, FRAXE, ALS, SCA7, CCHS, SCA17, EIEE1
predict expanded alleles longer than a typical read length,

but TREDPARSE also models the paired-end distance,

which helped to improve accuracy, as shown in both

the cell-line validations and the selected validation set

in HLI samples. Additionally, TREDPARSE has an added

benefit of being able to compute the joint likelihood of

the calls. The shape of the joint probability could be

more useful in some cases than marginal confidence inter-

vals (CIs).Achieving good estimates with bootstrapping

can be computationally expensive, and bootstrapping

offers few hints about the dependencies between the

alleles, as compared to the full joint likelihood model

used in TREDPARSE.

Most of the STR-related diseases are poly-glutamine dis-

eases,34 whereas others are GCN-related diseases or poly-

alanine diseases.35 We carefully curated the list of diseases

on the basis of relevant literature. It is straightforward to

add additional loci to the list—a minimal set of informa-

tion required for a new locus includes the genomic coordi-

nates for the repeats and the disease risk cutoff based on

clinical studies in order to allow the probability of the

disease to be determined, if a full penetrance model is

assumed. However, each disease is unique, and there is

debate regarding the optimal length cutoff for risk alleles.

Prevalence of Rare STR Diseases in the Human

Population

Population-scale analyses enable better estimates of STR

mutation rates and allele frequencies.36 We use both alleles

in the computation of the allele frequencies for diploid

loci. Allele frequencies can display either a single peak or

multiple peaks, reflecting population structure within the

human population (Figure S9). Although inferred to

harbor abnormally long STR alleles that would put individ-

uals ‘‘at risk’’ according to current understanding, most

of the individuals that we identified with risk alleles are

asymptomatic.

There are two possible explanations for the lack of dis-

ease symptoms in the study population. First, if the disease

phenotype for the samples that are determined to be ‘‘at

risk’’ is to be determined, the disease needs to have a

high penetrance. For example, the Huntington disease

mutation is genetically dominant and thought to be fully

penetrant with one allele with 40 or more CAG repeats.37
The American
Even so, it might be worthwhile to look for cases of reduced

penetrance resulting from protective alleles somewhere

else in the genome among these asymptomatic individ-

uals,38 in other words, to look for the so-called ‘‘resilience.’’

Second, the lack of symptoms might be due to the late

onset of the disease, i.e., these individuals might not

have reached the age of onset.

For many STR loci, we have observed an inflation of STR

disease prevalence in HLI samples in comparison to the

known prevalence estimates based on literature review

(Table S1). For example, Huntington disease was previously

estimated to have a population frequency of 6.5–15 per

100,000 individuals in the United States.39 The inferred

prevalence of Huntington disease of 5/12,623 was higher

than previous estimates. After correcting for relatedness

among families (i.e., the family in Figure 6A), we observed

a frequency of 4/8,784 independent families plus single

individuals (Table 1). This implies an inflation of 33 in

comparison to the known prevalence. Overall, among

the STR diseases that have a reported prevalence based

on prior studies, DM1, HD, SBMA, and SCA6 are shown

in this study to have prevalence estimates similar to those

previously reported. However, our estimated prevalences

for SCA1, SCA17, and CCD are orders of magnitudes

higher than the known prevalences for these diseases.

For two STR disorders FXTAS and FRDA, we found that

our predictions in the study samples were lower than the

population estimates. For FXTAS, we expected that about

1 in 150 females would have the FXTAS mutation.40 How-

ever, we only identified two risk alleles in our samples.

Both individuals carrying the risk alleles are from the

same family. One female individual has calls of ‘‘10/60’’

(one allele of size 10 and another of size 60 repeats), with

support from five partial reads and three repeat-only reads;

the male individual has calls of ‘‘59/null’’ (single allele of

59 repeats because males are hemizygous at FXTAS), with

support from two partial reads and three repeat-only reads

(Table S2). In both cases, the presence of repeat-only reads

was strong evidence in support of an expanded risk allele.

The prevalence (2/12,632) is indeedmuch lower thanwhat

the population prevalence would predict, an indication

that the prediction for FXTAS/FXS is under-powered

because of low amounts of read support in high-GC-

content motifs. For FRDA, we expected a approximately
Journal of Human Genetics 101, 700–715, November 2, 2017 713



1 in 100 individuals to be carriers,41 but we were able to

identify 37 recessive allele carriers (Table S1). Because

FRDA is known as an autosomal-recessive disorder, none

of the 37 individuals were inferred to be affected by the

disorder.

The number of inferred at-risk individuals is most

heavily influenced by the exact size cutoff for the full-

penetrance allele that was chosen. For some diseases, the

literature contains conflicting estimates regarding both

the size cutoff for full-penentrance alleles and the preva-

lence in the human population. The inconsistencies are

partially due to the fact that the penetrance and prevalence

of many STR diseases are highly variable among different

ethnicity and geographic locations as a result of a potential

founder effect.39 Because during probabilistic inference

TREDPARSE generates a full joint posterior density that is

completely independent from the chosen size cutoff, our

inference could be revised accordingly if different cutoffs

were used.

Allelic mosaicism is an important aspect of the STR dis-

order,11 but it is not currently modeled in TREDPARSE. In

general, prediction of mosaicism can be difficult because

the stuttering nature of the STR alleles can lead to variation

in allele sizes during sequencing. In the current implemen-

tation, TREDPARSE predicts two most likely alleles for

autosomal loci and one or two alleles for sex-linked loci

on the basis of the inferred gender. When evidence sup-

ports extra conflicting allele sizes beyond the inferred

ploidy, and when these allele sizes are also not explained

by the stuttering model, the genotype call would be

assigned a low probability and wider confidence interval

because alternative models are suggested. Additionally,

TREDPARSE tracks the repeat size of all contributing

reads, so when a genotype call quality is lower, it could

indicate the existence of extraneous reads resulting from

mosaicism.

Because of costly testing procedures and the unstable

nature of STR loci, these loci have so far been mostly un-

der-utilized in population-based efforts to assess the preva-

lence of STR disease risk. TREDPARSE enables simultaneous

identification of many STR loci through the use of whole-

genome sequencing data. The whole-genome approach

offers an advantage over conventional STR testing by

limiting the potential bias introduced during the ampli-

fication step. With full-genome sequencing becoming

more accessible across a large number of individuals, we

expect that STR-related diseases might receive more refined

estimates of prevalence and disease penetrance in human

populations.
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son, Á., Gunnarsdóttir, E.D., Jagadeesan, A., Ebenesersdóttir,
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