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Abstract: During discontinuous dynamic recrystallization (DDRX), new dislocation-free grains
progressively replace the initially strain-hardened grains. Furthermore, the grain boundary migration
associated with dislocation elimination partially opposes strain hardening, thus adding up to dynamic
recovery. This effect, referred to as boundary migration induced softening (BMIS) is generally not
accounted for by DDRX models, in particular by “mean-field” approaches. In this paper, BMIS is first
defined and then analyzed in detail. The basic equations of a grain scale DDRX model, involving the
classical Yoshie–Laasraoui–Jonas equation for strain hardening and dynamic recovery and including
BMIS are described. A steady state condition equation is then used to derive the average dislocation
density and the average grain size. It is then possible to assess the respective influences of BMIS and
dynamic recovery on the strain rate sensitivity, the apparent activation energy, and the relationship
between flow stress and average grain size (“Derby exponent”) of the material during steady state
DDRX. Finally, the possible influence of BMIS on the estimation of grain boundary mobility and
nucleation rate from experimental data is addressed.

Keywords: recrystallization (dynamic); grain boundary migration; recovery (dynamic); steady
state; modeling

1. Introduction

Dynamic recrystallization plays an essential role in hot forming of metals, since it
gives them the ability to undergo significant deformations without cracking or fracturing
due to the annealing of the major fraction of dislocations introduced by strain. Furthermore,
dynamic recrystallization determines the main features of the deformed microstructures,
mainly the grain size and the dislocation density, which in turn are reflected in the final me-
chanical properties, such as yield strength and ductility. It is thus very important to acquire
a good knowledge of the involved metallurgical mechanisms to be able to control dynamic
recrystallization and eventually to optimize industrial hot working processes. This point
has already been highlighted a long time ago, for instance by Jonas and coworkers [1,2],
and more recently by Sakai et al. [3].

The mechanism of discontinuous dynamic recrystallization (DDRX), which occurs in
low to medium stacking fault energy materials, like copper, austenitic steels, and Ni or
nickel alloys, is at first glance quite similar to static recrystallization (SRX): new dislocation-
free grains nucleate and grow at the expense of the “old” strain-hardened grains. There
are, however, significant differences:

- In SRX, the main softening effect is due to the migration of grain boundaries of the
(recrystallized) growing grains, towards regions containing high dislocation densities:
it is generally considered that dislocations are completely or almost completely anni-
hilated by their interactions with moving grain boundaries. This mechanism can be
referred to as boundary migration induced softening (BMIS). Static recovery within
the regions not yet recrystallized constitutes a secondary softening process during
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SRX. In this way, the material transforms from an initial state of high dislocation
density ρini due to prior deformation to a final state with very low dislocation density
ρ0 ≈ 0. This makes SRX very similar to a phase change.

- In DDRX, a more complex situation arises, because the recrystallized grains undergo
strain-hardening during their growth. There are then three mechanisms that coun-
terbalance the increase in dislocation density: (1) Dynamic recovery, which takes
place in growing as well as shrinking grains; (2) The substitution of “younger” grains
for “older” grains with higher dislocation content, whatever the interaction between
dislocations and moving boundaries, which is merely a geometric effect, and (3) The
annihilation of dislocations by grain boundary migration (BMIS), which is a physical
effect. Note that mechanisms (2) and (3) are closely interrelated, although they can be
clearly distinguished in theory. At large strain (von Mises equivalent strains of the
order of 1), DDRX leads to a steady state where the material behaves as a dissipative
structure that converts the mechanical energy input into heat.

A number of DDRX models have been proposed since the pioneering works of the
1970s [4,5] (see reviews [6–8]). They can be roughly classified into two groups: In the
mesoscale, or grain-scale approaches (sometimes referred to as mean field models), the
material is generally considered as a set of interrelating spherical grains, each of them
being characterized by its diameter and dislocation density. Such models lead to an-
alytical or quasi-analytical results and make it possible to investigate the steady state
behaviour at large strains [9,10], possibly even including topological effects [11]. In the
full field approaches, a complete description of the microstructure is considered, including
for inon the basstance local dislocation densities, grain boundary mobilities and misori-
entations. These models initially involved Monte Carlo calculations [12–14] or cellular
automata (e.g., [15–17]). Some authors later combined a cellular automata simulation of
recrystallization with a finite element computation of deformation [18]. Recent full field
models are based on a level set description of the grain boundaries within a finite element
framework [19]. However, reaching large strains remains a computational challenge.

It is worthwhile to note that in all the above models BMIS is not taken into account,
even not explicitly mentioned, and its potential effects on flow stress and average grain
size are not discussed. As a result, a bias may be introduced when experimental data are
analyzed on the basis of such models. The aim of this paper is to consider the issue in the
simple case of the steady state by the extension of a previously published model [10,20].
The involved calculations are mainly analytical and closed form results are exhibited. In
the next section, the basic equations of the model are shown, with a special emphasis on the
incorporation of BMIS. The expressions of the steady state flow stress and average grain
size are then derived in Section 3 and preliminary results are shown using data pertaining
to a Ni-1% Nb alloy. In Section 4, relationships between the microscopic and macroscopic
constitutive parameters of the material are established, and some numerical examples are
given. Finally, a first set of conclusions is given about the influence of BMIS during steady
state DDRX, and future developments are suggested.

2. Basic Equations
2.1. General Formulation of BMIS

First consider the case of a grain growing within a polycrystal, with volume V and
average dislocation density ρ at time t (Figure 1). The length of dislocations contained in
the grain is thus L = ρV. During an increment of time dt, this yields (Equation (1)):

dρ = ρ

(
dL
L
− dV

V

)
(1)

where dL is the sum of two components (Equation (2)):

dL = dρhV + (1− δ)ρdV (2)
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where, dρh is the increase in dislocation density due to strain hardening in volume V and
dV is the increment of volume of the grain, while δ specifies the effect of the softening due
to grain boundary migration. If δ = 0, the dislocation density in the volume dV swept
by the boundary remains equal to ρ, which means that no BMIS occurs. By contrast if
δ = 1, all dislocations present in the volume dV are absorbed by the moving boundary.
Intermediate values of δ can also be considered to account for a possible partial BMIS effect,
although there is no clear experimental evidence of such a case. Substituting Equation (2)
into (1) and dividing by the strain increment dε during time dt leads to (Equation (3)):

dρ

dε
=

dρh
dε
− δ

ρ

V
dV
dε

(3)

which is a generalized strain hardening equation including BMIS.
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Figure 1. Schematic representation of a growing grain.

The case of a shrinking grain is different, since the volume dV swept by the boundary
is removed, instead of appended, to the grain, such that the softening effect is absent.

2.2. Grain Growth and Strain Hardening Equations

A mesoscale approach is used here, where each grain of the aggregate is considered
as a spherical inclusion of diameter D embedded in a uniform matrix of current dislocation
density ρ. It has been shown elsewhere that volume conservation implies to define ρ as the
average dislocation density of all the grains i, weighted by the square of their diameter:
ρ = ∑i ρiDi

2/∑i Di
2 [9,10]. Then, for a grain of diameter D and dislocation density ρ, the

(algebraic) growth equation can be written (Equation (4)):

dD
dε

=
2Mτ

.
ε

(ρ− ρ) (4)

where the strain rate
.
ε is assumed identical for all the grains, M is the mobility of the grain

boundaries, and τ the line energy of dislocations. This equation shows that when ρ < ρ
the grain grows and conversely, when ρ > ρ the grain shrinks. Note that the product
τ(ρ− ρ) is the driving force for the migration of the grain boundary.

For strain hardening, Equation (3) must be specified. Various formulations have been
proposed for the first term dρh/dε, e.g., the power law, the Kocks–Mecking, and Yoshie–
Laasraoui–Jonas equations. It has been shown that each of them can be fitted fairly well
with the same set of stress–strain data [21]. The Yoshie–Laasraoui–Jonas (YLJ) equation
is well adapted for large strain hot deformations involved in metallurgical processing
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and it will therefore be used here. For a spherical grain of diameter D, dV/V = 3dD/D,
Equation (3) can then be written (Equation (5)):

dρ

dε
= h− rρ− 3δ

ρ

D
dD
dε

(5)

where h and r are two material parameters associated with strain hardening and dynamic
recovery, respectively. Note that h has dimension of a dislocation density, while r has no
dimension. The (non-dimensional) BMIS parameter δ ranges from 0 (no BMIS) to 1 (full
BMIS) when the grain grows and is zero when the grain shrinks.

A third equation is needed for modeling nucleation, which is a key factor in the DDRX
process. However, as far as the steady state is concerned, the exact time and the specific
physical mechanisms of nucleation (e.g., grain boundary bulging, growth of strongly
misoriented subgrains, twinning, . . . ) are not of prime importance: the main point is to
state that each grain gives birth, on average, to one single new grain in its lifetime [9,10].
This is contained in Equation (11) below.

2.3. Introduction of Non-Dimensional Variables

In former works, the dislocation density was normalized by ρ∞ = h/r which is the
asymptotic value of ρ for the YLJ equation, i.e., when only strain hardening and dynamic
recovery are operating. However, this choice causes difficulties to deal with the case where
dynamic recovery is very low, since then ρ∞ → ∞ . The non-dimensional variable z = ρ/h
is thus introduced, which takes value ξ = ρ/h for the average dislocation density. Since
due to DDRX ρ < ρ∞ = h/r, ξ < 1/r. Equation (4) can then be written (Equation (6)):

dD
dε

=
2Mτh

.
ε

(ξ − z) = D∗(ξ − z) (6)

where D∗ is a reference grain size. Then defining y = D/D∗ (Equation (7)):

dy
dε

= ξ − z (7)

Equation (5) can then be re-written in the non-dimensional form (Equation (8)):

dz
dε

= 1− rz− 3δ
z
y

dy
dε

(8)

Finally, combining Equations (7) and (8) gives (Equation (9)):

dz
dε

= 1− rz− 3δ
z(ξ − z)

y
(9)

Numerical resolution of the two coupled differential Equations (7) and (9), for the two
functions y (grain size) and z (dislocation density) will give the evolution of a given grain
of the system. In steady state, ξ remains constant during the grain life. The two functions
y(ε) and z(ε) depend only on the dynamic recovery r and BMIS δ parameters. If the latter
are assumed to be identical for all the grains, as well as the hardening parameter h and the
grain boundary mobility M, all grains will follow the same evolution as a function of their
specific strain ε.

As initial conditions, it will be assumed that a grain nucleates with zero diameter and
dislocation density: for ε = 0, y = z = 0. According to Equation (7), the initial slope of y
is ξ. Substituting this value into Equation (9) for ε = 0 leads to (Equation (10)):

dz
dε

=
1

1 + 3δ
(10)
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This merely means that, as expected, the initial increase in the dislocation density is
moderated by BMIS.

For z = ξ (i.e., ρ = ρ), the grain size goes through a maximum corresponding to a
strain εM, and for some strain ε = ω, y goes to zero which means that the grain disappears.

3. Derivation of the Steady State Flow Stress and Grain Size
3.1. Steady State Condition

It was mentioned above that upon steady state, each grain gives birth to one and only
one new grain in its lifetime. This condition can be written in the form (Equation (11)):

kNρp
.
ε

∫ ω

0
D2dε = 1 (11)

where the integral is extended over the strain interval [0, ω]. The squared grain size D
means that DDRX nucleation is known to occur mainly at grain boundaries, whereas a
nucleation in volume would imply the factor D3. kN and p are two material parameters
characterizing the nucleation rate. The exponent p can be set to 3, as shown in previous
work, which reflects the fact that the nucleation rate increases rapidly with the overall
dislocation density of the material.

Substituting y for D in the above equation yields (Equation (12a–c)):

ξ3G(ξ, r) = A (12a)

in which A is a constant for given strain rate, temperature and material, viz.:

A =

.
ε

3

4 kN M2τ2h5 (12b)

And G(ξ, r) denotes the (non-analytical) integral:

G(ξ, r) =
∫ ω

0
y2dε (12c)

The product ξ3G(ξ, r) is plotted in Figure 2 as a function of ξ for various values of δ
and r in a double logarithmic reference frame. It appears clearly that the data are very well
fitted by straight lines, which means that ξ3G(ξ, r) is a power law function of ξ (this would
of course be true as well for any other nucleation exponent p). Equation (12a) can then be
written in the form (Equation (13)):

k1 ξq1 = A (13)

which allows ξ = ρ/h to be readily calculated. Table 1 gives the values of the non-
dimensional parameters k1 and q1 deduced by linear regressions from the curves of Figure 2.
For given r, k1 increases with δ, while the slope q1 is mainly dependent of r.

The steady state flow stress is finally derived from the classical Taylor equation
σs = αµ b

√
ρ = αµ b

√
hξ, which yields (Equation (14)):

σs

αµb
=
√

h

( .
ε

3

4kN M2τ2h5k1

)1/2q1

(14)

To deal with a numerical example, data pertaining to a model Nickel-1% Niobium alloy
deformed at 900 ◦C and 0.01 s−1 will be used [20,22]: h = 1000 µm−2, kN = 5× 10−9 µm4s−1

(with p = 3), Mτ = 0.1 µm3s−1. Measurements have shown that r = 5, but r will be varied
here between 0 and 10 to assess the influence of dynamic recovery, a range that is typical
for materials undergoing DDRX. Results are displayed in Figure 3, which shows that BMIS
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is significantly larger (i.e., when δ is increased from 0 to 1) than softening induced by
dynamic recovery (i.e., when r is increased from 0 to 10).

Table 1. Numerical values of parameters k1 and q1 involved in Equation (13).

BMIS Parameter δ

0 0.5 1.0

k1 q1 k1 q1 k1 q1

Dynamic
recovery

parameter r

0 0.233 7.937 1.587 7.960 4.399 7.967

5 0.898 8.263 5.449 8.241 13.912 8.221

10 5.551 9.709 25.144 8.591 60.200 8.551
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The same approach is followed now for the steady state grain size.

3.2. Average Steady State Grain Size

The average grain size Ds during steady state is defined here, as it is most often the
case, by the number-weighted grain diameter, which can be expressed by the integral
(Equation (15)):

Ds =
1
ω

∫ ω

0
D dε =

D∗

ω

∫ ω

0
y dε (15)

In this equation, the integral as well as the lifetime of the grain ω depend only on ξ
and r, and Equation (15) can be written (Equation (16)):

Ds

D∗
=

H(ξ, r)
ω(ξ, r)

(16)

The ratio H(ξ, r)/ω(ξ, r) is plotted in Figure 4 with respect to ξ for various values
of δ and r in a double logarithmic set of axes. The data are very well aligned, such that
Equation (16) can be written (Equation (17)):

Ds

D∗
= k2ξq2 (17)

where the values of the non-dimensional parameters k2 and q2 are reported in Table 2.
It is important to remember that these two parameters, as well as their counterparts k1
and q1 depend only on r and δ, which makes the above results applicable to any material.
It appears that k2 increases with δ and, to a lesser extent, with r, while the exponent q2
increases with r but is almost independent of δ.
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Table 2. Numerical values of parameters k2 and q2 involved in Equation (17).

BMIS Parameter δ

0 0.5 1.0

k2 q2 k2 q2 k2 q2

Dynamic
recovery

parameter r

0 0.314 1.973 0.647 1.985 0.944 1.990

5 0.443 2.052 0.976 2.082 1.416 2.083

10 0.689 2.158 1.728 2.220 2.220 2.186
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3.3. Grain Size and Dislocation Density Changes Along the Lifetime of a Grain

Numerical resolution of Equations (7) and (9) provides access to the two functions
y(ε) and z(ε) which are associated with the grain size D = D∗y and the dislocation density
ρ = hz, respectively. The strain dependence of D and ρ for a grain of the aggregate is
illustrated in Figure 6a,b for various values of δ and r. The same material parameters
as above were used, ξ being determined from Equation (13). It is important to remind
here that such curves are identical for all grains in steady state since their constitutive
parameters are assumed to be the same and ρ is uniform throughout the material.

Figure 6a shows the influence of BMIS in the absence of dynamic recovery. The case
δ = 0 is special because Equations (7) and (9) can be solved analytically [9,10]: ρ increases
linearly and the curve D(ε) is merely a parabola, which is not the case otherwise. For a
given strain, BMIS increases the grain size and the ultimate strain ω, but decreases the
dislocation density. Figure 6b exhibits in turn the influence of dynamic recovery when
full BMIS occurs (δ = 1). Dynamic recovery is mainly sensitive in the second half of
the grain lifetime, where it increases the grain size and decreases the dislocation density.
The maximum grain size, however, remains almost unchanged by dynamic recovery. In
addition, BMIS and recovery both increase the lifetime ω which ranges from 0.091 for
δ = r = 0 to 0.165 for δ = 1 and r = 10.
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Another parameter allowing to assess the evolution of a grain is the aspect ratio λ.
In uniaxial compression, the latter is defined as the ratio between the axis parallel to the
compression direction and a perpendicular axis, which is given by (Equation (18)):

λ = exp(− 3
2

ε) (18)
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where ε denotes here the von Mises equivalent strain. In simple shear (corresponding to
the classical torsion test), the relationship between λ and ε is more complex, but it is easy
to show that it is numerically very close to Equation (18) (see for instance [23]).

Figure 7 shows the dependence of λ on BMIS for various values of r in two cases:
(i) for ε = εM, i.e., when the grain reaches its maximum size, and (ii) for ε = ω, i.e., when
it vanishes. This second case may appear less relevant since the grain size then approaches
zero, but it gives the minimum aspect ratio value for given deformation conditions. It can
be seen that the two softening effects contribute to a moderate decrease in λ in similar
proportions. The two sketches on the right side of the diagram illustrate the shape of the
grain for δ = 1 and r = 10 by a section through its revolution axis. It appears that such a
grain can still be termed “equiaxial” in the traditional sense of the word. This observation
justifies the initial assumption of spherical grains in the model.

Materials 2021, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 7. Dependence of the aspect ratio of a grain on BMIS at its maximum size ( Mε ε= ) and when 
it vanishes ( ε ω= ) for three values of r. The two sketches on the right side of the diagram illustrate 
the shape of the grain. 

4. Constitutive Parameters 
The aim of this section is to derive the macroscopic constitutive parameters of the 

material during DDRX steady state from the microscopic parameters associated with the 
elementary mechanisms of strain hardening (h) and dynamic recovery (r), nucleation ( Nk  
and p) and grain growth ( Mτ ). 

4.1. Microscopic Constitutive Parameters 
Stress–strain curves at various strain rates and temperatures allow h and r to be read-

ily derived, and it has been observed that 5r ≈  remains approximately constant in low 
stacking fault energy materials like austenitic stainless steels or Ni-Nb alloys [22], while h 
takes the form (Equation (19)): 

0 0( ) exphm
h hh h (m Q RT )ε ε=    (15)

Here, hm  and hQ  are the strain rate sensitivity and apparent activation energy specific 

to strain hardening, 0ε  is a reference strain rate (we take in the following 1
0 1 sε −= ), 

0h  is a material constant and R is the gas constant. 

The grain boundary mobility M and nucleation rate Nk  parameters can be deter-
mined in turn from the measured steady state flow stress sσ  and average steady state 
grain size sD  (see Section 4.4 below) [10,24]. It was shown that they can be written (Equa-
tions (20) and (21)): 

0 0 ) expMm
MM M ( ( Q RT )ε ε= −   (20)

0 0 ) expNm
N N Nk k ( ( Q RT )ε ε= −   (21)

where Mm  and Nm , MQ  and NQ  are the rate sensitivities and activation energies as-
sociated with migration and nucleation, respectively, and 0M  and 

0Nk  are constants. It 

0.0 0.5 1.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 7. Dependence of the aspect ratio of a grain on BMIS at its maximum size (ε = εM) and when
it vanishes (ε = ω) for three values of r. The two sketches on the right side of the diagram illustrate
the shape of the grain.

4. Constitutive Parameters

The aim of this section is to derive the macroscopic constitutive parameters of the
material during DDRX steady state from the microscopic parameters associated with the
elementary mechanisms of strain hardening (h) and dynamic recovery (r), nucleation (kN
and p) and grain growth (Mτ).

4.1. Microscopic Constitutive Parameters

Stress–strain curves at various strain rates and temperatures allow h and r to be
readily derived, and it has been observed that r ≈ 5 remains approximately constant
in low stacking fault energy materials like austenitic stainless steels or Ni-Nb alloys [22],
while h takes the form (Equation (19)):

h = h0(
.
ε/

.
ε0)

mh exp(mhQh/RT) (19)

Here, mh and Qh are the strain rate sensitivity and apparent activation energy specific
to strain hardening,

.
ε0 is a reference strain rate (we take in the following

.
ε0 = 1 s−1), h0 is

a material constant and R is the gas constant.
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The grain boundary mobility M and nucleation rate kN parameters can be determined
in turn from the measured steady state flow stress σs and average steady state grain size
Ds (see Section 4.4 below) [10,24]. It was shown that they can be written (Equations (20)
and (21)):

M = M0(
.
ε/

.
ε0)

mM exp(− QM/RT) (20)

kN = kN0(
.
ε/

.
ε0)

mN exp(− QN/RT) (21)

where mM and mN , QM and QN are the rate sensitivities and activation energies associated
with migration and nucleation, respectively, and M0 and kN0 are constants. It is recalled
here that the nucleation exponent p is set at 3. Furthermore, parameters k1, q1 and k2,
q2 in Tables 1 and 2 depend only on r and δ and are thus independent of strain rate
and temperature.

4.2. Macroscopic Strain Rate Sensitivity and Activation Energy

The strain rate sensitivity mDRX = (∂ ln σs/∂ ln
.
ε)T (at a given temperature) is derived

from Equation (14), which gives (Equation (22a)):

mDRX =
mh
2

+
1

2q1
(3− mN − 2mM − 5mh) (22a)

In a similar way, the apparent activation energy QDRX = (R/mDRX)[∂ ln σs/∂(1/T)] .
ε

(at a given strain rate) is derived from (14) to get (Equation (22b)):

QDRX =
mhQh + (1/q1)(QN + 2QM − 5mhQh)

mh + (1/q1)(3− mN − 2mM − 5mh)
(22b)

From the above formulae, the influence on mDRX and QDRX of each of the microscopic
parameters taken separately can be assessed for any given material. Nevertheless, only the
simple case where mN = mM = mh = m and QN = QM = Qh = Q will be examined
further here. Equation (22a,b) then reduce to (Equation (23a,b)):

mDRX =
1
2

(
1− 8

q1

)
m +

3
2q1

(23a)

QDRX =
(q1 − 5)m + 3
(q1 − 8)m + 3

Q (23b)

As shown in Figure 8, mDRX is a weakly decreasing (for r = 0) or increasing (for
r = 5 or 10) linear function of m. However, it does not depend on BMIS significantly. An
important point is that mDRX does not vanish when m = 0, which means that the steady
state strain rate sensitivity is mainly an intrinsic effect of DDRX and does not simply reflect
the microscopic rate sensitivities. QDRX is in turn almost insensitive to r as well as to δ, as
can be checked numerically. Equation (23b) shows that it is always slightly larger than its
microscopic counterpart Q. More specifically, since q1 ≈ 8, QDRX = (1 + m) Q to a first
approximation. Finally, QDRX vanishes with Q which indicates that the apparent activation
energy for DDRX steady state arises directly from the underlying microscopic mechanisms.

4.3. Derby Exponent

It has long been observed experimentally that the steady state flow stress σs and
average grain size Ds are related by an inverse power law equation σs = K/Ds

a where K is
roughly independent of temperature and strain rate for a given material, and the exponent
a ranges between 0.5 and 1 [25–27]. Accordingly, this result has also been obtained from the
mesoscopic model used in the present paper [10], and this Derby equation can be considered
as quite specific to the steady state of discontinuous dynamic recrystallization. It is thus
interesting to assess the possible influence of BMIS on the exponent a.
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for three values of the dynamic recovery parameter.

By eliminating
.
ε between the two Equations (14) and (17), the following inverse power

relationship is obtained (Equation (24)):

σs = αµb
√

h
[

2Mτ

kNh2
k2

3

k1

] 1
2(q1−3q2) 1

Ds
3

2(q1−3q2)

(24)

which makes appear the exponent (Equation (25)):

a =
3

2(q1 − 3q2)
(25)

If the factor before the inverse power of Ds is independent of temperature, the Derby
equation is verified. In addition, since q1 ≈ 8 and q2 ≈ 2 (see Tables 1 and 2), a ≈ 0.75 as
expected, and it depends only on r (dynamic recovery) and δ (BMIS). Figure 9 shows the
influence of δ on the exponent a for various values of r. It is not easy to draw conclusions
from this diagram, since the curve for r = 10 is not monotonic. It appears nevertheless
that a ≈ 0.75 whatever r, when BMIS is taken into account, while it decreases with
increasing dynamic recovery in the absence of BMIS. Since BMIS actually occurs during
hot deformation, this is in line with the experimental observations.

4.4. Estimation of Mτ and kN from the Experimental Data

In all the numerical examples presented above, the boundary migration and nucleation
parameters Mτ and kN were supposed to be known. Although direct measurements are
impossible during DDRX steady state, it is indeed possible to solve Equations (14) and (17)
for these two quantities, assuming that the other measurable microscopic parameters have
been already determined. However, this has been done so far without taking BMIS into
account [10]. In this last subsection, the influence of BMIS and the recovery parameter r on
the estimation of Mτ and kN is analyzed.
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As the starting point, parameters h, r, σs and Ds are supposed to be known, as well
as the shear modulus µ and the Burgers vector b at the investigation temperature (and,
of course, the prescribed strain rate

.
ε). The reduced steady state dislocation density ξ is

first derived from the Taylor equation σs = αµ b
√

hξ. Equations (14) and (17) can then be
solved for Mτ and kN , which yields (Equation (26a,b)):

Mτ =

.
εDs

2 hk2ξq2
(26a)

kN =

.
εk2

2

h3Ds2k1ξq1−2q2
(26b)

Values of Mτ and kN obtained from the above equations are reported in Table 3 for
three levels of BMIS and three values of the dynamic recovery parameter r. For each line of
the table, the values of ξ and Ds derived from the k1, k2, q1, q2 parameters in column δ = 1
in Tables 1 and 2 were used. The values Mτ = 0.1 µm3s−1 and kN = 5× 10−9 µm4s−1

introduced in Section 3 are thus logically recovered for δ = 1. For δ = 0.5 and δ = 0 (i.e., in
the absence of BMIS), larger values of Mτ and kN are observed, whereas the influence of r
is weak.

Table 3. Numerical values of the migration parameter Mτ (µm3 s−1) and the nucleation parameter
kN (10−9 µm4 s−1) derived from Equation (25a,b), respectively, for various values of the dynamic
recovery and BMIS parameters.

BMIS Parameter δ

0 0.5 1.0

Mτ kN Mτ kN Mτ kN

Dynamic
recovery

parameter r

0 0.278 10.18 0.140 6.33 0.100 5.00

5 0.280 10.38 0.141 6.25 0.100 5.00

10 0.282 10.37 0.140 6.16 0.100 5.00
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This means that, for the same set of experimental data, neglecting BMIS leads to a
significant overestimation of grain boundary mobility and nucleation rate. This is easy to
understand since BMIS favors both flow softening and average grain size increase, in the
same manner as an increase in mobility or nucleation rate.

5. Conclusions and Future Developments

In this paper, a mesoscale model of discontinuous dynamic recrystallization (DDRX)
was used to investigate the various effects of boundary migration induced softening (BMIS)
during the steady state. BMIS is a mechanism specific to DDRX, which acts in addition to
dynamic recovery and the nucleation and growth of new grains, by removing dislocations
from the volumes swept by the moving grain boundaries. Dynamic recovery effects were
also taken into consideration and compared to the latter. The main outcomes are the
following:

(i). As expected, BMIS induces significant flow softening. For r values ranging between
0 and 10, typical of materials undergoing DDRX, BMIS is even more efficient than
dynamic recovery.

(ii). The second major effect of BMIS is to promote average grain size growth, while the
influence of dynamic recovery is weak.

(iii). The lifetime of a grain, and thus the strain at the time of disappearance, is increased
by BMIS. The aspect ratio of the grains nevertheless remains sufficiently close to unity
for them to be considered as approximately equiaxed.

(iv). By contrast, the macroscopic strain rate sensitivity mDRX and apparent activation
energy QDRX are not considerably modified by BMIS.

(v). The classical Derby equation relating the flow stress to the average grain size was
found by the model. The Derby exponent a is globally increased by BMIS. For full
BMIS (δ = 1), it takes a value close to 0.75 whatever the level of dynamic recovery.

(vi). Finally, the present approach shows that whenever the grain boundary migration
parameter Mτ and the nucleation rate parameter kN are estimated from the data with
the mesoscale model, they can be both overestimated if BMIS is neglected.

In the future, insofar as complete sets of microscopic constitutive parameters for a
given material at various strain rates and temperatures are available, further tests should
be carried out to assess the validity of the model and confirm the present results. Another
interesting development would be to investigate the transient behaviour of the material,
which occurs at low to moderate strains (e.g., ε < 0.8− 1.0 in austenitic steels or cop-
per [28–30]). In this case, in contrast to the steady state behaviour, the histories of the
grains [i.e., the functions D(ε) and ρ(ε)] are all different from each other. As a result,
average quantities over the grains cannot be replaced any longer by integrals over strain
for one single grain, like in Equations (11), (12c), and (15). It is then necessary to consider
a whole set of interacting grains and to compute their evolutions by applying the basic
differential equations of the model to each of them. This has already been carried out [9,10].
In particular, it was shown that the model was able to predict the transition from multiple
peak (low strain rate, high temperature) to single peak (high strain rate, low temperature)
stress–strain curves. However, the specific effects of BMIS still remain to be investigated in
this context.

Finally, the model could also be extended to include the grain shape changes under
combined effects of migration and prescribed strain rate. A first step has already been
taken in this direction, for the growth or dissolution of a particle in a matrix submitted to
axisymmetric compression or simple shear, although again in the absence of BMIS [31].
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