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A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier
ensemble, assisting in the ensemble selection task.The proposed measure is motivated by a commonly accepted hypothesis; that is,
a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity
are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may
negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the
predictive ability of an ensemble for unknown data.The quality assessment for an ensemble is performed such that the final score is
achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them.The
measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only
accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble
selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to
others in most cases.

1. Introduction

As distinguished from general individual classificationmeth-
ods, including näıve Bayes [1], decision tree [2], and svm
[3], the most important idea behind the ensemble methods
[4] is the use of a set of base classifiers and combining
their predictive capabilities into a single classification task.
Through the combination of multiple base classifiers, a more
accurate and stronger prediction can be obtained. Ensemble
methods can also be understood by comparison to the
scenario of people making decisions because people often
consider diverse opinions to reach their final decision, thus
reducing the risk of making mistakes. In recent decades,
many researchers have investigated ensemble technology,
resulting in a number of outstanding algorithms proposed
in the literature, such as bagging [5], adaboost [6], mixture-
of-experts [7], and random forest [8]. Nevertheless, there
are two primary shortcomings in generic ensemble meth-
ods: efficiency and redundant classifiers. According to the
survey results reported by Tsoumakas et al. [9], a large-
scale ensemble learning task can easily create thousands

of base classifiers, or even more. There is no doubt that
having such a large number of classifiers in an ensemble
requires large memory and computational overhead. This
in turn leads to an increase in the training cost, storage
demands, and prediction time. In addition, an ensemble
with a large number of classifiers does not always generate
better prediction results.This is because an ensemble tends to
contain redundant classifiers in addition to high-quality ones.
The former negatively affects the overall ensemble predictive
performance.

Ensemble selection (i.e., ensemble pruning, ensemble
thinning, or classifier selection) is regarded as a type of
effective technique to solve these two shortcomings.The goal
in ensemble selection is to reduce the memory requirement
and accelerate the classification process while preserving or
improving the predictive ability [10]. Just as the name implies,
ensemble selection refers to the approaches that address the
selection of a subset of optimal classifiers from the original
ensemble prior to prediction combination. Given an original
ensemble with 𝑚 base classifiers 𝐸 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
} and a
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validation (evaluation, pruning, or selection) dataset with 𝑘
samples 𝐷 = {(𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑘
, 𝑦
𝑘
)}, the objective is

to form an optimal subensemble𝐸 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
}, where

the size of the optimal subensemble, 𝑛, is less than or equal to
the size of the original ensemble, 𝑚 (𝑛 ≤ 𝑚). The ensemble
selection behavior relies on two core elements, that is, evalua-
tion measure and search method.The score calculated by the
evaluation measure is the quality assessment used to guide
the ensemble selection. The target to evaluate could be an
individual classifier or an ensemble, from which two types of
measure can be derived, that is, classifier and ensemble based.
The score assessed from a classifier-basedmeasure represents
the quality of an individual classifier; the ensemble-based
measure evaluates the quality of the whole ensemble. The
goal of the search method is to find the classifiers with high
quality scores examined by the evaluation measure. Various
ensemble selection approaches are examples of combining
an evaluation measure and a searching method [9]. For
example, in ranking-based ensemble selection approaches
[11, 12], classifiers in the ensemble are reordered in descend-
ing order based on their quality scores, and the first 𝑛
(user-defined number) top classifiers are used. Intuitively, a
ranking-based approach is the combination of a classifier-
based measure and a ranking search method. The advantage
of these methods is the low searching complexity, that is,
𝑂(𝑚), because it applies a ranking search algorithm. This
approach may sometimes work well, but it is theoretically
unsound, as illustrated by the classical example mentioned
in [10]: “an ensemble of three identical classifiers with 95%
accuracy is worse than an ensemble of three classifiers with
67% accuracy and least pairwise correlated error.” Another
representative instance of an optimization-based ensemble
selection approach is constructed using an ensemble-based
measure and an optimization search method [10, 13–15].
It consists of an optimization process of searching for an
optimal subensemble in the space of 2𝑚 − 1 (nonempty
case). The evaluation measure in this case should have the
capability of evaluating the quality with respect to the whole
ensemble. Unlike the ranking-based methods, it needs the
help of an optimization searching algorithm (e.g., a genetic
algorithm or a hill climbing algorithm) to avoid exhaustive
search complexity, that is, 𝑂(2𝑚 − 1).

In this study, ensemble-based measures for optimization-
based ensemble selection are emphasized. Two characteristics
of ensemble measures are used in this method: (a) they
assess the quality of an ensemble with multiple classifiers
rather than the quality of an individual classifier, and (b) they
usually work with heuristic search algorithms to perform the
ensemble selection.

The latent question of ensemble-based evaluation mea-
sures is thus “what is a good classifier ensemble?” Many
researchers have tried to answer this question in their
ensemble selection tasks. One comprehensive strategy is to
emphasize the ensemble accuracy, so the subensemble with
high accuracy stays in the validation dataset. Margineantu
and Dietterich [13] first claimed the feasibility of using
ensemble accuracy for the ensemble selection task. Zhou
et al. proposed the GASEN [14] and GASEN-b [15] selec-
tive ensemble learning algorithms, in which the ensemble

selection procedures apply genetic algorithm (GA) to search
the optimal subensemble according to the majority voting
accuracy (MVA) in the validation dataset. In the ensemble
selection experiments conducted by Fan et al. [16], two
accuracy-class evaluationmeasureswere used, that is, average
accuracy and mean squared error. Caruana et al. [17] per-
formed a similar trial, experimenting with several evaluation
measures, including rootmean squared error, precision/recall
𝐹-measure, and average precision. Although the experimen-
tal results from the above studies illustrated that the selected
subensembles based on accuracymeasuresmay provide some
improvements with respect to the original ensemble, there
exists NO solid proof for the strong correlation between the
ensemble accuracy on the validation data and the predictive
performance on the test data. However, several studies have
proved that too high accuracy may lead to the overfitting
problem.

Other scholars insist that the ensemble constructed by a
set of diverse classifiers should survive. Such scholars prefer
using diversity to represent the ensemble quality. Ruta and
Gabrys [18] applied twelve widely known diversity measures,
including the disagreement measure, entropy measure, and
interrater agreement, in their experiments, to achieve better
results than accuracy measures. Mart́ınez-Muñoz and Suárez
[12], Banfield et al. [19], and Partalas et al. [20] proposed
four similar diversity measures, that is, concurrency, margin
distance minimization, complementariness, and the uncer-
tainty awaremeasure, for selecting subensembles through the
greedy search algorithm, producing impressive results. Their
results show that computing the degrees of diversity may
be a good choice for the evaluation measure. Nevertheless,
using diversity as the direct measure of ensemble quality is
still a controversial issue. On the one hand, the above studies
showpromising predictive performance using diversity as the
evaluation measure. On the other hand, the theoretical and
experimental investigations from Tang et al. [21] concluded
that diversity could not be explicitly used for constructing the
ensemble, based on directed hill-climbing methods.

From the analysis above, it is determined that it is
insufficient to use either accuracy or diversity to represent the
ensemble quality. A well-known hypothesis in the ensemble
learning community claims that an ensemble with high
performance and generalization ability should be simul-
taneously accurate and diverse [4, 22]. Hence, ensemble
selection approaches should endeavor to generate such an
ensemble. In other words, the evaluation measures need
to assess ensemble quality by considering both accuracy
and diversity. However, this is not an easy task because
accuracy and diversity are mutual restraint factors, where
the ensemble with high accuracy may reduce the diversity
and diverse ensembles often will negatively affect accuracy.
A number of classifier-based evaluation measures motivated
by this idea were proposed in recent decades. In the most
representative study in [11], the authors proposed a measure
to evaluate each individual classifier’s contribution to the
whole ensemble by integrating the accuracy and diversity.
However, for ensemble-based evaluation measures, there are
seldom explorations on assessing the quality by considering
both accuracy and diversity.
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Therefore, in this study, a new ensemble-based evalua-
tion measure, the weighted accuracy and diversity (WAD)
measure, is designed to meet this challenge. The proposed
measure has three main features. (1) It is designed to evaluate
an ensemble quality and work with heuristic search algo-
rithms to conduct optimization-based ensemble selection.
(2) It assesses the ensemble quality by considering both
accuracy and diversity. To be more precise, inspired from
the 𝐹-measure [7] in information retrieval, the WAD mea-
sure combines accuracy and diversity by obtaining the har-
monic mean of both measurements. Two weight factors are
appended that contribute to the trade-off between accuracy
and diversity. (3) It can automatically trade-off accuracy and
diversity because these two weight parameters are learned
by a linear programming approach. Empirical results on 15
UCI datasets showed that ensemble selection via the WAD
measure produces significantly better results.

The structure of this paper is as follows. Section 2 intro-
duces the design of the new evaluation measure in detail.
Section 3 reports the experimental tests of the proposed
measure, including the corresponding process and final
results. The conclusions and discussion are summarized in
Section 4.

2. Method Design

The primary objective of this work is the design of a novel
ensemble-based measure to assess the ensemble quality of
the ensemble selection task. As mentioned in Section 1,
it is important to consider both accuracy and diversity
when assessing ensemble quality. To accomplish this, the
method integrates accuracy and diversity measurements in
a composite score, formulating a mathematical function
𝑄 = 𝑓(Acc,Div), where 𝑄, Acc, and Div denote ensemble
quality, accuracy and diversity, respectively. Three main
obstacles remain to be solved in the design of the measure.
(a) The method of calculating accuracy and diversity must
be determined. The new measure is expected to integrate
accuracy and diversity and, though a number of approaches
exist that can calculate both terms, the definitions must be
clear in preparation for the subsequent design. Section 2.1
gives the corresponding descriptions. (b) The form of the
new measure must be determined; that is, the function 𝑄 =
𝑓(Acc,Div) must be defined. Although several studies have
tried to find the solution to this question, there has been
no approach to date that has yielded a reasonable composite
form using both accuracy and diversity. The new measure
tackles this problem by proposing the harmonic mean form
to combine accuracy and diversity, as reported in Section 2.2.
(c) The method used to balance accuracy and diversity
must be determined. In the form of the new measure, two
weight parameters are used to balance accuracy and diversity.
Weight parameters control the importance of accuracy and
diversity.The trade-off process is equivalent to a weight value
assignment. Particularly, the weight should be adjusted to the
specific dataset. The new measure therefore employs a linear
programming technique to automatically estimate the weight
value, as described in Section 2.2.

2.1. Notations and Definitions. The common notations and
definitions summarized in the following are used in the
remainder of the paper. Let 𝐸 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
} be an

original ensemble containing𝑚base trained classifiers, where
the classifiers are either homogenous, that is, trained by
the same base classification algorithm, or heterogeneous,
that is, trained by different classification algorithms. Given
a validation dataset with 𝑘 samples, 𝐷 = {𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑘
},

where 𝑆
𝑖
= {(𝑥

𝑖
, 𝑦
𝑖
) | 𝑖 ∈ [1, 𝑘]} denotes both the 𝑖th

multidimensional input feature vector 𝑥
𝑖
and the label of the

𝑖th sample𝑦
𝑖
∈ {V
1
, V
2
, . . . , V

𝑙
}. Denote ℎ

𝑖
(𝑥
𝑗
) as the prediction

from the 𝑖th classifier𝐶
𝑖
in the ensemble on the 𝑗th sample 𝑥

𝑗

and 𝐻(𝑥
𝑗
) as the prediction of the original ensemble, 𝐸, for

𝑥
𝑗
.The prediction collection of all classifiers in𝐸 on the entire

dataset,𝐷, is represented by Preds = {ℎ
𝑖
(𝑥
𝑗
) | 0 < 𝑗 < 𝑘; 0 <

𝑖 < 𝑚}.
It is a straightforward concept that accuracy refers to

the correct rate. In the example of an individual classifier,
the accuracy on a certain dataset equals the quantity of
correct predictions over the total number of samples of the
dataset. For an ensemble, however, because the prediction is
a collective decision from a set of classifiers, there are various
types of accuracy, such as majority voting accuracy, average
voting accuracy, and weighted majority voting accuracy. In
this work, the most common approach is used, that is, the
simple majority (plurality) voting accuracy, to assess the
ensemble accuracy. The majority voting accuracy, summa-
rized in Notation 2, is attractive for and adaptable to this task
because it only needs to validate and collect statistics for the
predictions that are chosen by the majority of the classifiers.
Moreover, as one of the simplest and most intuitive ensemble
fusion techniques, the majority voting technique is widely
used among various ensemble methods, such as bagging [5]
and random forest [8].

Notation 1 (correct/incorrect (1/0) output). This type of
representation for prediction is well known as an oracle
output that only considers the correctness of the solution.
Oracle output is used in this study because “it incorporates
no a priori knowledge of the data and makes no assumption
on what the base classifier is” [21]. Hence, the oracle output
provides a general model for the following computation of
accuracy and diversity.The oracle output, 𝑜

𝑖
(𝑥
𝑗
), from the 𝑖th

classifier on 𝑗th sample, as shown in (1), will have an output
of 1 if the training sample 𝑥

𝑗
is classified correctly by the base

classifier 𝐶
𝑖
; otherwise the output is 0, expressed as follows:

𝑜
𝑖
(𝑥
𝑗
) = {

1, if ℎ
𝑖
(𝑥
𝑗
) = 𝑦
𝑗
,

0, otherwise.
(1)

Notation 2 (ensemble accuracy). Given an ensemble 𝐸 and a
dataset𝐷with 𝑘 samples, denote 𝑙 as the number of classifiers
from𝐸 that correctly recognize𝑥

𝑖
.The oracle output𝑂(𝑥

𝑖
) for

the ensemble 𝐸 using the simple majority voting for the input
sample, 𝑥

𝑖
, can be expressed by (2) as follows:

𝑂(𝑥
𝑗
) =

{
{

{
{

{

1, if 𝑙 > 𝑚 − 𝑙,
1 or 0, else if 𝑙 = 𝑚 − 𝑙,
0, otherwise,

(2)
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Table 1: Confusion matrix for two classifiers. (√) denotes the
correct prediction given by the classifier and (×) denotes incorrect
prediction.

𝐶
𝑗
(√) 𝐶

𝑗
(×)

𝐶
𝑖
(√) 𝑁

11
𝑁
10

𝐶
𝑖
(×) 𝑁

01
𝑁
00

where 𝑂(𝑥
𝑖
) ∈ {0, 1}; that is, 1 denotes that the ensemble

prediction is correct if the number of correct predictions, 𝑙,
is greater than the number of incorrect predictions, 𝑚 − 𝑙,
and 0 denotes the case when it is not true. When the number
of correct predictions is equal to the number of incorrect
predictions, the result is a random selection between 0 and 1.
Based on the ensemble oracle output, the ensemble accuracy,
acc, for the entire dataset, 𝐷, can be determined using (3) as
follows:

Acc =
∑
𝑘

𝑖=1
𝑂 (𝑥
𝑖
)

𝑘

,
(3)

where the final result is the sum of the ensemble oracle
outputs for all samples in the dataset over the size of the
dataset. The variable acc varies between 0 and 1, where the
higher score means that the ensemble is more accurate.

In the research field of ensemble learning, it is well known
that the base classifiers in the ensemble should be as diverse as
possible [4, 13, 23]. If a classifier output in the ensemblemakes
errors, it would be an advantage to have additional output
from other, different ensemble members. It is meaningless
to combine a set of duplicate classifiers. Diversity measures
the difference in the classifiers. Researchers have proposed
a variety of diversity measures, such as the Kohavi-Wolpert
variance [24], generalized diversity [24], and double-fault
measure [25]. In this study, the disagreementmeasure is used,
as illustrated in Notations 3 and 4, as proposed by Skalak
[26].Thismeasurewas selected because it is a widely accepted
measure to evaluate the diversity, and it has been applied to
many ensemble problems. For example, Ho [27] used it to
assess the diversity in a decision forest problem, and Lu et al.
[11] used it as the diversity measure to calculate the classifier
contribution in their study.

Notation 3 (confusion matrix for two classifiers). Assume
two classifiers, 𝐶

𝑖
and 𝐶

𝑗
, and their oracle predictions on 𝐷,

𝑜
𝑖
(𝑥
𝑘
). Table 1 shows a 2 × 2 confusion matrix that records

the statistics of four scenarios between two classifiers, where
𝑁
01 represents the number of cases in which the sample is

incorrectly predicted by 𝐶
𝑖
but correctly predicted by 𝐶

𝑗
,

𝑁
10 is the number of cases correctly predicted by 𝐶

𝑖
but

incorrectly predicted by𝐶
𝑗
, and𝑁00 and𝑁11 are the number

of cases in which the sample is incorrectly predicted by
both 𝐶

𝑖
and 𝐶

𝑗
and correctly predicted by both 𝐶

𝑖
and 𝐶

𝑗
,

respectively.

Notation 4 (ensemble diversity). Given a dataset 𝐷 with 𝑘
samples, based on the confusion matrix for two classifiers
as defined in Notation 3, div

𝑖,𝑗
denotes the diversity of the

pair of classifiers 𝐶
𝑖
and 𝐶

𝑗
. The diversity of two classifiers

is defined based on the intuition that two diverse classifiers
disagree with each other or perform differently on the same
data. The diversity therefore is the ratio between the number
of cases of disagreement (𝑁10 and𝑁01) and the total number
of all cases (𝑁00,𝑁11,𝑁10, and𝑁01) as follows:

div
𝑖,𝑗
=

𝑁
10
+ 𝑁
01

𝑁
00
+ 𝑁
11
+ 𝑁
10
+ 𝑁
01
. (4)

Extending (4) to the entire ensemble, 𝐸, with size 𝑚, Div
denotes the ensemble diversity, which is div

𝑖,𝑗
, averaged over

all pairs of classifiers using (5) as follows:

Div = 2

𝑚 (𝑚 − 1)

𝑚−1

∑

𝑖=1

𝑚

∑

𝑗=𝑖+1

div
𝑖,𝑗
. (5)

Because for any pair of classifiers in ensemble 𝐸,𝑁00 +𝑁11 +
𝑁
10
+ 𝑁
01
= 𝑘, (5) can be further reduced as follows:

Div = 2

𝑘 ⋅ 𝑚 (𝑚 − 1)

𝑚−1

∑

𝑖=1

𝑚

∑

𝑗=𝑖+1

(𝑁
10

𝑖,𝑗
+ 𝑁
01

𝑖,𝑗
) . (6)

Div varies between 0 and 1, where 0 indicates no difference
and 1 indicates the highest possible diversity.

2.2. Weighted Accuracy and Diversity Measure. As men-
tioned in Section 1, many studies have shown that ensemble
quality is strongly correlated with accuracy and diversity.
Additionally, the accuracy and diversity are not directly
proportional to the ensemble quality. Too high accuracy may
lead to the problem of overfitting; that is, the accuracy of
the validation dataset is increased, but worse predictions
are achieved on unseen data [28]. However, an ensemble
that is too diverse tends to comprise multifarious base
classifiers that may seriously reduce the overall ensemble
performance [21]. In addition, accuracy and diversity are
mutual restraint factors, where classifiers with high accuracy
put togethermay downgrade the complementarity (diversity)
and a highly diverse ensemble negatively affects accuracy.
There is thus a balance to be achieved between accuracy and
diversity that enhances the predictive ability of an ensemble
for unknown data. To obtain this balance, accuracy and
diversity measurements are integrated, forming a composite
form between accuracy and diversity. In other words, if
the results of accuracy and diversity for an ensemble have
been evaluated, this evaluation can determine if a certain
combinational way to generate a more rational score based
on those two results can be applied. Inspired by the well-
known evaluation method in information retrieval, that is,
the 𝐹-measure or 𝐹-score [7], considering both the precision
and the recall, the WAD ensemble evaluation measure is
developed. WAD is an acronym for weighted accuracy and
diversity and performs the evaluation score of the ensemble
quality by computing the harmonic mean of the accuracy
and diversity measurements. According to Sasaki [29], the
harmonicmean can create amore reasonable score to balance
two factors and is more intuitive than the arithmetic mean
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when computing amean of ratios. Particularly, different from
the form of the 𝐹-measure, two parameters are assigned,
𝛼 and 𝛽, representing the weight of accuracy and diversity,
respectively, balance the effects of two factors.The composite
form of measuring ensemble quality is therefore defined in
Lemma 1 as follows.

Lemma 1. Given an ensemble 𝐸 and a dataset 𝐷, let each
classifier in 𝐸 predict all samples in 𝐷, collecting their results
by 𝑃𝑟𝑒𝑑𝑠. The ensemble accuracy 𝐴𝑐𝑐 and the ensemble
diversity 𝐷𝑖V can be computed according to Notations 2 and
4, respectively. Denote the ensemble quality score as𝑊𝐴𝐷 and
the form by (7) as follows:

𝑊𝐴𝐷
𝛼,𝛽
(𝐴𝑐𝑐, 𝐷𝑖V) =

𝐴𝑐𝑐 ⋅ 𝐷𝑖V
𝛽 ⋅ 𝐴𝑐𝑐 + 𝛼 ⋅ 𝐷𝑖V

, (7)

where 𝛼 and 𝛽 are two weight parameters that control the
importance of accuracy and diversity, respectively. The sum of
the two weight parameters equals 1. If the measure focuses more
on accuracy, the value of 𝛼 should be greater than 𝛽. If the
measure focuses more on diversity, 𝛼 should be less than 𝛽.

Given two weights, 𝛼 and 𝛽, associated with the accuracy
and diversity measurements, Acc and Div, respectively, the
weighted harmonicmean (WHM) is defined by (8) as follows:

WHM (Acc,Div) =
∑
𝜔∈{𝛼,𝛽}

𝜔

∑
𝜔∈{𝛼,𝛽};𝑥∈{Acc,Div} (𝜔/𝑥)

=

𝛼 + 𝛽

𝛼/Acc + 𝛽/Div

=

Acc ⋅ Div
𝛽 ⋅ Acc + 𝛼 ⋅ Div

.

(8)

The formula derived in (8) is exactly the same as the form
of the WAD measure. The ensemble quality increases with
the increasing value of WAD score. The WAD score varies
between 0 and 1, where it reaches its best value at 1 and worst
value at 0.

When calculating theWADmeasure, the ensemble accu-
racy Acc and ensemble diversity Div can be computed using
Notations 2 and 4. However, for the two weight parameters,
𝛼 and 𝛽, a solution must be proposed to determine their
adaptable values. In the rest of this subsection, the estima-
tion of the weight parameters will be discussed. The WAD
measure employs the two parameters to balance accuracy and
diversity. A straightforward approach is to manually preset
the values. However, such a hard-coded approach is irra-
tional and lacks theoretical support because the ensembles
are applied to different datasets and should therefore have
specific optimal weight values. Ideally, the values should be
adjusted to the dataset and could be automatically estimated
from the data. In fact, the weight parameter estimation for
WADcanbe formulated to a constrained linear programming
problem, as described by Lemma 2.

Lemma 2. Assume the current ensemble 𝐸 with 𝑚 classifiers
and the predictions 𝑃𝑟𝑒𝑑𝑠 of each classifier in 𝐸 on the

validation dataset 𝐷. The ensemble accuracy 𝐴𝑐𝑐 has been
computed using Notation 2, and the diversity 𝐷𝑖V has been
computed using Notation 4. The estimation of the weight
parameters (𝛼 and 𝛽) can then be formulated as a linear
programming problem, and the corresponding mathematical
programming formulation is as follows:

max
𝛼,𝛽

(𝐴𝑐𝑐 ⋅ 𝐷𝑖V)
𝛽 ⋅ 𝐴𝑐𝑐 + 𝛼 ⋅ 𝐷𝑖V

s.t. 𝛼 + 𝛽 = 1

𝑖𝑓 𝐴𝑐𝑐 > 𝐷𝑖V,
𝛼

𝛽

≤

𝐴𝑐𝑐

𝐷𝑖V

𝑒𝑙𝑠𝑒,

𝛼

𝛽

≥

𝐴𝑐𝑐

𝐷𝑖V

0 ≤ 𝛼, 𝛽 ≤ 1.

(9)

The objective function of this problem is expressed by maximiz-
ing the WAD score, where 𝐴𝑐𝑐 and 𝐷𝑖V in this case are two
constants. Meanwhile the objective function is subject to three
constraints, that is, the equality 𝛼 + 𝛽 = 1, and the inequalities
if𝐴𝑐𝑐 > 𝐷𝑖V, 𝛼/𝛽 ≤ 𝐴𝑐𝑐/𝐷𝑖V, else, 𝛼/𝛽 ≥ 𝐴𝑐𝑐/𝐷𝑖V and 0 ≤ 𝛼,
𝛽 ≤ 1, that specify a convex polytope to be optimized. The
second constraint is defined according to the intuition that the
results of accuracy and diversity are simultaneously required
to be as large as possible. If the accuracy result is greater than
the diversity result, let the ratio between 𝛼 and 𝛽 be less than
or equal to the ratio between accuracy and diversity. If the
accuracy result is less than the diversity result, then the ratio
between 𝛼 and 𝛽 should be greater than or equal to the ratio
between accuracy and diversity.

The function in (9) is a very typical linear programming
problem. We can optimize it using the simplex algorithm in
[30], developed by Dantzig in 1947, which solves the problem
by forming a feasible solution at a vertex of the polytope and
then walking along a path on the edges of the polytope to
vertices with nondecreasing values of the objective function
until an optimum is reached.

The pseudocode of the WAD measure is presented in
Pseudocode 1. For computing theWAD score of an ensemble,
an original ensemble𝐸with𝑚 base classifiers and a validation
dataset𝐷with 𝑘 instances should be provided.The computa-
tion starts from collecting predictions ℎ

𝑖
(𝑥
𝑗
) of each classifier

𝐶
𝑖
in the ensemble 𝐸 on each data sample 𝑆

𝑗
in validation

dataset𝐷.The results are recorded in Preds.The accuracyAcc
of the ensemble 𝐸 is then computed based on the prediction
results Preds and the approach in Notation 2. Similarly, the
diversity Div of the ensemble 𝐸 is computed according to
Notation 4 in Preds. Afterwards, the linear programming
algorithm is used to estimate the weight parameter values 𝛼
and 𝛽. In the last step, the WAD score is calculated using (7).

3. Evaluation

In this section, the effectiveness of the WAD measure is
investigated in ensemble selection tasks. Coupled with two
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Input:
(1) Original ensemble withm classifiers: 𝐸 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
}

(2) Validation dataset: 𝐷 = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
}

Define:
(1) Classifier predictions: Preds
(2) Ensemble accuracy: Acc
(3) Ensemble diversity: Div
(4) The weight parameters: 𝛼 and 𝛽

Output:
(1) WAD: ensemble quality score

Begin
(1) For each 𝐶

𝑖
in ensemble E:

for each 𝑆
𝑗
invalidation dataset D:

get the jth classifier 𝐶
𝑖
’s prediction ℎ

𝑖
(𝑥
𝑗
) on 𝑆

𝑗
and put it in Preds

end for
End For

(2) Compute accuracy Acc of E according to Notation 2
(3) Compute diversity Div of E according to Notation 4
(4) Estimate 𝛼 and 𝛽 according to Lemma 2
(5) Compute the score by

WAD = Acc ⋅ Div
𝛽 ⋅ Acc + 𝛼 ⋅ Div

End;

Pseudocode 1: The pseudocode to compute the WAD score.

existing representative ensemble evaluation measures and
two threshold measures, the proposed measure was com-
bined with two heuristic search algorithms for conducting
ensemble selection on 15 UCI benchmark datasets. In the
following subsections, the setting of the experiments is
introduced, and the results of the comparison experiments
are reported.

3.1. Experimental Settings. The experimental datasets are
taken from the UCI machine learning repository [31]. In the
experiments, 15 different datasets are chosen for the evalua-
tion. The characteristics of the various datasets are shown in
Table 2. To avoid bias, the datasets are selected as follows: (a)
four small-size datasets with less than 500 instances, that is,
hepatitis, autos, heart-statlog, and ionosphere; (b) sixmedium-
size datasets with 500–3,000 instances, that is, credit, diabetes,
vehicle, car, cmc, and segment; (c) five large-size datasets
withmore than 2,000 instances, that is, kr-vs-kp, hypothyroid,
waveform-5000, page-blocks, and nursery. In addition, the
experimental datasets cover six binary-class problems and
nine multiclass problems. All datasets have removed the
samples with missing values. The experimental workbench
is WEKA [32], a popular suite of machine learning software
written in Java, developed at the University of Waikato.

Initially, each dataset is divided into three disjunctive
parts, that is, the training set, validating set, and testing set,
each containing 40%, 40%, and 20% of the samples, respec-
tively. The training set is for original ensemble production,
the validatingset is for ensemble selection and the testing
set is for selected ensemble evaluation. The proportionate
stratified sampling is employed to guarantee the balance of

class distribution in the three divided sets. Based on the
training set, the original ensemble is produced with 200 base
classifiers generated using the bagging method [5], where
200 diverse datasets are randomly generated by drawing with
replacement amongst 𝑁, where 𝑁 is the size of the original
training set, and then trained up the corresponding 200 base
classifiers by the unpruned J48 decision tree, a variant of C4.5
[2].

For the comparison, two existing representative ensemble
evaluation measures are used, that is, the Kappa-Error Con-
vex Hull Pruning measure [13] and the GenDiv [33] measure,
because their objective is similar to theWADmeasure objec-
tive. The former is a typical evaluation measure for ensemble
selection, considering accuracy and diversity. Several studies
[10, 33] employed this method as an important comparison
candidate. The latter is the latest representative measure that
trades off accuracy and diversity. In addition to those two
candidates, two additional threshold measures are used, Acc-
Only and Div-Only.The first one takes only the accuracy into
consideration, and the quality score is computed according to
Notation 2. The second one only assesses the quality score by
the diversity, according to Notation 4.

All five candidates of evaluation measure are compared
using two common heuristic search algorithms, that is, the
genetic algorithm and the forward hill-climbing algorithm, to
conduct ensemble selection on the validating set.The genetic
algorithm, inspired by evolution and developed by John Hol-
land [1] at theUniversity ofMichigan in the 1970s, can be used
to yield useful solutions to optimization and search problems.
To use a genetic algorithm, the solution for a specific problem
should be projected to a genome or chromosome.The genetic
algorithm randomly generates a population of chromosomes
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and utilizes genetic operators such as mutation and crossover
operators to evolve the population, producing more diverse
chromosomes to find the best one. This search approach
has been applied in many ensemble selection tasks [14, 15,
33]. The forward hill-climbing algorithm [34] belongs to a
greedy search class of algorithms that focuses on adding or
removing a specific classifier such that the improvement in
the ensemble performance is maximal. The searching starts
from a single best classifier and seeks a pair of classifiers
that maximally increases the ensemble performance at each
round. As one of the most effective search algorithms, it is
also widely used in ensemble selection tasks [13, 16, 17, 35]. In
this experiment, the evaluation measures are considered the
objective or evaluation function in the search algorithms.The
parameters of the search algorithms are set as follows.

(i) GA: the population size is 50, the crossover rate is 0.8,
themutation rate is 0.7, and the termination condition
is no improvement for 100 iterations.

(ii) FHC: the direction is forward, and the termination
condition is that it stops at convergence.

Simplemajority voting is used to combine the predictions
of the selected ensemble on the test set. The size of the
resulting ensemble and its classification correct rate of the test
data using the combination method are recorded. The whole
experiment is performed 10 times for each dataset, and the
results are averaged.

3.2. Ensemble Size Evaluation. Tables 3 and 4 show the
average size of the ensemble selected by all five evaluation
measures, that is, WAD, Kappa-Error, GenDiv, Acc-Only and
Div-Only, equipped with the two search algorithms, GA and
FHC,for the 15 UCI datasets. The last column (No-Selection)
of the table lists the size of the original ensemble, and the
bottom row reports the average size across all datasets for
each measure. The results show that the average size of
ensemble selected via the WAD measure ranks in the exact
middle of the pack. In the GA search case, the greatest
reduction with respect to the original ensemble occurs for
Acc-Only, where the average ensemble size is 10.6. TheWAD
case is in third place, where the size is 24.3, showing a
reduction of approximately 12% from the original ensemble.
A similar scenario occurs in the FHC search case, where
the average ensemble size of WAD is 23.3, also showing an
approximate reduction of 12%. The results of the selected
ensemble size are shown to testify that, for a selected classifier
in the ensemble, sufficient classifiers are more essential than
less ones in an ensemble. According to a previous experiment
[35], the selected ensemble size and predictive performance
are not strongly correlated. Although ensemble selections via
other measures such as Kappa-Error and Acc-Only exhibit
a greater reduction in ensemble size, there are fewer than
five classifiers left in several cases, indicating that such a
situation may be unreasonable and unreliable. Breiman [5]
and Opitz and Maclin [36] proposed that in most ensemble
cases, most or all of the generalization can be gained in a well-
constructed ensemble with 25 base classifiers. The results in
Tables 3 and 4 demonstrate that the WAD results (24.3 and

Table 2: Experimental datasets from the UCI Repository.

No. Name Feature Instance Class
1 Hepatitis 19 155 2
2 Autos 26 205 6
3 Heart-statlog 13 270 2
4 Ionosphere 34 350 3
5 Credit 15 690 2
6 Diabetes 8 768 2
7 Vehicle 18 946 4
8 Car 6 1728 4
9 cmc 9 1473 3
10 Segment 19 2310 7
11 kr-vs-kp 36 3196 2
12 Hypothyroid 29 3772 4
13 Waveform-5000 40 4999 3
14 Page-blocks 10 5473 5
15 Nursery 7 12960 5

23.3) fit this golden size. In addition to the ensemble size,
good quality is a better target for the classifier. The following
experimental results validate that the ensemble selection via
the WAD measure can generate the ensemble not only with
reasonable size but also with robust performance.

3.3. Ensemble Quality Evaluation. Tables 5 and 6 summa-
rize the predictive performance for 15 datasets with all
five candidate evaluation measures, that is, WAD, Kappa-
Error, GenDiv, Acc-Only, and Div-Only. Table 5 reports the
classification correct rate with ensemble selection using the
GA search method, and Table 6 reports the classification
correct rate using the FHC search method. The last column,
No-Selection, in both tables, indicates the performance of the
original ensemble without any ensemble selection process.
Each cell in these two tables records the mean and standard
deviation value of the 10 runs of the experiment. The bottom
row illustrates the win/loss/tie summary that is computed
using a pairwise t-test at 95% significance level. To compre-
hensively probe the proposed measure, three comparisons
are made based on the empirical results in Tables 5 and
6. (1) WAD versus No-Selection. The ensemble selected via
the WAD measure outperforms the original ensemble in the
overwhelming majority of cases, where WAD + GA achieved
13 significant wins and WAD + FHC achieved 12 significant
wins among 15 datasets. Furthermore, there is not a single
case of significant loss. Although theWAD on three datasets,
that is, car, segment and kr-vs-kp, does not win significantly,
it is still comparable toNo-Selection.This comparison reveals
that ensemble selection using the WAD measure can dra-
matically upgrade the predictive performance compared to
original ensembles. It further shows that fewer classifiers can
be employed to preserve or even improve predictive ability.
(2) WAD versus Acc-Only and Div-Only, because the goal of
the WAD measure is to balance accuracy and diversity, the
comparison with the two threshold cases that consider either
accuracy or diversity enables the direct demonstration of
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Figure 1: The curves of the classification correct rate on four representative datasets: credit-a, page-blocks, autos, and cmc. The left graphs
report the ensemble selection cases using FHC search, while the right ones using GA search.



The Scientific World Journal 9

Table 3: The average size of ensembles selected by candidate measures and GA.

Dataset WAD Kappa-Error GenDiv Acc-Only Div-Only No-Selection
Hepatitis 23 11 40 10 25 200
Autos 20 22 34 9 32 200
Heart-statlog 28 13 46 8 34 200
Ionosphere 30 10 34 13 45 200
Credit-a 25 5 34 15 56 200
Diabetes 27 12 34 12 125 200
Vehicle 22 3 27 14 111 200
Car 23 23 32 7 78 200
cmc 26 17 89 6 65 200
Segment 25 19 78 1 34 200
kr-vs-kp 20 16 45 6 43 200
Hypothyroid 29 2 78 18 76 200
Waveform 19 9 10 16 56 200
Page-blocks 24 20 34 11 12 200
Nursery 23 7 65 13 34 200
Average 24.3 12.6 45.3 10.6 55.1 200

Table 4: The average size of subensembles selected by candidate measures and FHC.

Dataset WAD Kappa-Error GenDiv Acc-Only Div-Only No-Selection
Hepatitis 27 5 31 9 59 200
Autos 21 12 36 14 43 200
Heart-statlog 20 23 56 11 54 200
Ionosphere 17 4 53 10 65 200
Credit-a 27 3 40 15 34 200
Diabetes 25 9 26 3 66 200
Vehicle 29 18 29 13 56 200
Car 18 11 19 9 69 200
cmc 22 18 43 2 45 200
Segment 24 10 109 4 43 200
kr-vs-kp 25 9 69 9 12 200
Hypothyroid 23 25 33 12 34 200
Waveform 15 10 30 27 78 200
Page-blocks 29 16 37 6 45 200
Nursery 28 7 36 4 78 200
Average 23.3 12 43.1 9.9 52.1 200

the performance of the WAD measure with respect to them.
To date, no sufficient evidence has been published to sup-
port that Acc-Only or Div-Only outperforms No-Selection.
Both threshold methods produced poorer results than No-
Selection over seven datasets in Tables 5 and 6. This result
verified the commonly accepted hypothesis that to consider
only accuracy or diversity in ensemble selection is inadequate
for producing good classifiers andmay degrade the predictive
performance.TheWADpredictions are superior to Acc-Only
and Div-Only in most of the cases. As shown in Tables 5 and
6, there is only one (6%) significant loss, and the average rate
of significant wins is approximately 75%. In particular, for the
significant loss cases (20 in total) when comparing Acc-Only
(9 cases) or Div-Only (11 cases) against No-Selection, WAD
is still able to come out ahead. This result shows that taking

both accuracy and diversity into consideration helps improve
the quality of the ensemble selection task. (3) WAD versus
Kappa-Error and GenDiv, this comparison is performed
between WAD and two state-of-the-art evaluation measures,
that is, Kappa-Error and GenDiv. WAD outperforms Kappa-
Error andGenDiv on ten and nine datasets out of fifteen cases
under both search methods.The results in Tables 5 and 6 also
show that the maximum number of significant losses is only
two, made with GenDiv.

In summary, under the same search algorithm, the
performance of ensemble selection relies strongly on the
evaluation measure.The experimental results clearly demon-
strate that WAD outperforms other evaluation measures by
simultaneously considering both accuracy and diversity, as
well as balancing their influence in assessing the ensemble
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Table 5:The classification correct rate (%) of subensembles selected by candidatemeasures andGAusing a pairwise t-test at a 95% significance
level.

Dataset WAD Kappa-Error GenDiv Acc-Only Div-Only No-Selection
Hepatitis 85.31 ± 1.5 81.09 ± 1.65 (5.98) 78.21 ± 1.1 (12.07) 79.2 ± 0.82 (11.3) 86.25 ± 0.97 (−1.67) 80.76 ± 2.14 (5.5)
Autos 79.67 ± 0.92 81.13 ± 0.23 (−4.87) 74.66 ± 0.86 (12.58) 79.86 ± 2.52 (−0.23) 77.48 ± 0.52 (6.55) 75.61 ± 3.25 (3.8)
Heart-statlog 85.5 ± 2.14 83.47 ± 0.5 (2.92) 83.67 ± 1.01 (2.44) 83.25 ± 2.26 (2.28) 79.84 ± 2.28 (5.72) 81.3 ± 0.94 (5.68)
Ionosphere 93.86 ± 1.27 92.07 ± 1.94 (2.44) 95.19 ± 1.42 (−2.21) 93.58 ± 0.88 (0.57) 92.06 ± 2.1 (2.31) 91.72 ± 1.75 (3.12)
Credit-a 88.63 ± 1.29 86.82 ± 0.98 (3.53) 86.37 ± 2.69 (2.39) 86.81 ± 0.6 (4.04) 84.03 ± 0.54 (10.4) 85.62 ± 2.34 (3.56)
Diabetes 83.78 ± 0.87 83.77 ± 0.4 (0.03) 79.75 ± 2.66 (4.55) 75.86 ± 0.78 (21.43) 72.77 ± 2.42 (13.53) 77.54 ± 2.43 (7.64)
Vehicle 78.67 ± 0.69 74.7 ± 1.24 (8.84) 74.65 ± 1.29 (8.68) 70.28 ± 2.31 (11) 71.45 ± 1.01 (18.66) 74.76 ± 1.87 (6.2)
Car 94.81 ± 1.16 92.71 ± 0.71 (4.88) 95.05 ± 0.61 (−0.58) 89.97 ± 0.4 (12.47) 95.18 ± 2.6 (−0.42) 93.7 ± 2.01 (1.51)
cmc 70.34 ± 1.43 54.41 ± 1.24 (26.61) 71.87 ± 0.33 (−3.3) 64 ± 2.09 (7.91) 59.19 ± 2.86 (11.02) 53.31 ± 1.4 (26.91)
Segment 98.58 ± 1.76 97.58 ± 2.79 (0.95) 97.78 ± 0.33 (1.41) 98.67 ± 0.49 (−0.16) 93.77 ± 1.13 (7.27) 97.49 ± 0.46 (1.89)
kr-vs-kp 97.09 ± 0.35 96.07 ± 1.91 (1.66) 96.04 ± 2.39 (1.37) 91.66 ± 2.52 (6.74) 93.13 ± 1.05 (11.31) 95.28 ± 0.65 (7.75)
Hypothyroid 93.22 ± 0.68 90.28 ± 1.35 (6.15) 89.45 ± 1.73 (6.41) 89.84 ± 1.9 (5.29) 88.98 ± 1.65 (7.51) 90.4 ± 0.69 (9.2)
Waveform 86.06 ± 1.42 86.08 ± 0.4 (−0.05) 83.68 ± 0.36 (5.13) 80.42 ± 1.72 (7.99) 84.05 ± 0.28 (4.39) 83.6 ± 1.58 (3.66)
Page-blocks 95.8 ± 1.22 92.92 ± 1.79 (4.2) 96.16 ± 0.21 (−0.92) 95.92 ± 2.51 (−0.14) 91.67 ± 2.4 (4.85) 93.57 ± 1.77 (3.28)
Nursery 95.02 ± 0.99 93.45 ± 2.46 (1.87) 92.56 ± 1.51 (4.3) 93.41 ± 1.73 (2.55) 95.52 ± 1.66 (−0.82) 92.41 ± 1.56 (4.46)
Absolute w/l/t 13/2/0 11/4/0 12/3/0 12/3/0 15/0/0
Significant w/l/t 9/1/5 9/2/4 11/0/4 12/0/3 13/0/2

Table 6:The classification correct rate (%) of subensembles selected by candidate measures and forward hill-climbing search algorithm using
a pairwise t-test at a 95% significance level.

Dataset WAD Kappa-Error GenDiv Acc-Only Div-Only No-Selection
Hepatitis 83.64 ± 1.48 79.7 ± 1.61 (5.69) 76.24 ± 2.1 (9.1) 78.55 ± 2.47 (5.58) 83.82 ± 0.9 (−0.33) 80.76 ± 0.35 (5.98)
Autos 81.1 ± 0.74 83.99 ± 2.75 (−3.21) 71.66 ± 1.77 (15.56) 82.88 ± 2.21 (−2.42) 78.18 ± 0.93 (7.76) 75.61 ± 0.29 (21.84)
Heart-statlog 85.94 ± 2.52 84.72 ± 2.28 (1.13) 82.23 ± 0.71 (4.48) 86.94 ± 2.67 (−0.87) 77.94 ± 1.97 (7.9) 81.3 ± 0.14 (5.81)
Ionosphere 93.61 ± 1.6 93.68 ± 0.12 (−0.14) 93.7 ± 0.58 (−0.17) 90.81 ± 1.18 (4.45) 89.41 ± 1.39 (6.26) 91.72 ± 1.56 (2.67)
Credit-a 91.01 ± 1.07 87.22 ± 0.24 (10.92) 88.96 ± 1.61 (3.35) 87.16 ± 2.09 (5.18) 84.87 ± 0.52 (16.32) 85.62 ± 1.41 (9.62)
Diabetes 83.26 ± 2.64 80.58 ± 1.77 (2.66) 80.42 ± 2.67 (2.39) 75.31 ± 1.56 (8.19) 73.56 ± 2.35 (8.67) 77.54 ± 1.9 (5.56)
Vehicle 81.03 ± 0.31 76.67 ± 0.99 (13.29) 74.12 ± 0.13 (65) 72.45 ± 2.61 (10.32) 71.52 ± 1.84 (16.11) 74.76 ± 2.7 (7.29)
Car 94 ± 0.53 92.16 ± 2.95 (1.94) 93.8 ± 1.22 (0.47) 91.82 ± 2.25 (2.98) 94.97 ± 2.16 (−1.38) 93.7 ± 1.65 (0.54)
cmc 69.02 ± 1.45 51.62 ± 1.98 (22.42) 71.88 ± 0.68 (−5.65) 64.18 ± 2.77 (4.89) 60.48 ± 2.06 (10.72) 53.31 ± 1.58 (23.16)
Segment 97.73 ± 1.67 95.03 ± 2.57 (2.78) 98.98 ± 0.07 (−2.37) 97.26 ± 0.37 (0.86) 91.41 ± 1.37 (9.25) 97.49 ± 1.02 (0.38)
kr-vs-kp 94.99 ± 1.82 96.89 ± 1.28 (−2.71) 94.9 ± 1.86 (0.1) 92.01 ± 2.08 (3.4) 92.52 ± 1.89 (2.97) 95.28 ± 1.78 (−0.37)
Hypothyroid 94.07 ± 0.78 91.04 ± 0.42 (10.81) 89.88 ± 0.81 (11.78) 91.43 ± 2.69 (2.98) 94.72 ± 0.87 (−1.76) 90.4 ± 1.39 (7.28)
Waveform 88.49 ± 1.87 83.23 ± 2.04 (6.01) 81.93 ± 0.47 (10.75) 83.03 ± 2.75 (5.19) 81.27 ± 0.35 (12) 83.6 ± 1.74 (6.05)
Page-blocks 95.93 ± 0.22 90.01 ± 1.11 (16.54) 96.08 ± 0.61 (−0.74) 96.1 ± 0.57 (−0.88) 96.27 ± 0.64 (−1.59) 93.57 ± 2.54 (2.92)
Nursery 94.56 ± 0.26 92.04 ± 2.3 (3.44) 92.81 ± 1.97 (2.78) 90.63 ± 2.82 (4.38) 93.07 ± 0.5 (8.36) 92.41 ± 0.19 (21.11)
Absolute w/l/t 12/3/0 11/4/0 12/3/0 11/4/0 14/1/0
Significant w/l/t 10/2/3 9/2/4 11/1/3 11/0/4 12/0/3

quality. The measure is capable of computing a rational score
to guide good ensemble selection. The comparison results
with Acc-Only and Div-Only strongly support this. Further-
more, unlike Kappa-Error and GenDiv, the balance between
accuracy and diversity in WAD is performed in a way that
the accuracy and diversity weights are learned automatically
from the validating set.The learned parameters therefore can
better represent the characteristics of the given datasets and
maximally contribute to performance improvement.

3.4. Analysis of Four Representative Cases. In this subsection,
four representative datasets were extracted according to the
empirical results of Tables 5 and 6: (a) credit-a, the case
in which WAD outperforms all other approaches; (b) page-
blocks, the case in which WAD did not outperform both
Acc-Only and Div-Only; (c) autos, the case in which Kappa-
Error outperforms WAD; and (d) cmc, the case in which
GenDiv outperforms WAD. Figure 1 shows the curves of
average correct rate for these four datasets with respect to
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the specific original ensemble size. The same experimental
settings are used as in the previous experiments, but the
size of the original ensemble is increased progressively (the
ensemble size ranged from 3 to 400).

The first observed target is focused on the baseline case
of No-Selection, in which, with the increase in the ensem-
ble size, the classification correct rate grows placidly until
approximately 30 classifiers. The ensemble then begins to
overfit with large ensemble sizes (>30), and the improvement
appears to become nearly asymptotic to a plateau. This phe-
nomenon is consistent with the claim in the ensemble selec-
tion community that combining all of the original ensembles
does not always give better performance [9, 11, 14, 20, 35].
The second observed target is shifted to the five ensemble
selection cases, that is, WAD, Kappa-Error, GenDiv, Acc-
Only, and Div-Only. The ensemble selections with ascending
original ensemble size allow an easier verification of the
generalization ability of the ensemble selection. Intuitively,
a larger ensemble should provide more classifier candidates
for constructing a better subensemble. At the same time,
however, the chances of picking “bad” classifiers for the
subensemble are improved. The delicate ensemble selection
measures therefore tend to produce unfavorable results in
this situation, and the selected ensemble performs worse
than the original ensemble. Figure 1 shows that the ensemble
selection viaWADgave the best performance on each dataset.
It not only achieved the advantages of the datasets, as shown
in Figure 1(a), where WAD outperformed others in the last
experiment, but the ensemble selection also retrieved the
situation when the other measures outperformed WAD, as
shown in Figures 1(b) and 1(d). This outcome shows that the
WAD measure allows the corresponding ensemble selection
to achieve high generalization ability. There was only one
exceptional case found, in Figure 1(c), when the Kappa-Error
performed better than WAD when conducting the ensemble
selection with GA search. In reality, it is impossible and
unrealistic to request the new measure to be superior to all
others under whatever circumstances.

4. Conclusion and Future Works

This study introduces a novel and effective evaluation mea-
sure, that is, the weighted accuracy and diversity (WAD),
for the ensemble selection task. The goal of the proposed
measure is to assess the ensemble quality with respect to the
whole ensemble. Simultaneously considering and balancing
accuracy and diversity are the best solution for the ensemble
quality evaluation. To achieve this goal, the proposedmeasure
performs the evaluation in a different way such that the final
quality score for an ensemble is a combination of accuracy
and diversitymeasurement. Inspired by the𝐹-measure evalu-
ation approach in information retrieval, the ensemble quality
score is determined by computing the harmonic mean of
accuracy and diversity. Additionally, two weight parameters
are assigned to balance accuracy and diversity. Another
feature of the proposed measure is that the values of the
weight parameter are automatically learned from the data.
Experimental comparisons on 15 UCI datasets indicate that

ensemble selection via the WAD measure can produce the
ensemble with a reasonable size and robust performance and
that WAD performs better than three baseline cases, that is,
No-Selection, Acc-Only, and Div-Only, and better than two
existing measures, that is, Kappa-Error and GenDiv.

Several improvements of the current version of the mea-
sure are possible. First, to compute accuracy and diversity, the
scope of this study is limited to two specificmethods,majority
voting accuracy and disagreement diversity. However, the
question of employing other accuracy and diversity meth-
ods while achieving favorable results can still be answered.
Second, the balance between accuracy and diversity is still
a controversial issue. In this paper, the problem is resolved
using a value assignment for the weights 𝛼 and𝛽.Their values
are adjusted to the validating set using a linear programming
technique. However, advance knowledge of the result of
accuracy and diversity is required to apply the technique. An
interesting improvement would be to trade off the accuracy
and diversity when computing them. Third, in addition to
accuracy and diversity, there may be other factors that can
be used to help evaluate ensemble quality. If so, what are
they, and what is their form? Future works will involve
evaluating the current version of the WAD measure in other
ensemble selection tasks that work on different datasets,
original ensembles, and search algorithms and optimizing the
current version to find a better version of the WAD measure
by considering these possible improvements.
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