
A novel stroke lesion network mapping
approach: improved accuracy yet still low
deficit prediction

Lorenzo Pini,1 Alessandro Salvalaggio,1,2 Michele De Filippo De Grazia,3

Marco Zorzi,3,4 Michel Thiebaut de Schotten5,6 and Maurizio Corbetta1,2,7

Lesion network mapping estimates functional network abnormalities caused by a focal brain lesion. The method requires embed-

ding the volume of the lesion into a normative functional connectome and using the average functional magnetic resonance imaging

signal from that volume to compute the temporal correlation with all other brain locations. Lesion network mapping yields a map

of potentially functionally disconnected regions. Although promising, this approach does not predict behavioural deficits well. We

modified lesion network mapping by using the first principal component of the functional magnetic resonance imaging signal com-

puted from the voxels within the lesioned area for temporal correlation. We measured potential improvements in connectivity

strength, anatomical specificity of the lesioned network and behavioural prediction in a large cohort of first-time stroke patients at

2-weeks post-injury (n¼123). This principal component functional disconnection approach localized mainly cortical voxels of

high signal-to-noise; and it yielded networks with higher anatomical specificity, and stronger behavioural correlation than the

standard method. However, when examined with a rigorous leave-one-out machine learning approach, principal component func-

tional disconnection approach did not perform better than the standard lesion network mapping in predicting neurological deficits.

In summary, even though our novel method improves the specificity of disconnected networks and correlates with behavioural defi-

cits post-stroke, it does not improve clinical prediction. Further work is needed to capture the complex adjustment of functional

networks produced by focal damage in relation to behaviour.
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Introduction
Pathological or traumatic events deeply affect the human

brain’s functional architecture, triggering both local and

distal reshaping of its intrinsic organization.1–6 These

alterations can be estimated non-invasively through rest-

ing-state fMRI that measures the synchronization of the

blood oxygenation level-dependent (BOLD) signal fluctua-

tions between brain regions at rest. This functional con-

nectivity (FC) proxy reveals the underlying structure of

large-scale networks involved in cognitive and sensory

processes,7–10 which exhibit selective vulnerability to sev-

eral pathological events.

Strokes cause changes in the FC, specifically reducing

inter-hemispheric connectivity and increasing intra-hemi-

spheric connectivity between networks usually segregated

(i.e. the default mode network—DMN—and the dorsal

attention network) (for a review, see Corbetta et al.11).

Notably, FC changes correlate with acute behavioural

deficits and recovery.12,13 Thus, FC may be used, in

principle, as a biomarker of recovery and to monitor

therapy.14,15 However, robust FC analyses require signifi-

cant scanning time (at least 15 min),16 are prone to arte-

facts (e.g. motion in the scanner), and require extensive

pre-processing and statistical knowledge. As such, there is

no key-ready package available in the clinical arena.

Recently, several methods have been introduced to esti-

mate (indirectly) structural or functional network abnor-

malities from clinical scans. One of these methods, lesion

network mapping (LNM), uses the topological informa-

tion of lesions to derive binary seeds region-of-interest

(ROIs) used to measure FC between the lesion and the

rest of the brain.17 The resulting whole-brain functional

maps are considered representative of the functional dis-

connection caused by the lesion on large-scale brain net-

works.18 This approach has been extensively used to

describe network abnormalities of several conditions char-

acterized by focal damage. More broadly, it is a general-

purpose method to estimate functional network deficits

from clinical scans.17–22
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However, a debate recently flared up on the possible

limitations of LMN.23–28 Some pitfalls regard statistical

issues of sample size or thresholds applied to individual

subject maps.28 Our group showed that LNM prediction

of post-stroke behavioural deficits was significantly lower

than lesion topography and indirect structural disconnec-

tion,29 a method similar to LNM but applied to diffusion

tractography.30

There are several possibilities to explain LNM failure

to predict post-stroke behavioural deficits. First, stroke

lesions can affect physiology of distant regions through

anatomical disconnection. In addition, they can cause al-

teration of functional interactions, especially between

regions that are secondarily connected with the area of

damage.11 LNM estimates regions and networks that are

directly disconnected but does not consider changes in

functional interactions of regions that are not directly

linked to the lesion, e.g. through polysynaptic pathways.

Recent studies show that these adjustments in functional

interaction significantly contribute to behavioural dys-

function accounting for large proportions of variance

across subjects.4,11,13,31 Second, stroke lesions might in-

volve both grey (GM) and white matter (WM).31,32 WM

BOLD signals are about 1=4 to 1=2 lower amplitude than

in GM,33,34 and can be drastically influenced by physio-

logical noise.35 Therefore, since in LNM an averaged

BOLD signal time-course is estimated from the whole le-

sion (both GM and WM), we and others have argued

that the following whole-brain temporal correlation maps

may be noisy and not anatomically accurate.23,25

Different approaches can be applied, such as masking

with GM template.36,37 However, this procedure has sev-

eral limitations. A simple mask would not consider the

variability of BOLD signal. Moreover, lesions located en-

tirely in the WM would be excluded from the analysis.

This might be problematic in stroke, which is predomin-

antly concentrated in subcortical and central WM.31,38

Moreover, although the functional role of WM BOLD

signals remains controversial, preliminary evidence

reported an intrinsic functional organization of WM

linked with cognitive functions.39,40

To partially solve these issues, we present a modified

principal component-functional disconnection (PC-FDC)

method to estimate brain-wide disconnection from focal

lesions. As in standard LNM, we embed each patient’s le-

sion in a normative healthy subject fMRI atlas dataset

using the lesion as a ROI. However, rather than using

the whole lesion, we first apply a principal component

analysis (PCA) to the mean signal time-courses from each

voxel within the lesion. This procedure selects only the

voxels with the most similar time-course (first principal

component, PC1). We compute whole-brain temporal cor-

relation maps from these voxels, i.e. regions putatively

functionally disconnected (PC-FDC map). In fMRI meth-

odology, PCA has been successfully applied to identify

robust spatial and temporal neural patterns free of

artefacts.35,41

In this manuscript, we compare PC-FDC versus stand-

ard FDC (computed using time-courses from the whole

lesion),29 similarly to LNM.17,18 These methods are com-

pared in terms of the strength of the maps’ temporal cor-

relation, their anatomical specificity, and their ability to

predict behavioural deficits 2-week post-stroke. We report

that the new method yields maps with higher anatomical

specificity, still, unfortunately, low behavioural prediction.

Materials and methods

Stroke sample and assessment

We retrospectively included 123 patients from the

Washington University Stroke project (mean age 53 years;

range 22–77; 119 right-handed; 63 females; 64 right

hemispheres).31 First-time stroke patients were enrolled

prospectively through the in-patient service at Barnes-

Jewish Hospital and Rehabilitation Institute of St. Louis.

All participants from this dataset provided written

informed consent following the Declaration of Helsinki

principles and procedures established by the Washington

University in Saint Louis Institutional Review Board.

Inclusion criteria were as follows: (i) age 18 or older; (ii)

first symptomatic stroke, ischaemic or haemorrhagic; (iii)

evidence of any neurological deficits; and (iv) time of en-

rolment <2 weeks post-stroke onset. Exclusion criteria

were as follows: (i) inability to stay awake during testing;

(ii) low (<1 y) life expectancy; (iii) evidence of clinically

significant periventricular white matter disease; and (iv) a

medical history of neurological, or psychiatric conditions

that could interfere with the assessment plus contraindica-

tions for MRI.

Patients underwent a full MRI protocol and extensive

cognitive assessment. Structural data were acquired on a

3 T Siemens Tim-Trio scanner (School of Medicine of the

Washington University in St. Louis) consisting of a: sagit-

tal MP-RAGE T1 weighted image (TR/TE: 1950/2.26 ms;

flip angle: 9�; voxel size: 1 mm isotropic); transverse

turbo spin-echo T2-weighted image (TR/TE: 2500/435 ms,

voxel size: 1 mm isotropic); sagittal FLAIR (TR/TE: 7500/

326 ms, voxel size: 1.5 mm isotropic).

The behavioural battery included 42 different measures

covering the following domains: language, spatial mem-

ory, verbal memory, attention (the visual field bias),

motor and visual (for details, see Corbetta et al.31). For

the latter two domains (visual and motor), the scores

were considered separately for left and right lesions. The

battery lasted about 2.5 h and was performed within 24 h

of MRI. Raw scores were normalized based on a control

population (n¼ 31), and a PCA was run within each do-

main as in Corbetta et al.31 and Ramsey et al.42 The

resulting component (factor) scores in each domain were

used for the analysis as in our previous studies.29,31,42

For the language domain, data of n¼ 110 patients were

available, while data for the attention and memory (both

Brain network functional disconnection post-stroke BRAIN COMMUNICATIONS 2021: Page 3 of 16 | 3



Figure 1 Workflow of the PC-FDC analysis. (A) Within-lesion (black mask overlaid in the MNI template) functional connectivity was

computed indirectly in an independent sample of controls. (B) The voxel-averaged matrix was fed into a principal component analysis. (C) The

first component was considered and projected back to lesion space. The time-series of the voxels overlapping with the 20% of the higher PC1-

coefficient distribution was averaged and used to compute mean functional connectivity maps. (D) Lesion frequency maps. PC-FDC

methodology identified lesion-voxels mainly in the GM. (E) Functional maps computed with the FDC and PC-FDC approaches were compared.
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verbal and spatial) domains were available for n¼ 93 and

n¼ 85 patients, respectively. Visual and motor left-right

data were available for n¼ 48 and n¼ 23 patients, while

scores for the right-left motor and visual domains were

available for n¼ 54 and n¼ 29 patients, respectively.

The principal component functional
disconnection method

Brain lesions were manually segmented on individual

structural MRI as reported in Siegel et al.13 and normal-

ized to MNI through an enantiomorphic approach, which

replaces lesioned tissue with the healthy contralateral tis-

sue improving the quality of the registration, implemented

in the BCBToolkit.30 Normalized lesions were resampled

to 2�2�2 voxel space, binarized, and used as seed-ROIs

for FC computation through the normative 7 T Human

Connectome Project (HCP) dataset. We used the same

functional data (n¼ 173) described in Salvalaggio et al.29

Lesion network maps were computed with both our PC-

FDC and the FDC approach. For the FDC approach,

whole-brain temporal correlation maps were calculated

using the entire lesion as seed ROI by averaging the sig-

nal time-course across all voxels within the lesion. By

contrast, the PC-FDC approach involved several steps to

reduce the noise introduced by averaging signal time

courses from different tissues within the lesion (e.g. WM

and GM). First, we computed voxel-wise Pearson’s corre-

lations among signal time courses within each lesion,

resulting in n� n matrix (n ¼ voxels affected by lesions).

Correlation values were then z-Fisher transformed. Values

of each row within this matrix were averaged, resulting

in a vector of length n, representing each voxel’s mean

connectivity strength to the rest of the lesion. This pro-

cedure was repeated for every healthy control from the

7 T normative dataset. Finally, the averaged vectors were

merged, resulting in a n�m (m ¼ HCP subjects) matrix.

The transpose n-by-m data matrix was then fed into the

PCA algorithm. Subjects with a global absolute lesion-

connectivity strength above 3 standard deviation from the

sample lesion-connectivity mean were excluded from the

lesion-PCA analysis to reduce PCA susceptibility to single

brain outliers.43 As the PC1 explained the largest amount

of variance, it was referred to as the main within-lesion

connectivity axis. Subsequently, we projected back the

coefficients to the lesion space (using the matrix of PC1

coefficients). The whole procedure was implemented

through Matlab (Version 2019a). We considered only

voxels with absolute coefficients higher than the 20th

percentile of the distribution. This threshold was used to

identify along the PC1 gradient the subset of voxels

above that threshold. These new lesion-PC1 binarized

maps were then used as seed-ROI to compute whole-

brain temporal correlation (Pearson r) maps in the nor-

mative HCP sample.17,29 This procedure was independ-

ently repeated for every lesion of our dataset (123

lesions). The procedure failed for six lesions, due to slight

misalignments, thus leaving a total of 117 lesion maps

for subsequent analysis. For a visualization of the meth-

odology, see Fig. 1.

For both methods (PC-FDC and FDC) and each lesion,

the resulting lesion network maps were z-Fisher trans-

formed and averaged (r-maps). Additionally, we com-

puted the t-maps through a one-sample t-test implement

in fsl randomise with n¼ 5000 permutations, as in Boes

et al.17 While r-maps represent the average correlation

between the lesion and the rest of the brain, t-maps ex-

press how much each voxel varies from the mean across

single maps.

Statistical analysis

Indirect functional connectivity strength

We compared differences in FC strength between the le-

sion and the rest of the brain computed with both

approaches (i.e. PC-FDC versus FDC). The Wilcoxon

signed-ranks test implemented in Matlab (Version 2019a)

was used to compare the distributions of global mean

(only z-Fisher positive) FC values. Moreover, we com-

pared mean FC for higher values (i.e. z-Fisher threshold

> 0.2). As complementary analysis, Wilcoxon signed-

ranks test was used to compare the standard deviation

values of each lesion network map computed with FDC

and PC-FDC. This analysis, together with the mean ana-

lysis, investigated whether our methodology can generate

maps with higher sensitivity, i.e. higher mean and equal/

lower standard deviation than the standard method.

Additionally, we investigated differences in voxel-wise

FC values distribution. To this aim, we first computed

the cumulative distribution function (CDF) of every r-

map at the voxel level (only positive value, masking zero

values). We then compared voxel values between PC-

FDC and FDC for different cut-offs of the CDF (10th,

20th, 50th, 80th, 90th, 95th and 99th) to capture the

whole spectrum of voxel correlational values distribution.

Values distribution for each cut-off between PC-FDC and

FDC was compared with the Wilcoxon signed-ranks test.

This analysis was performed at the whole-brain level and

considering GM (cortical and subcortical) and WM

masks from the Harvard-Oxford atlas.

Finally, we compared connectivity values for lesions

mainly overlapping with the WM. Pure WM lesions were

identified computing the ratio of voxels falling in the

WM and GM mask (from the Harvard-Oxford atlas).

Lesions with a WM/size ratio greater than 0.9 were con-

sidered for this additional analysis. The Wilcoxon signed-

ranks test was used to compare connectivity values be-

tween FDC and PC-FDC.

Network spatial organization

To investigate the anatomical precision of lesion network

maps, we compared the spatial correlation between lesion

network maps (for both PC-FDC and FDC approaches)

with canonical networks template through the FSL utility

Brain network functional disconnection post-stroke BRAIN COMMUNICATIONS 2021: Page 5 of 16 | 5



fslcc (FSL v.6.0.0; https://fsl.fmrib.ox.ac.uk/fsl/). For each

connectivity map, we computed a network confidence

index (NCI) assignment based on a winner-take-all ap-

proach as follows:

NCI ¼ sc:CNetðaÞ
Rn

k¼1sc:CNet kð Þ=n

where sc refers to the spatial correlation of each lesion

networks with a canonical template (CNet), a marks the

canonical template with the highest correlation (winner

template), and k represents the other canonical templates

(losing templates). Higher NCI represents a proxy of the

degree of a lesion network’s spatial specificity with the

large-scale canonical organization reported in the litera-

ture. The Wilcoxon signed-ranks test was used to com-

pare the NCI between the PC-FDC and the FDC

approaches. NCI was computed using different atlases to

evaluate whether other templates might substantially in-

fluence results. To this aim, we used the network maps

reported by Yeo et al.9 and Shirer et al.44 We excluded

the limbic network from the Yeo et al.9 atlas from this

analysis due to the high susceptibility to signal distortions

of its core regions, the orbitofrontal and medial temporal

lobe.45,46 From Shirer’s template,44 the precuneus net-

work was not included in the NCI computation, as par-

tially overlapping with the dorsal and ventral DMN

atlases merged into a unique DMN mask. Finally, NCI

was computed independently for r-maps and t-maps for

comparison purposes.

The relationship between lesion network maps and

motor deficits

To further explore the two approaches’ anatomical speci-

ficity, we investigated network strength differences at the

voxel-wise level. Owing to the importance of motor

symptoms in ischaemic stroke,47 we a priori focussed this

analysis in the motor domain.

Specifically, we selected a subset of patients with motor

performance lower than 2 standard deviation (from a

healthy control distribution; for details, see Corbetta

et al.31). Network r-maps (thresholded at z-Fisher > 0.2)

from lesions in both hemispheres were considered and

pooled together. Voxel-wise differences between PC-FDC

and FDC were investigated through a paired nonparamet-

ric inference based on fsl randomise with n¼ 5000 per-

mutations. Multiple comparisons were corrected across

space using a familywise error (FWE) based on permuta-

tion testing at a threshold-free cluster enhancement

(TFCE). We tested the following contrasts: PC-FDC >

FDC; FDC > PC-FDC. Significance was set at a P-value

< 0.025 FWE-corrected, corresponding to a two-tailed

P< 0.05. Finally, the Wilcoxon signed-ranks test con-

trasted the NCI statistically for FDC and PC-FDC, con-

sidering the sensorimotor network (SMN) as the target

network, rather than using a winner-tale-all approach.

We further compared the network topography in

patients falling within the lowest (<20th percentile distri-

bution of motor scores) and the highest motor score distri-

bution (>80th percentile distribution of motor

performance). This cut-off was chosen as trade-off between

the motor performance and a sample size robust enough

to perform voxel-wise comparisons. We considered both

patients with right and left lesions. Differences between le-

sion network maps (r-maps z-Fisher > 0.2) computed with

the two approaches were investigated at voxel-wise level

using the same model reported above with fsl randomise.

We further performed an explorative voxel-wise ana-

lysis comparing lesion maps from stroke patients with the

highest (>80th percentile) and lowest (<20th percentile)

performance in the language domain. The same model

was implemented aimed at investigating whether spatial

improvement linked with the PC-FDC approach was

observed also in a cognitive domain.

Behavioural-connectivity association

We further compared the relationship between FC and

behavioural performance to assess whether PC-FDC maps

showed a stronger association with deficits. We computed

the r Pearson’s correlation between behavioural perform-

ance and global mean connectivity (r-maps un-thresh-

olded positive) for each behavioural domain. The same

analysis was repeated covarying the lesion size. Results

were corrected for multiple comparisons (n¼ 8 behaviour-

al domains) with Bonferroni correction, and P-value <

0.006 was considered significant.

This association was also investigated at the voxel-wise

level. Specifically, we implemented a simple linear correl-

ation through nonparametric inference using fsl randomise
(n¼ 5000 permutations FWE-corrected at TFCE). The ana-

lysis was corrected for lesion size, using the volume of

lesions as covariate. For each behavioural domain, univari-

ate maps expressing the significant association were con-

sidered at a stringent significant P-values < 0.01 FWE-

corrected. Univariate maps were thresholded and binarized

(at the significant P-values) to compute the agreement be-

tween FDC, PC-FDC and canonical (Yeo’s) template using

the dice coefficient. Higher dice overlap reflects higher

overlap between two maps, thus better agreement.

Behavioural-connectivity prediction

A multivariate analysis was carried out using r-maps fea-

tures as predictors and behavioural scores for each do-

main as outcome variables. Our approach used a ridge

regression (RR) model that uses L2-normalization to

regularize coefficients to preventing overfitting and

improving generalization on test data.48 To reduce the in-

put dimensionality, the features of the individual r-maps

were extracted by PCA and used as multivariate predic-

tors to predict patients’ behavioural outcomes.13,29 PCA

was performed on 902’229 2-mm3 brain voxels and

returns a set of PC scores. All PC scores were z-normal-

ized based on the mean and variance of the whole PC
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matrix. Finally, PC that explained 95% of the variance

were retained and used as input in the ridge regression

model. The model weights W are computed as:

W ¼ XTX þ kIð Þ�1
XTY

where X is the PC matrix and Y is the z-normalized out-

come variable. The regularization term k lambdað Þ provides

a constraint on the size of the weights. To find the appro-

priate value of k a tuning procedure was carried out using

a leave-one-(patient)-out cross validation loop (LOOCV).

This procedure allows to train and test the better ridge re-

gression models respect the regularization term. In each

loop k was optimized through 100 values in range

10�5,105 (logarithmic step) to minimize the leave-one-out

prediction error over the training set. Optimal weights

were solved using gradient descent to minimize error for

the ridge regression equation by varying lambda. These

weights were then used to predict the outcome variable

for the left-out test patient. The whole prediction was

generated for all patients in this way. Model accuracy was

assessed using the coefficient of determination

R2 ¼ 1�
P

Y � Y 0ð Þ2
P

Y � �Y0ð Þ2

where Y are the measured outcome variables, Y 0 are the

predicted outcome variables and �Y0 is the mean of Y 0. For

each model, the statistical significance was assessed using a

permutation test. The outcome variables were randomly

permuted across subjects 10 000 times. The entire regres-

sion process was carried out with each set of randomized

labels. P-values were calculated as the probability of

observing the reported R2 values by chance (number of

permutations R2 > observed R2/number of permutations).

Only models with P-values < 0.05 were investigated.

The final set of ridge regression weights was generated

by averaging the weight matrix across all n LOOCV

loops. Each final weight’s statistical reliability was

assessed by comparing its distribution of values to a null

Figure 2 Functional connectivity strength. (A) Representative PC-FDC and FDC network-maps overlapping with the sensory-motor

network. (B) Connectivity networks strength difference between PC-FDC and FDC for positive values (left) and z-Fisher > 0.2 (right). (C) Left

panel shows connectivity values associated at different cumulative distribution function cut-offs for the FDC and the PC-FDC; right panel reports

values as difference between FDC and PC-FDC connectivity maps [values are reported for the whole brain (black), grey matter (dark-grey) and

white matter (light-grey) masks]. The Wilcoxon signed-ranks test was used to compare the connectivity profile between FDC and PC-FDC

maps. P-values (P) and Cohen’s effect size (d) are reported.
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distribution (null models generated for permutation test-

ing) using an FDR corrected t-test. The final set of statis-

tically reliable weights was back projected to the brain

(using the transpose matrix of PC coefficients) to create a

3D map of the most predictive voxels.

Sensitivity analysis

We investigated PC-FDC outcomes computed with differ-

ent coefficient thresholds, using the 5th, the 10th, the

20th, the 50th and 80th coefficients percentile. To this

aim, we compared connectivity strength between net-

work-maps for the highest cut-off of the CDF, as

described in section "Indirect functional connectivity

strength". Friedman test was used to investigate signifi-

cant differences across connectivity values.

Data availability

The functional dataset used for this analysis is publicly

available from the Human Connectome Project (http://

humanconnectome.org/). Stroke lesions and behavioural

data can be accessed at http://cnda.wustl.edu/app/tem

plate/Login.vm. PC-FDC and statistical maps can be

downloaded at https://github.com/pinilorenzo/PC-FDC_

maps. Data are also available via request to the corre-

sponding author.

Results

Summary of method

Figure 1 shows the highlights of the revised method for

lesion network mapping (PC-FDC) vis-à-vis the tradition-

al method (FDC). A PCA is run on a matrix composed

of lesion voxels � subjects on the BOLD time-series

(Fig. 1A). In all lesions, the PC1 explains a significant

fraction of the variance (Fig. 1B). The weights of PC1

are then back projected onto the original lesion

(Fig. 1C). This procedure separates GM from WM, with

the highest loadings in the GM (as shown in the fre-

quency maps of Fig. 1D). This is explained by the

higher signal-to-noise of the GM BOLD signal as com-

pared to WM.33 The corresponding BOLD signal time

series from PC1 lesion ROI (PC-FDC) have higher ampli-

tude as compared to the signal time course obtained

from averaging across the whole ROI (FDC) (inset

Fig. 1C). The resulting lesion network maps show a

stronger connectivity profile (Fig. 1E).

Lesion network strength and spatial
coherence

Lesion-network maps computed with the two approaches

were different, with PC-FDC showing stronger functional

maps and higher anatomical specificity (Figs 1E and 2A

show two representative maps classified as corresponding

to the SMN and the frontoparietal network, respectively).

While the overall FC mean values of FDC maps were

stronger when considering the whole range of positive

values (Z¼�4.867, P< 0.001, d¼ 0.33), the opposite

was true when considering maps thresholded at z-Fisher

> 0.2 (Z¼ 7.992, P< 0.001, d¼ 0.74), i.e. the strongest

functional connections (Fig. 2B). This pattern is

explained by the CDF analysis in which we plotted the

same results at different thresholds of correlation

(Fig. 2C). While FDC yielded higher connectivity values

from most of the range (P< 0.01 for 10–80th percentile

cut-offs), an inversion occurred with PC-FDC yielding

higher mean FC after the 95th percentile cut-off, (95–

99th percentile, P< 0. 01). Interestingly, while the FDC

method showed significantly stronger FC with WM, as

compared to GM voxels, for most of the range (P< 0.01

for all but not-significant for the 99th percentile cut-off),

PC-FDC favoured GM significantly for the strongest con-

nections (95th cut-off, P< 0.05). Finally, the standard de-

viation of lesion network maps generated through our

new methodology was slightly decreased compared with

FDC (Z¼�2.890; P< 0.004).

For the WM lesion analysis, we identified 11 lesions

falling in the WM (range ratio WM size/lesion size 0.91–

1). For these lesions, PC-FDC connectivity values were

significantly higher compared to the ‘classical’ FDC maps

(Z¼ 7.231; P< 0.001; d¼ 1.04) (Supplementary Fig. 1).

In the second analysis, we compared the anatomical

specificity of PC-FDC versus FDC maps by measuring

their spatial similarity to canonical brain networks

derived from normative healthy subject atlases, specifical-

ly Yeo et al.9 and Shirer et al.44 To measure this similar-

ity, we used the NCI (network correlation index) that

weights both the similarity with the most similar atlas

network (winner-template) and the dissimilarity with the

other networks (losing-template) (see methods). The PC-

FDC approach showed significantly higher NCI, hence

higher overlap with canonical networks, independently of

the atlas employed (Yeo Z¼ 6.373, P< 0.0001, d¼ 0.57;

Shirer Z¼ 5.330, P< 0.0001, d¼ 0.53). This result

reflected both a lower overlap with the losing-templates

(Yeo Z¼�5.651, P< 0.0001, d¼ 0.37; Shirer:

Z¼�4.370; P< 0.0001; d¼ 0.44) and a higher overlap

with the winner-template (Yeo Z¼ 6.364, P< 0.0001,

d¼ 0.69; Shirer: Z¼ 3.348; P< 0.0001; d¼ 0.34)

(Fig. 3). This pattern was echoed using T-maps (positive

values) (Supplementary Fig. 2).

Connectivity lesion maps and
motor domain

The previous analysis showed that the PC-FDC method

yields an overall higher spatial match with healthy canon-

ical networks than the standard FDC method. To test the

two methods’ anatomical specificity in relation to select-

ive deficits, we compared FDC and PC-FDC lesion net-

work maps from patients with motor impairment.

Specifically, we pooled 9 patients with right motor
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deficits and 8 patients with left deficits for this analysis.

PC-FDC maps compared to FDC showed stronger FC

along the lateral and medial bilateral motor regions,

overlapping with Yeo’s SMN (Fig. 4, top panel).

Additionally, the spatial correlation with Yeo’s SMN and

the corresponding NCI-SMN confidence index in this

subsample were higher for the PC-FDC approach than

for the FDC (SMN: Z¼ 2.343, P¼ 0.019; SMN-NCI:

Z¼ 2.012, P¼ 0.044) (Fig. 4, bottom panel). Among

networks, PC-FDC maps showed an increased spatial cor-

relation with SMN (delta þ10%), while the other Yeo’s

templates showed a reduction of correlation (delta �5/

�15%), except for ventral-attention network (delta þ5%)

(Fig. 4, bottom panel).

Patients with the lowest motor performance were com-

pared with patients showing the highest motor scores

(n¼ 21; 11 for right deficits and 10 for left deficits for

each group; range motor Z-score: lowest group from

�1.95 to �2.87; highest group from 0.63 to 1.19).

Congruently with previous analysis, PC-FDC yielded

stronger connectivity maps (see Fig. 5A). Specifically,

PC-FDC networks showed higher connectivity values in a

network including primary motor system, parietal, frontal

and temporal cortices.

When we compared patient groups separately for the

two methodologies, PC-FDC maps showed more extended

dysconnectivity encompassing the striatum, insula, precen-

tral gyrus and supramarginal gyrus at P< 0.05 FWE-cor-

rected. By contrast, only few voxels were significantly

different for the FDC application (Fig. 5B). The opposite

contrast (lowest deficits > highest deficits) showed no sig-

nificant results for both approaches.

A second analysis was carried out in a subset of

patients with language performance at the two extremes

of the behavioural distribution. For this analysis, we

included 22 patients for each group (range language Z-

score: low performance group: �0.52 to �3.25; high per-

formance group: 0.65 to 0.94). Both approaches showed

stronger disconnection in language impaired individuals

(low > high performance) in two left frontal clusters

involved in language abilities, namely the middle frontal

gyrus and the pars opercularis. Additionally, the PC-FDC

Figure 3 Functional spatial specificity. Comparison of the network confidence index, winner-template, and losing-templates spatial

correlations between PC-FDC and FDC. These metrics were reported for Yeo’s (top) and Shirer’s (bottom) templates.9,44 The Wilcoxon signed-

rank test was applied to compare network indices between FDC and PC-FDC. P-values (P) and Cohen’s effect size (d) are reported.
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approach captured a disconnected cluster in the left su-

perior parietal cortex (Supplementary Fig. 3). No signifi-

cant differences were observed for the opposite contrast

(high > low performance). This analysis suggested that

our approach can improve the spatial topology of net-

work disconnection for both motor and cognitive deficits.

Lesion network and domain-specific
behavioural performance

After establishing that PC-FDC yields more anatomically

specific maps than standard FDC, we examined the cor-

relation with behavioural performance. In an overall ana-

lysis, we found a negative association between language,

spatial memory, and attention visual field scores with glo-

bal mean connectivity surviving multiple comparisons

(P< 0.006) for the PC-FDC approach. However, the cor-

relation with the attention visual field did not survive

after covarying for lesion size. By contrast, the FDC

method produced only a significant correlation with vis-

ual right-left field deficits (Supplementary Fig. 4).

The univariate analysis (expressing the association be-

tween connectivity and behaviour at the voxel level) was

in line with the above correlation pattern. Clusters from

PC-FDC maps surviving the significance threshold were

reported for all the cognitive domains and the visual right-

left deficits. In contrast, FDC clusters for the verbal mem-

ory domain did not survive statistical significance (Fig. 6).

Moreover, voxels from PC-FDC maps linked with cogni-

tive domains showed a higher spatial consistency with

canonical networks (expressed as dice coefficient): (i) fron-

toparietal network-attention, PFDC: d¼ 0.415 versus FDC:

d¼ 0.197; frontoparietal network-language, PFDC:

d¼ 0.123 versus FDC: d¼ 0.107; ventral-attention net-

work-spatial memory, PC-FDC: d¼ 0.370 versus FDC:

d¼ 0.346. The verbal memory domain showed significant

PC-FDC clusters located in the retrosplenial-hippocampal

network (see inset Fig. 6). This map partially overlapped

with the memory circuity reported in Ferguson et al.22

(d¼ 0.162). Furthermore, using a less stringent statistical

threshold (P< 0.05 FWE-corrected) the PC-FDC motor

and visual maps (left-right deficits) showed higher spatial

consistency with canonical networks (visual network-

Figure 4 Voxel-wise differences between FDC and PC-FDC network-maps. Top panel: connectivity maps from patients with the lowest

motor performance were compared at voxel-wise level (using the threshold-free cluster enhancement approach with n ¼ 5000 permutation and

statistical threshold set at P < 0.025 FWE-corrected). Significant voxels in the PC-FDC > FDC contrast (blue) and FDC > PC-FDC (red-yellow)

were registered and overlaid in the fsaverage surface (top-panels). Significant maps were binarized and overlaid onto the brain surface with the

Yeo’s motor network mask for comparison purpose. Bottom panel: The Wilcoxon signed-rank test was applied to compare both confidence

index (left) and the spatial specificity (right) of the sensorimotor network (from Yeo et al.9) for both PC-FDC and FDC network-maps; The delta

of the spatial correlation between FDC and PC-FDC maps with canonical templates is shown in the centre panel. DAN ¼ dorsal-attention

network; DMN ¼ default mode network; FPN ¼ frontoparietal network; SMN ¼ sensorimotor network; VAN ¼ ventral-attention network; VIS

¼ visual network.
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deficits, PFDC: d¼ 0.631 versus FDC: d¼ 0.337; motor

network-deficits, PFDC: d¼ 0.40 versus FDC: d¼ 0.181)

(Supplementary Fig. 5). By contrast, for both approaches

the univariate map for the motor right-left deficits was not

significant also with the lower threshold.

Behavioural prediction

We were interested in re-examining whether this modified

method was predictive of behavioural performance since,

in previous work, we reported that the FDC method was

not.29 For this purpose, we ran a ridge regression ana-

lysis to finds the lesion network maps that best explain

behavioural variability. We investigated the predictive

connectivity pattern for cognitive and visual-motor

domains. For cognition (attention, language, memory),

the prediction of connectivity maps computed with the

PC-FDC approach was very low (R2 < 0.1 for all cogni-

tive domains; Table 1). These values were comparable

with the FDC approach reporting similar R2 < 0.1

results. Slightly higher results were reported for visual

and motor domains, ranging from 0.08 for motor right-

left to 0.55 for visual right-left (Table 1). Motor and

visual left-right deficits were similar with FDC, while vis-

ual right-left showed higher predictive values (delta R2

þ0.16). Predictive maps can be downloaded at https://

github.com/pinilorenzo/PC-FDC_maps.

However, predictive scores from connectivity were

lower than predictive values from the structural map of

the lesion reshaped after PCA (PC1 lesion map; Table 1)

for all behavioural domains. The analysis using PC-FDC

and PC1 lesion maps in combination leads to comparable

results, except for the language domain (Table 1). The

corresponding predictive maps showed both commonal-

ities and differences with the univariate maps.

Specifically, maps from cognitive domains showed the

weakest spatial correspondence between ridge regression

and univariate statistics. In contrast, visual-motor deficits

showed the highest spatial correspondence (cognitive mean-

d¼ 0.22 versus visual-motor meand¼ 0.59) (Supplementary

Fig. 6).

Finally, we applied the ridge regression to PC-FDC and

structural lesion maps computed with the second princi-

pal component (PC2). As for PC1, FC prediction was

lower for all the domains considered compared to struc-

tural lesion maps (R2 < 0.1; Table 2). Notably, we

reported divergent effects when we compared PC2 versus

PC1 maps. Specifically, PC2 FC maps were less predictive

in both cognitive (delta �5%) and sensory-motor (delta

�10%) domains. This pattern was inverted when we

considered structural maps, that is, PC2 lesion maps

showed higher prediction in cognitive domains (delta

þ7%), albeit in the sensory-motor domain, this improve-

ment was lowest (delta þ3%).

Sensitivity analysis

We explored connectivity maps computed using different

cut-offs for PC1 coefficients. PC-FDC computed using

different PC-coefficient percentiles showed significant dif-

ferences for the CDF cut-off considered [90th-CDF X2(4)

¼ 214; P< 0.001; 95th-CDF X2(4) ¼ 156; P< 0.001;

99th-CDF X2(4) ¼ 91; P< 0.001]. Post hoc analysis

revealed that maps computed with the 20th coefficient

threshold showed stronger FC values compared to the

other thresholds (P< 0.02; Supplementary Fig. 7).

Finally, PC1 explained a high amount of variance in

our stroke sample compared to PC2 (mean variance:

41 6 10 versus 7 6 5). Moreover, PC1 was more repre-

sentative of the cortical network mainly affected by a spe-

cific lesion. In the example reported in Supplementary Fig.

8, PC1 maps to the right frontal cortex, resulting in a

Figure 5 Differences in patients with lower versus higher

motor performance. (A) One-sample t-test maps [threshold-

free cluster enhancement (TFCE) approach with n ¼ 5000

permutation], for patient with the lowest motor performance

computed separately for the FDC (top panel) and the PC-FDC

(bottom panel) approaches. (B) Two-sample t-test for the

comparison between patients with motor impairment versus

unimpaired (TFCE approach; n ¼ 5000 permutation; P < 0.05 FWE-

corrected). Motor impaired patients showed voxels with stronger

dysconnectivity, more extended in the PC-FDC approach.
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cortical network exhibiting higher connectivity values. In

contrast, the network computed with PC2 (whose highest

coefficients mainly overlapped in the WM) showed lower

strength. This lower correlation was evident for positive

and anti-correlated values (Supplementary Fig. 8, Panel B).

Discussion
We investigated whether a modified FDC (LNM) ap-

proach improves anatomical specificity and behavioural

prediction post-stroke. We implemented a PCA approach

to account for the variability of within-lesion connectivity

patterns. This methodology enabled to derive a lesion sub-

component explaining within-connectivity maximal vari-

ance. Lesion reshaped based on PC1 was used to

recompute whole-brain functional disconnection patterns.

Compared to the FDC approach, PC-FDC maps showed a

more biologically plausible pattern and higher anatomical

specificity. However, the low behavioural prediction was

comparable to the FDC method previously reported.29

In the following discussion, we first consider the merits

of the method, its anatomical specificity, and behavioural

prediction.

Most stroke lesions are small, the great majority hit

both GM and WM, and tend to concentrate in the WM

and basal ganglia. Pure cortical lesions are less than 20%

of the total.31 These properties may affect the signal-to-

noise of LNM when applied to stroke, given the signal

time course from the lesion reflect a combination of GM,

WM and CSF signals.23,25 PCA solves this problem by

selecting more homogeneous signals, and we computed

more biologically plausible cortical networks than the

standard approach. Reshaping the lesion based on the

similarity of the signal within it enabled the identification

of voxels—represented in PC1—that showed the most ro-

bust functional connectivity, hence putative disconnection

patterns.

Lesion maps computed with our methodology showed

higher functional specificity, i.e. increased spatial corres-

pondence with networks from the literature.9,44

Furthermore, PC-FDC and FDC showed a divergent pat-

tern for lower and higher connectivity values. At low

thresholds, i.e. including most voxels in the lesion network

map, FDC yielded higher overall FC values that localized,

however, both to WM and GM. In contrast, the PC-FDC

method produced stronger connectivity at high thresholds

highlighting only the strongest functional connections,

Figure 6 Voxel-wise correlation between connectivity and behaviour. Univariate maps from the PC-FDC (blue) and FDC (red)

approach showing clusters linked with behaviour (simple linear correlation through nonparametric threshold-free cluster enhancement approach; n

¼ 5000 permutation) covarying for lesion size (volume). Results are co-registered to the fsaverage surface and showed at pFWE < 0.01. For each

significant univariate map, the corresponding dice coefficient with canonical template is showed (inset bar plots). FPN ¼ frontoparietal network; MT

¼ memory network; VAN ¼ ventral-attention network; VIS ¼ visual network. Lines outline Yeo’s 7 networks subdivision.
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which localized almost exclusively to GM. Therefore, the

PC-FDC approach improves the signal-to-noise of lesion-

network maps by denoising the signal used for the compu-

tation (see time courses for PC-FDC and FDC in Fig. 1).

Similarly, for stroke lesions located mainly in the WM,

our methodology generated stronger WM functional maps

by suppressing noise, in line with previous studies investi-

gating WM networks.39

The PC-FDC method was anatomically more specific

when investigating motor deficits. Compared with FDC

maps, the PC-FDC approach yielded higher correspond-

ence with motor maps.9 Specifically, PC-FDC connectivity

clusters compared to the classical approach enabled to

compute voxels with higher connectivity within the M1,

supplementary motor area, and ventral and dorsal pre-

motor cortices, overlapping with the canonical SMN map.

When we investigated lesion network maps in patients

with motor impairment versus patients without motor im-

pairment, PC-FDC maps revealed a stronger and more

extended dysconnectivity pattern in the former group.

Similarly, in an explorative analysis on language deficits

we found stronger disconnection with the PC-FDC

method. Although both FDC and PC-FDC showed com-

parable clusters of dysconnectivity in the middle frontal

gyrus and the pars opercularis, regions involved in lan-

guage abilities,49,50 only PC-FDC localized additional

disconnection in the left superior parietal region, which

has been suggested as a key language area.51 Therefore,

the PC-FDC method improves anatomical specificity of dis-

connected networks, the prime application of LNM.17,18

Next, we consider the correlation with behaviour. The

novel method showed a higher correlation than the

standard method with cognitive scores in univariate re-

gression analyses. PC-FDC maps significantly correlated

with language and spatial memory scores after multiple

comparison correction with lesion size as a covariate.

Moreover, verbal memory scores were associated with

disconnection of the retro-splenial cortex and hippocam-

pus, but only in PC-FDC maps. This map partially over-

laps with the memory circuit from Ferguson et al.22 (see

inset Fig. 5B). Similarly, the topological relationship be-

tween connectivity with motor and visual maps was

improved by the PC-FDC methodology.

However, when testing behavioural prediction using

machine learning ridge-regression, the PC-FDC method

did not perform better than the standard approach. PC-

FDC maps explained around 6% of the variance, more

than ten percentage points below the variance explained

by the structural lesions reshaped through PC1.

Why does indirect functional disconnection method fail

to predict cognitive deficits? The main limitation is that

the method assumes that behavioural deficits depend on

functionally disconnected regions. However, both directly

and indirectly anatomically disconnected regions produce

a complex modification of multi-network connectivity

patterns, even for small lesions.11,13 These distributed

connectivity changes will not show up in indirect meth-

ods. In fact, lesions cause both a decrease in within-net-

work integration and a decrease in between-network

segregation, leading to an overall decrement of modular-

ity.4,52,53 Moreover, brain connections are unevenly dis-

tributed, with some regions more densely interconnected

than others.54 The effect of lesions on brain networks is

enhanced when the damage hits GM or WM hubs.4,31,55

Thus, the different levels of functional hierarchical re-or-

ganization induced by lesions are not apparent in LNM.

In contrast to cognitive deficits, PC-FDC maps showed

slightly higher prediction, ranging from 8% to 20% for

Table 1 Ridge regression behavioural prediction comparison from PC-FDC, FDC and structural lesion maps

Patients C (95%) R2 C (95%) R2 C (95%) R2 C (95%) R2

FDC PC-FDC PC-Lesion PC-Lesion 1 PC-FDC

Language 110 6 0.03 7 0.05* 62 0.43* 69 0.54*

Attention VF 93 7 0.09* 8 0.08* 53 0.11* 61 0.12*

Memory Verbal 85 6 0.03 7 0.03 46 0.03* 53 0.09*

Memory Spatial 85 6 0.06* 7 0.09* 46 0.10* 53 0.11*

Motor L-R 48 5 0.16* 6 0.20* 26 0.25* 32 0.24*

Motor R-L 54 6 0.10* 6 0.08* 30 0.31* 36 0.29*

Visual L-R 23 4 0.14* 5 0.18* 23 0.42* 17 0.40*

Visual R-L 29 6 0.39* 7 0.55* 29 0.59* 24 overfit

C ¼ number of components; L ¼ left; R ¼ right; VF ¼ visual fields.

*Model significant.

Table 2 Ridge regression results from the second PC

for functional and structural lesion maps

Patients C (95%) R2 C (95%) R2

PC2-FDC PC2-Lesion

Language 110 7 0.00 64 0.41*

Attention VF 93 8 0.02 55 0.24*

Memory Verbal 85 7 0.01 47 0.06

Memory Spatial 85 7 0.04 47 0.25*

Motor L-R 48 6 0.18* 27 0.25*

Motor R-L 54 6 0.11* 31 0.36*

Visual L-R 23 5 0.06 23 0.44*

Visual R-L 29 7 0.26* 29 0.62*

C ¼ number of components; L ¼ left; PC2 ¼ second PC; R ¼ right; VF ¼ visual fields.

*Model significant.
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motor and 18% to 55% for visual deficits, still lower

than structural lesions. A possible reason for the higher

predictability of sensory and motor deficits is the intrinsic

organization of functional connections. The association

between structure and function progressively diverges,

moving from unimodal (i.e. sensory) to trans-modal (i.e.

associative) cortices.56 The trans-modal regions’ organiza-

tion might allow a more flexible and integrated response

to different types of stimuli.57 Accordingly, these regions’

alterations propagate upstream and downstream through

connectors (regions of integration between modules) or

rich club hubs with a cascade effect on cognitive abil-

ities.58 By contrast, sensory and motor networks show a

higher synchronization level within the same circuit, and

their activity is strongly dependent on inputs.16,59 Thus,

lesions within these circuits might lead to more circum-

scribed functional disconnection effects that can be more

easily predicted with indirect methods.

This study has both strengths and limitations. The main

strength is that we applied a PCA to reduce noise contri-

bution in the connectivity maps computed from lesions.

For this analysis, we only considered eigenvalues with

higher values from the PC1. Moreover, we applied differ-

ent analysis levels to study connectivity specificity,

strength, behavioural relationship, and prediction through

different state-of-the-art techniques. Although we analysed

different thresholds for PC1, showing that the 20th per-

centile allowed the highest functional specificity and

strength, we cannot rule out the possibility that a better

refinement of the threshold might increase the prediction

results. Moreover, we did not compare this new approach

with a simple masking procedure. Further studies should

evaluate behavioural prediction of GM/WM masking pro-

cedures. Finally, the low number of components for indir-

ect FC measures might be linked with poor behavioural

prediction. Thus, the consideration of more components

and the application of non-linear dimensionality reduction

techniques in future studies building on this first attempt

should shed light on whether we can improve behavioural

prediction for indirect functional measures. Finally, future

studies should assess whether different machine learning

algorithms might increase the post-stroke behavioural pre-

diction of indirect functional outcomes.

Conclusions
In conclusion, a PCA approach improved the anatomical

specificity and the strength of estimated functionally discon-

nected networks from focal lesions. Despite higher signal-to-

noise and improved correlation with behavioural deficits, pre-

dominantly sensory and motor, we could not obtain precise

out-of-sample predictions with indirect functional measures.

Owing to the complex nature of the interaction between cog-

nitive process and brain FC, direct estimation of FC connect-

ivity seems essential to building a more precise and reliable

behavioural deficits model following stroke lesion.

Supplementary material
Supplementary material is available at Brain

Communications online.
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symptom mapping analyses and implementation as BCBtoolkit.

Gigascience. 2018;7(3):1–17.
31. Corbetta M, Ramsey L, Callejas A, et al. Common behavioral

clusters and subcortical anatomy in stroke. Neuron. 2015;85(5):

927–941.
32. Thiebaut de Schotten M, Foulon C, Nachev P. Brain disconnec-

tions link structural connectivity with function and behaviour. Nat
Commun. 2020;11(1):5094.

33. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connect-

ivity in the motor cortex of resting human brain using echo-planar
MRI. Magn Reson Med. 1995;34(4):537–541.

34. Yan L, Zhuo Y, Ye Y, et al. Physiological origin of low-frequency

drift in blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI). Magn Reson Med. 2009;61(4):819–827.

35. Behzadi Y, Restom K, Liau J, Liu TT. A component-based noise
correction method (CompCor) for BOLD and perfusion based
fMRI. Neuroimage. 2007;37(1):90–101.

36. Klingbeil J, Wawrzyniak M, Stockert A, Karnath HO, Saur D.
Hippocampal diaschisis contributes to anosognosia for hemiplegia:

Evidence from lesion network-symptom-mapping. Neuroimage.
2020;208:116485.

37. Wawrzyniak M, Klingbeil J, Zeller D, Saur D, Classen J. The neur-

onal network involved in self-attribution of an artificial hand: A le-
sion network-symptom-mapping study. Neuroimage. 2018;166:
317–324.

38. Bisogno AL, Favaretto C, Zangrossi A, Monai E, et al. A low-di-
mensional structure of neurological impairment in stroke. Brain
Commun. 2021;3(2):fcab119.

39. Li J, Biswal BB, Wang P, et al. Exploring the functional connec-
tome in white matter. Hum Brain Mapp. 2019;40(15):4331–4344.

40. Peer M, Nitzan M, Bick AS, Levin N, Arzy S. Evidence for func-
tional networks within the human brain’s white matter. J
Neurosci. 2017;37(27):6394–6407.

41. Beckmann CF, Smith SM. Probabilistic independent component
analysis for functional magnetic resonance imaging. IEEE Trans
Med Imaging. 2004;23(2):137–152.

42. Ramsey LE, Siegel JS, Lang CE, Strube M, Shulman GL, Corbetta

M. Behavioural clusters and predictors of performance during re-
covery from stroke. Nat Hum Behav. 2017;1(3):0038.

43. Habeck C, Stern Y; Alzheimer’s Disease Neuroimaging Initiative.

Multivariate data analysis for neuroimaging data: Overview and
application to Alzheimer’s disease. Cell Biochem Biophys. 2010;

58(2):53–67.
44. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD.

Decoding subject-driven cognitive states with whole-brain connect-

ivity patterns. Cereb Cortex. 2012;22(1):158–165.
45. Olman CA, Davachi L, Inati S. Distortion and signal loss in medial

temporal lobe. PLoS One. 2009;4(12):e8160.

46. Yacoub E, Van De Moortele PF, Shmuel A, U�gurbil K. Signal and
noise characteristics of Hahn SE and GE BOLD fMRI at 7T in

humans. Neuroimage. 2005;24(3):738–750.
47. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, et al.; American

Heart Association Statistics Committee and Stroke Statistics

Subcommittee. Heart disease and stroke statistics–2012 update: A
report from the American Heart Association. Circulation. 2012;

125(1):e2–e220.
48. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic re-

gression. Appl Stat. 1992;41(1):191–201.

49. Bookheimer S. Functional MRI of language: New approaches to
understanding the cortical organization of semantic processing.

Annu Rev Neurosci. 2002;25:151–188.
50. Mainy N, Jung J, Baciu M, et al. Cortical dynamics of word recog-

nition. Hum Brain Mapp. 2008;29(11):1215–1230.

Brain network functional disconnection post-stroke BRAIN COMMUNICATIONS 2021: Page 15 of 16 | 15



51. Brownsett SL, Wise RJ. The contribution of the parietal lobes to

speaking and writing. Cereb Cortex. 2010;20(3):517–523.
52. Adhikari MH, Hacker CD, Siegel JS, et al. Decreased integration

and information capacity in stroke measured by whole brain mod-

els of resting state activity. Brain. 2017;140(4):1068–1085.
53. Siegel JS, Seitzman BA, Ramsey LE, et al. Re-emergence of modu-

lar brain networks in stroke recovery. Cortex. 2018;101:44–59.
54. Van den Heuvel MP, Sporns O. Rich-club organization of the

human connectome. J Neurosci. 2011;31(44):15775–15786.

55. Griffa A, Van den Heuvel MP. Rich-club neurocircuitry: Function,
evolution, and vulnerability. Dialogues Clin Neurosci. 2018;20(2):
121–132.

56. Margulies DS, Ghosh SS, Goulas A, et al. Situating the default-

mode network along a principal gradient of macroscale cortical
organization. Proc Natl Acad Sci USA. 2016;113(44):
12574–12579.

57. Mesulam M. The evolving landscape of human cortical connect-
ivity: Facts and inferences. Neuroimage. 2012;62(4):

2182–2189.
58. Honey CJ, Sporns O. Dynamical consequences of lesions in cor-

tical networks. Hum Brain Mapp. 2008;29(7):802–809.

59. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic
and task-evoked network architectures of the human brain.
Neuron. 2014;83(1):238–251.

16 | BRAIN COMMUNICATIONS 2021: Page 16 of 16 L. Pini et al.


	tblfn1
	tblfn2
	tblfn3
	tblfn4



