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Confidence controls perceptual evidence
accumulation
Tarryn Balsdon 1,2✉, Valentin Wyart 1,3 & Pascal Mamassian 2,3

Perceptual decisions are accompanied by feelings of confidence that reflect the likelihood that

the decision was correct. Here we aim to clarify the relationship between perception and

confidence by studying the same perceptual task across three different confidence contexts.

Human observers were asked to categorize the source of sequentially presented visual sti-

muli. Each additional stimulus provided evidence for making more accurate perceptual

decisions, and better confidence judgements. We show that observers’ ability to set

appropriate evidence accumulation bounds for perceptual decisions is strongly predictive of

their ability to make accurate confidence judgements. When observers were not permitted to

control their exposure to evidence, they imposed covert bounds on their perceptual decisions

but not on their confidence decisions. This partial dissociation between decision processes is

reflected in behaviour and pupil dilation. Together, these findings suggest a confidence-

regulated accumulation-to-bound process that controls perceptual decision-making even in

the absence of explicit speed-accuracy trade-offs.
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Sensory perception results from inferring the causes of
uncertain sensory evidence1. The perceived objects are
under-constrained by sensory evidence, so these inferences

are fundamentally probabilistic. In recent years, there has been a
growing interest in the ability of human observers to estimate the
validity of their perceptual decisions. This form of metacognitive
judgement can be obtained by asking an observer to rate how
confident she is that one of her perceptual decisions is correct.
While the perceptual decision is used to quantify the percept
itself, each confidence rating quantifies the certainty the observer
has about her own percept. These two types of judgements are
known as Type-I and Type-II decisions, respectively2.

By definition, an ideal Type-II decision-maker uses the exact
same evidence as for the Type-I decision3. The evidence for the
Type-I decision can be computationally described by sequential
sampling processes, or diffusion models4–7 (for a recent review8),
wherein, samples of noisy evidence are accumulated over time
and a decision is made once the evidence reaches a bound. The
Type-II decision estimates the likelihood that the Type-I decision
is correct, given the accumulated evidence. The likelihood of the
Type-I decision is moderated by both the quantity of evidence
(determined by the relative placement of the decision bound) and
by the quality of evidence (which is marred by suboptimal
accumulation, such as noise and leak in the accumulation pro-
cess). The ideal Type-II decision therefore requires the estimation
of the quantity and quality of Type-I evidence.

However, a large body of evidence demonstrates that human
observers do not make their Type-II decisions in accordance with
this ideal Type-II decision maker. For example, observers poorly
incorporate estimates of sensory noise into their Type-II decisions
(resulting in over- or under-confidence9–11), and they may ignore
evidence in favour of other decision alternatives12–14 (although
not always15). Furthermore, observers may integrate additional
evidence into their Type-II decision that was not used for making
their Type-I decision8,16, allowing them to report errors in the
absence of feedback17–19, and to change their mind after the
initiation of a response20. These departures from ideal are yet to
be fully characterised by a unifying framework of Type-II deci-
sion-making.

The computational description of Type-II decision-making is
significantly constrained by the tight concomitance of Type-I and
Type-II decisions. In the context of sequential sampling pro-
cesses, the suboptimalities affecting Type-II decisions could be
merely inherited from the suboptimalities in Type-I evidence
accumulation, or there could be additional suboptimalities in the
computation of uncertainty over the Type-I variables. Moreover,
there is the possibility that the processes of accumulating Type-I
and Type-II evidence are neither identical nor functionally
independent, that is, confidence may interact with the very pro-
cess of accumulating evidence for perceptual decisions. Exploring
this possibility is essential for the understanding of confidence
and perceptual decision-making.

To clarify this relationship, we asked observers to make the
same Type-I judgement but in three distinct Type-II contexts. In
all three contexts, the Type-I judgement required observers to
make a two-alternative categorisation decision after viewing a
series of visual stimuli (a variation of the weather prediction
task21,22). Based on the work of Drugowitsch et al.22 each
orientation offered a specific amount of evidence in favour of
each category, such that the quality and quantity of Type-I evi-
dence can be carefully monitored over the course of each trial.
This allowed for the disambiguation of different suboptimalities
affecting observers’ Type-I decision-making using computational
modelling. Given the suggestion that Type-II evidence accumu-
lation may continue after the Type-I decision bound has been
reached, we were especially motivated to understand the

relationship between Type-I and Type-II decision-making relative
to the point at which the Type-I evidence crosses the decision
bound. In the first Type-II context we therefore measured
observers’ ability to set and maintain appropriate bounds on their
Type-I evidence accumulation by asking them to make their
Type-I judgement when they thought they had reached an
instructed target performance level. We used the second Type-II
context to measure observers’ default bound—i.e., how much
evidence each observer feels they need to accumulate to commit
to a perceptual decision. Last, in the third Type-II context, we
tested whether observers implement a covert bound when they
are presented with more evidence than needed to reach their
default bound, as measured in the second context. In this third
Type-II context, observers also rated their confidence that their
Type-I decision was correct on each trial—i.e., an explicit Type-II
decision. In addition to behavioural responses, pupil dilation was
monitored throughout the experiment, as the literature has sug-
gested strong links between pupil dilation and Type-I23, and
Type-II24,25 decision-making via pupil-linked dynamics of the
noradrenergic system26,27. Both behaviour and pupillometry
reflect a partial dissociation between Type-I and Type-II evidence,
which could allow for a confidence-regulated accumulation-to-
bound process that controls perceptual decision-making even in
the absence of an explicit speed-accuracy trade-off.

Results
Preliminary analyses. Across all three Type-II contexts, observers
(N= 20) made the same Type-I decision: whether the orienta-
tions of the sequence of Gabor patches presented on each trial
were drawn from the orange or the blue category. These cate-
gories were defined by circular Gaussian probability distributions
over the orientations of the Gabor patches, as shown in Fig. 1a
(see Methods). The three Type-II contexts were presented across
two sessions and are depicted in Fig. 1b. For each observer, 100
trials of up to 40 stimuli were pre-defined and repeated six times
in the Stopping task context and three times in the Free task and
Replay task contexts.

In the first session, observers were placed in a Stopping task
context in which they were continually shown samples until they
entered their Type-I response. Importantly, they were asked to
enter their response when they felt they had accumulated enough
evidence to reach a certain probability of being correct (target
performance). There were three target performance conditions
(70%, 85% and 90% correct) in which observers scored an average
proportion correct [95% between-subjects CI] of 0.72 [±0.018];
0.80 [±0.021]; and 0.82 [±0.023]. This corresponded to a Type-I
sensitivity (d’) of 1.2 [±0.17], 1.7 [±0.14], and 1.9 [±0.19] in each
target performance condition, which was found to significantly
increase across target performance conditions using a Wilcoxon
sign rank test; Z (70% vs. 85%)= 3.78, pbonf*2 < 0.001; Z (85% vs.
90%)= 2.35, pbonf*2= 0.037, with these p-values Bonferroni
corrected for two comparisons). Observers also chose to enter
their response later in the higher target performance conditions
(average median sequence length= 6.5 [±1.13]; 11.5 [±2.09]; and
15.0 [±3.02]; Z (70% vs. 85%)= 3.71, pbonf*2 < 0.001; Z (85% vs.
90%)= 2.80, pbonf*2= 0.010; additional analyses are provided in
Supplementary Note 1 and Supplementary Fig. 1).

In a second session, completed on a separate day, observers
were placed in a Free task context, followed by a Replay task
context. In the Free task context, observers were also continually
presented with samples until they entered their response. Unlike
in the Stopping task, observers were not given specific
performance targets, but instead asked to enter their response
as soon as they ‘felt ready’. Observers scored an average
proportion correct [95% between-subjects CI] of 0.80 [±0.025],

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15561-w

2 NATURE COMMUNICATIONS |         (2020) 11:1753 | https://doi.org/10.1038/s41467-020-15561-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with observers choosing to respond after 10.5 [±1.51] samples on
average. The same trials were then repeated to observers in the
Replay task, completed immediately after the Free task, but in the
Replay task observers were presented with a fixed number of
samples and could only respond after the response cue. The
number of samples presented on each trial was determined
relative to how many samples the observer chose to respond to
for the three repetitions of each pre-defined trial in the Free task.
There were three intermixed conditions: Less (−2 samples from
the minimum), Same (same number of samples as the median),
and More (+4 samples from the maximum). This resulted in a
median number of samples of 5.4, 10.4, and 18.5 in the Less,
Same, and More conditions, respectively. We compared perfor-
mance in the 100 trials of the Less, Same, and More conditions to
the corresponding sets of 100 trials in the Free task exhibiting the
minimum, median, and maximum number of observed samples
across the three pre-defined trial repetitions. Performance in the
Same condition was on par with performance on those same trials
(the trials with the median number of samples) in the Free task
(mean proportion correct= 0.80 [±0.022]; Z (Same vs. Free d’)=
0.82, p= 0.41, uncorrected). In the Less condition, two fewer
samples corresponded to a substantial decrease in performance
within-subjects (Less d’= 1.01; Free d’ on Less trials= 1.50; Mean
within-subjects difference= 0.49 [±0.13], Z= 3.51, pbonf*3 <
0.001) but in the More condition, four additional samples did
not significantly improve performance within-subjects (More
d’= 1.85 Free d’ on More trials= 1.77; Mean within-subjects
difference=−0.08 [±0.13]; Z= 0.04, p= 0.68).

In the Replay task, observers also gave a confidence rating after
each Type-I response. The rating ranged from 1 to 4 and reflected
observers’ confidence that they had made a correct response (1
corresponding to low confidence/guessing, and 4 high con-
fidence/certain correct). These ratings were used to compute
observers’ Type-II sensitivity using meta-d’, as has become
common practice in metacognitive research28. To account for

different Type-I sensitivity, meta-d’ is divided by d’ to give
metacognitive efficiency, or Type-II efficiency as we will call it
here. The average Type-II efficiency was 0.75 [±0.096], more
details on this analysis are available in the Supplementary Note 2
and Supplementary Fig. 2.

Observers’ behavioural responses were determined by the
orientations they were presented with on each trial, and by their
internal processing of these samples, which is affected by several
sources of suboptimalities. These suboptimalities were quantified
using computational modelling, based on the work of Drugo-
witsch et al.22. The model describes the observer’s choice on each
trial as an accumulation of evidence with each additional sample,
as shown in Fig. 2a. The evidence accumulated with each sample
was calculated as the difference in the log probabilities of the
orientation given each category (blue vs. orange), which is the
optimal evidence given by a Bayesian observer. This optimal
evidence was disrupted by two sources of suboptimalities that
impair the observer’s Type-I sensitivity: inference noise (disrupt-
ing the accurate representation of decision evidence) and a
temporal bias (weighting early and late evidence differently),
parameterised by σ and α, respectively (see Methods for details).
These parameters were adjusted for each observer to best describe
their behavioural choices. In order to achieve the performance
targets, the observer imposes a bound on the accumulated
evidence. To maintain a constant probability of a correct
response, the ideal bound decreases with the number of
samples—i.e., a collapsing bound (see Methods for more details).
That is, as additional samples are accumulated, the observer
requires less evidence per sample on average for the same
probability of a correct response. We found that observers
adjusted the rate of decline of the bound function over the
number of samples (parameterised by λ) to accommodate for the
different target performance conditions. On average, λ increased
from 2.17 [±0.38] to 3.55 [±0.53] to 4.38 [±0.69] and this alone
was sufficient to explain the differences between conditions in
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Fig. 1 Procedure. On each trial, observers were shown a series of oriented Gabors and had to determine which distribution the orientations were drawn
from. a The orientations were drawn from one of two circular Gaussian (von-Mises) distributions centred on −45° (blue) and+ 45° (orange) relative to
vertical (0°). The distributions were overlapping such that a stimulus oriented 45° from vertical is most likely to have been drawn from the orange
distribution (orange arrow) but still could have been drawn from the blue distribution (blue arrow). b The experiment involved two sessions. In session 1,
observers completed the Stopping task. On each trial of the Stopping task the series of stimuli continued until observers entered a Type-I response: blue or
orange distribution. They were asked to enter their response when they felt they had a certain probability of being correct. The three target performance
levels (70%, 85% and 90% correct) were completed in separate blocks. In session 2, observers completed the Free task followed by the Replay task. The
Free task was the same as the Stopping task, except observers were asked to enter their response when they felt ready (after p samples). In the Replay
task, observers entered their Type-I response once cued (fixation changing to red). They then gave a Type-II response: a rating (1 to 4) of how confident
they were that they were correct. Unbeknownst to observers, the Replay task actually replayed the exact same trials from the Free task, except the number
of samples was either the same as they had chosen to respond to (x= p), two fewer (x= p − 2), or four additional samples (x= p+ 4). These trials
comprise the Same, Less and More conditions, respectively. Across all tasks, the fixation point (black dot) and colour guide were present throughout each
trial. The samples were presented at a rate of 4 Hz, with 200ms of stimulus presence (including 25ms ramp at onset and offset) and 50ms inter-stimulus
interval. All tasks consisted of repetitions of the same 100 trials pre-defined for each observer.
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Fig. 2b, c. The relative placement of this bound, given the
suboptimalities in their evidence accumulation, controlled how
well observers were able to meet the target performance levels.
The model was fit to both what and when observers responded.
The ability of the model to describe observers’ behaviour in each
target performance condition can be appreciated by simulating
behaviour using each participants’ fitted parameters, as shown in
Fig. 2b, c. Further details on the model parameters and fits can be
found in the Methods. An indication of the model fit to
behavioural performance is shown overlaid over each behavioural
data figure, with open red markers corresponding to performance
in simulations using the parameters fit to each observer.

This computational model was then used to examine the
process of accumulating evidence for Type-I and Type-II
decisions in the context of our three main questions: the
relationship between efficient bound-setting for Type-I deci-
sion-making and Type-II sensitivity, the implementation of
covert bounds on Type-I and Type-II evidence accumulation,
and the relationship between suboptimalities in evidence
accumulation for Type-I and Type-II decisions.

The relationship between Type-I and Type-II efficiency.
Observers’ ability to set and maintain appropriate bounds on
Type-I evidence accumulation was measured in the Stopping task.
As shown in Fig. 3a, observers were able to adjust their perfor-
mance according to the target performance condition, but did not
do so optimally: there was substantial over-performance in the
70% correct condition and under-performance in the 85% and
90% correct conditions. The computational model explained this
change in behaviour by a change in the rate of decline of the
decision bound, which also explained the increase in the number
of samples observers chose to respond to (Fig. 3b). Bound effi-
ciency was then calculated as the change in bound across con-
ditions that the observer actually implemented, divided by the
change in bound they should have implemented if they were to
reach the target performance levels. This expected behaviour was
obtained by simulations given the other suboptimalities affecting
observers’ performance (see Methods for more details). In this
way, an observer with high bound-efficiency could over- or
under-estimate their performance (poor accuracy relative to the
target performance levels), though they still adjust their bounds
appropriately in the face of different performance targets (good
precision). Type-II efficiency was then calculated using the

confidence ratings in the Replay task (completed in a separate
session to the Stopping task). As a check, Fig. 3c shows observers
were using their ratings appropriately, as proportion correct
increases with increasing confidence, and reflected increased
decision evidence rather than number of samples per se (which
could have been used as a proxy for confidence).

There was a strong, significant relationship between bound
efficiency and Type-II efficiency, shown in Fig. 3d, found by
assessing the slope of the line that minimises the perpendicular
distance from the data (y= 1.41×+ 0.25; p= 0.004, using non-
parametric bootstrapping; y= 1.5×+ 0.2, p= 0.026 with two
outliers removed). Importantly, the bound efficiency was not
found to relate to observers’ Type-I sensitivity in the Replay task
(p= 0.64), nor was Type-II efficiency related to the parameters
contributing to Type-I sensitivity in the Stopping task (inference
noise (σ); p= 0.51; and temporal biases (α) p= 0.17). This
indicates that the relationship between the bound efficiency and
Type-II efficiency did not arise from other, potentially confound-
ing computational parameters underlying Type-I and Type-II
sensitivity.

Covert bounds on Type-I evidence accumulation. In the Replay
task, the additional samples in the More condition should have
driven increased performance compared to the Same condition,
but from the statistical analysis reported in preliminary analysis,
this was not the case (Fig. 4a). This lack of improvement has two
possible explanations. First, there could be a performance limit,
due to the suboptimalities in evidence accumulation para-
meterised by σ (inference noise) and α (inference leak). Second,
and more interestingly, observers could be employing a covert
bound on evidence accumulation, where observers do not accu-
mulate evidence beyond this bound, even when additional evi-
dence is available. To compare these hypotheses, we fit two
models, one with and one without a covert bound, fixing the
suboptimalities to those fit to the Same and Less condition. There
was a significant improvement in model fit with a covert bound
relative to the model without a covert bound, assessed using a
five-fold cross validation (mean relative increase= 0.047, Z=
2.46, pbonf*3= 0.041; as shown in the left-most bar of Fig. 4b),
suggesting that the employment of a covert bound is a better
explanation of the behavioural responses than the suboptimalities
in evidence accumulation alone. This model comparison included
two other models in which a covert bound was fit to Type-II
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evidence accumulation (more details below) of which neither
model showed significant evidence of an improvement in fit (for a
hard bound, the same as Type-I; Z= 1.79, p= 0.073; nor an
independent bound Z= 0.11, p= 0.91). Further details on
reflexive vs. absorbing29 covert bound comparisons can be found
in the Supplementary Information (Note 5 and Fig. 7).

There was a clear effect of crossing the decision bound evident
in observers’ pupil dilation, which provided direct support for the
modelling results. In all three conditions of the Stopping task,
there was a phasic increase in pupil size beginning immediately
prior to the response, peaking immediately after the response.
Based on a cluster-level analysis30 of Wilcoxon sign rank tests
against baseline, this increase became significantly greater than
baseline from 0.28 s prior to the response (pbonf*3 < 0.002 in each
condition). In contrast, in the Replay task there were substantial
between-condition differences. In the Same and the Less
conditions the increase relative to baseline did not survive
cluster-level comparisons (p= 0.064 in the Same condition, and
p= 0.281 in the Less condition; uncorrected), but in the More
condition pupil size was significantly greater than baseline from
−3.92 to −1.86 s relative to the response (pbonf*3= 0.018). Pupil
size was also found to peak earlier in the More condition (M=
−2.46 s) relative to the Less condition (M=−2.8 s) (using
jackknife resampling t(17)=−13.06, pbonf*3 < 0.001) though
neither peak was significantly different from the Same condition
(p > 0.1). The difference in the median number of samples shown
in the More and the Same condition was about 8. If the difference
in the peaks were due to the different number of samples, there
would also be a difference between conditions in the Stopping
task, where there was also a difference of about 8 samples between
the 70% and 90% target performance conditions (Fig. 4c).

Suboptimalities in Type-I and Type-II evidence accumulation.
Confidence ratings were modelled by placing criteria on the
accumulated evidence such that the confidence rating was given
based on the position of the evidence relative to these criteria
(further details in the Methods). The ideal Type-II observer is
defined as the one that is using the exact same evidence as for the
Type-I decision. If this were the case, there would be no sys-
tematic difference in the parameters fit to describe both Type-I

and Type-II responses, compared to when only Type-I responses
were fit. On the contrary, we found a significant increase in
inference noise (σ; Wilcoxon sign rank test Z=−3.81, pbonf*2 <
0.001), and significant decrease in temporal bias (increase in α
toward 1; Z=−3.62, pbonf*2 < 0.001). If the Type-I and Type-II
evidence accumulation processes were entirely independent, then
there should be no significant correlation between the sub-
optimalities affecting each separate accumulation process. On the
contrary, we found both σ and α to correlate when allowing
model parameters to vary independently across the Type-I and
Type-II evidence accumulation processes (σ, τ= 0.66, pbonf*4 <
0.001; α, τ= 0.57, pbonf*4= 0.001) while the Type-II parameters
remained significantly increased relative to the Type-I parameters
(σ, Z=−3.92, pbonf*4 < 0.001; and an increase in α, Z=−3.73,
pbonf*4= 0.001). The results are therefore consistent with a par-
tially dissociable model, where the Type-I and Type-II accumu-
lators receive the same noisy decision evidence, but thereafter the
Type-II accumulator incurs additional noise. This additional
noise could occur either at the accumulation stage or the decision
output stage, however these partially correlated models could not
be distinguished (the difference in the log-likelihoods of the
models is 0.67). Figure 5 depicts the additional Type-II noise as
occurring at the accumulation stage. By simulating confidence
ratings using the fitted parameters, we were able to closely esti-
mate observers’ Type-II sensitivity (rho= 0.59 p= 0.007), fur-
thermore, estimating the placement of Type-I bounds based on
the confidence evidence provided a good estimate of bound
efficiency (see Supplementary Information, Note 3 and Fig. 5, for
details).

A partial dissociation between Type-I and Type-II decision
processes was also evident from observers’ pupil dilation. There
was a significant difference in pupil size between trials rated with
high confidence (ratings of 3 and 4) and trials rated with low
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Fig. 5 The accumulation of evidence for Type-I and Type-II decisions. The
dashed box encloses the hidden decision processes, which determine the
relationship between the observable variables (the physical input and
behavioural output). Information from the physical stimulus is transformed
into decision evidence, which is accumulated for the Type-I decision with
additive Gaussian noise (εs) and weighted according to the leak (αs).
Evidence accumulated for the Type-II decision incurs additional noise (εc)
and a separate leak (αc). Type-II control is exerted on the Type-I evidence
accumulation process, depicted by the red arrow, where the accumulated
evidence is sent to the decision output once the boundary is reached, based
on the Type-II evidence. The Type-II evidence may continue to accumulate
even after the boundary has been reached.
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Fig. 6 Pupil response to confidence and boundary crossing. Average
standardised pupil size in the Replay task across response-aligned (dashed
vertical black line) time-windows, baselined to the average over −5 to −4 s.
Shaded error bars show the 95% within-subjects confidence intervals.
Differences between these lines were assessed using Wilcoxon sign rank
tests, with significant clusters shown in the horizontal lines at the bottom of
each plot. a Trials separated by confidence rating (high= 3 and 4, low= 1
and 2), with the black horizontal line showing significant differences. b Trials
separated by whether it was likely that the observer’s covert bound was
crossed, based on the fitted parameters of the computational model, with
the black horizontal line showing significant differences. c Average change in
pupil size from the time of the response to 1 s after the response for low-
and high-confidence trials within crossed (red dashed) and not crossed
(black) trials. Error bars show 95% within-subjects CI. d Time of peak pupil
size in the low- and high-confidence trials within crossed (red dashed) and
not crossed (black) trials.
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confidence (ratings of 1 and 2) from 1.2 s following the response
(Fig. 6a, cluster-level p= 0.004). Comparing trials predicted
(based on fitted model parameters) to have crossed observers’
covert bounds to those that did not cross the covert bound also
revealed a significant difference in pupil size following the
response (Fig. 6b, from −0.2 s relative to the response, p < 0.002).
There was also a significant difference prior to the response,
reflecting the earlier peak in pupil size when the bound is crossed
(from −3 to −1.62 s relative to the response, p= 0.022). It should
be noted that these trial divisions were not completely
independent: 61% of the trials in which the bound was crossed
were high-confidence trials, and 67% of the low-confidence trials
were trials where the bound had not been crossed. Fig. 6c, d show
clearly that the difference in constriction after the response is
attributable to differences in confidence, while the temporal
difference in when peak pupil size occurs is attributable to
boundary crossing. The differences in pupil size after the
responses corresponded to differences in the speed of pupil
constriction, based on the analysis of the derivative, see Supple-
mentary Information for details (Note 6 and Fig. 9).

Discussion
The experiment presented here was designed to clarify the
relationship between the accumulation of evidence for per-
ceptual and confidence decisions. The results suggest a far more
intricate relationship than has previously been assumed. While
the confidence decision relies on the same sensory evidence as
the perceptual decision, this evidence undergoes additional
noise and a distinct temporal bias. Furthermore, the sensory
evidence accumulation process is terminated by a stricter
bound, in such a way that observers may make their perceptual
decision prior to accumulating all available evidence, while the
confidence accumulation continues. The relationship between
observers’ confidence efficiency and their ability to set and
maintain appropriate bounds on sensory evidence accumula-
tion suggests a common mechanism behind the two: The Type-
II system imposes bounds on Type-1 evidence accumulation.
Put together, this evidence indicates that confidence decisions
are not the result of some inert post-decisional process, but
reflect an online control process that moderates sensory evi-
dence accumulation.

By implementing a covert bound, observers were able to termi-
nate the Type-I evidence accumulation process prior to the end of
the trial; making their decision despite there being more evidence
available that could have increased their accuracy. This was evident
from the behavioural results, where performance in the More con-
dition did not significantly increase relative to the Same condition,
even though there were an additional four samples on which to base
their decision. Our computational modelling suggested a covert
bound significantly improved the fit of the model to behavioural
responses. Observers showed a phasic increase in pupil dilation as
they made their decisions (the evidence reached the decision
bound), which was temporally aligned with the response in the
Stopping task, but occurred much earlier in the More condition of
the Replay task, supporting the behavioural and modelling results
that suggest that observers were covertly committing to their Type-I
decisions early. This implementation of covert bounds could help to
optimise perception for efficient Type-I decision-making. However,
in the Replay situation, the bounds did not improve efficiency in
terms of overall time to complete the task (observers were forced to
wait till the end of the trial to enter their response), but rather in
terms of cognitive resources (by terminating the effortful evidence
accumulation process early). The Type-I evidence accumulation
system is thus not only hasty, but also indolent.

In comparison, there was no evidence that the Type-II evidence
accumulation system was subject to the same premature termi-
nation: the model with covert bounds did not improve the
description of observers’ confidence judgements, and the con-
fidence of the observer was not discernible from their pupil
dilation until after the Type-I response. This is consistent with
other findings in the literature, suggesting that observersʼ Type-II
responses inherit noise from the Type-I process31, and may
continue to accumulate Type-II evidence even after their Type-I
response with additional Type-II noise8,16, and explains how
some observers are able to show superior performance in their
Type-II decisions compared to what would be expected from
their Type-I decisions32. The additional accumulation of Type-II
evidence, in combination with the additional inference noise
affecting Type-II evidence accumulation, can accommodate for
all levels of metacognitive performance described in the literature
thus far. Moreover, the particular relationship between the sub-
optimalities in Type-I and Type-II evidence accumulation, with
more noise but less temporal bias in Type-II accumulation sup-
ports the characterisation of these processes as a hasty but effi-
cient (Type-I) process moderated by a cautious but inefficient
Type-II process3. Here, these effects were found without any
explicit experimental manipulation: there was no speed-accuracy
trade-off to induce the early boundary on Type-I accumulation in
the Replay task, and there was no manipulation of the timings of
Type-I and Type-II responses to induce additional Type-II
accumulation. In other words, the observed relationship between
Type-I and Type-II evidence accumulation arose from observers’
intrinsic predispositions.

This partial dissociation between Type-I and Type-II evidence
accumulation processes was also evident from observers’ pupil
dilation responses, suggesting differential activations of the nor-
adrenergic system. The pupil response to reaching the decision
bound may be associated with the phasic activity of Locus
Coeruleus (LC) neurons to task relevant stimuli, the timing of
which is more tightly related to the response time (though
occurring prior to the response) than to the timing of the sti-
mulus33. This pupil response to covert decisions has been
demonstrated in previous experiments34, as has the distinct
profile we saw related to confidence35,36. While phasic pupil
dilation was associated with crossing the decision bound (tem-
porally dissociated from the time of the response in the Replay
task), a distinct effect was seen related to confidence: faster pupil
constriction following the response (possibly due to an indirect
effect of confidence on task disengagement). This means that
these two distinct responses visible in the pupil dilation likely
correspond to distinct processes that can be measured simulta-
neously, perhaps corresponding to the functional differences
related to tonic and phasic activity of noradrenergic neurons26.

Despite all these differences between Type-I and Type-II evi-
dence accumulation, there was a surprisingly strong correlation
between observers’ Type-II efficiency and their ability to effi-
ciently set and maintain Type-I decision bounds. It is unlikely
that this correlation emerges indirectly due to some common
underlying variable, such as the observers’ motivation in general,
because of the lack of a relationship between observer’s Type-I
sensitivity (which should also vary with task commitment) in the
Replay task and bound efficiency in the Stopping task. Likewise,
there was no relationship between Type-II efficiency in the Replay
task and the magnitude of the suboptimalities in evidence accu-
mulation in the Stopping task. The strongest interpretation of the
correlation is that there is a causal relationship between Type-II
efficiency and bound efficiency: Type-II evidence is being used to
set and maintain boundaries on Type-I evidence accumulation
(though a test for causality is left for future research). This
‘metacognitive control’ has been previously suggested to operate
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in a post-decisional manner: the current confidence will influence
future Type-I evidence accumulation37–39. Our interpretation
goes further by postulating that the Type-II process is acting on
the Type-I evidence accumulation online, as accumulation occurs.
Indeed, we were able to reproduce observers’ bound efficiency by
simulating bounds based on the Type-II evidence estimate of the
probability of correct responses (Supplementary Fig. 5). This kind
of interaction would readily explain how observers actively seek
more information when they are uncertain40, and how observers
can integrate loss functions into their Type-I decisions41. In
addition, this kind of relationship offers a mechanism by which
decision bounds could be implemented at the neural level, which
is supported by evidence showing activity in the dlPFC is
modulated according to changes in the speed-accuracy trade-
off42–44 and according to metacognitive confidence45,46. How-
ever, it remains to be tested whether observers utilise their Type-
II evidence for bound-setting in other contexts, in particular, in
contexts where the tight relationship between Type-II evidence
and bound-setting is not suggested in the task instructions.

In summary, perceptual and confidence decisions were best
explained by partially dissociable, yet causally related evidence
accumulation processes. This intricate relationship allows human
observers to simultaneously represent sensory evidence as a cate-
gorical variable while maintaining a graded representation of the
uncertainty in that variable, which can then signal the commitment
to a perceptual decision. This allows for fast and efficient perceptual
processing under the control of more cautious confidence evalua-
tion. Rather than adding complexity, this characterisation of per-
ceptual processing as concomitant with the processing of
uncertainty provides a general computational framework for
describing several features of human decision-making. That con-
fidence controls perceptual decision-making explains how observers
can adjust decision-making across speed-accuracy trade-offs, learn
to make decisions in volatile environments, incorporate priors and
loss functions into perceptual decisions, and optimise perceptual
processing flexibly across instances requiring detailed scrutiny and
instances requiring the integration of global cues.

Methods
Participants. A total of 22 participants with normal or corrected-to-normal vision
were recruited via the French Relais d’Information en Sciences de la Cognition
(RISC) mailing list. The experimental protocol was approved by the Conseil en
éthique pour les recherches en santé and pre-registered on the Open Science
Framework platform (https://osf.io/gy2t3/), in adherence with the declaration of
Helsinki, and participants gave written informed consent prior to completing the
experiment. Two participants were removed from the analysis based on pre-
registered criteria (performance not significantly above chance), leaving 20 parti-
cipants in the full analysis as planned. One further participant was removed from
the pupillometry analyses due to a technical problem with the recording.

Apparatus and stimuli. Stimuli were presented on a 24-inch LCD monitor (BenQ)
running at 60 Hz with a resolution of 1920 × 1080 pixels and mean luminance 45
cd/m2. Stimulus generation and presentation was controlled by MATLAB
(Mathworks) and the Psychophysics toolbox47–49, run on a Mini Mac (Apple Inc).
An EyeLink 1000 infrared monocular eye-tracker system (SR Research Ltd. Ontaro,
Canada), running at 500 Hz on a dedicated PC, was used to monitor blinks and
pupil dilation in the observer’s dominant eye. Observers viewed the monitor from a
distance of 60 cm, with their head supported by a chin rest. Stimuli were oriented
Gabor patches subtending 4° of visual angle with a Michelson contrast of 0.2 and
spatial frequency of 2 cycles/degree. Gabors were embedded in spatially filtered
noise with an amplitude spectrum of 1/f1.25 and contrast of 0.15. The orientation of
each Gabor was chosen from one of two Von-Mises distributions with con-
centration parameter κ= 0.5, and means of –45° and+ 45° from vertical (0°). An
annular colour guide was drawn around each Gabor to aid participants in the
visualisation of these distributions, where the red and blue RGB channels reflected
the probability density of each angle in the two distributions, respectively22. This
colour guide was present throughout the trial, in addition to a black, circular
fixation point subtending 0.3° at the centre of the screen. These distributions and
example stimuli are shown in Fig. 1.

Procedure. The task was a modified version of the weather prediction task21,22. On
each trial the observer was presented with a sequence of stimuli and was asked to
guess which of the two categories (defined by the distributions of the orientations)
the stimuli were drawn from. Observers were instructed to press the left arrow key
for the category with mean of –45° and the right arrow key for the category with
mean of+45°, which was described to the participants using the colour guide. The
stimuli were presented at a rate of 4 Hz, with Gabors presented at maximum
contrast for 150 ms, temporally bordered by a 25 ms cosine ramp, with a 50 ms
inter-stimulus interval. This same basic procedure was used across three variants of
the task (visually depicted in Fig. 1b), completed over two sessions of approxi-
mately one hour each. For each observer, 100 trials of 40 samples were pre-defined
by randomly sampling from the orientation distributions (50 trials from each
distribution) and saving the random number generator seeds for recreating the
spatially filtered noise added to each Gabor. These 100 pre-defined trials were
repeated over the experiment.

In the first session, observers completed the Stopping task. In this task, samples
were presented to the observer until they entered their response (or until all
40 samples were shown). There were three response conditions, where observers
were instructed to enter their response as soon as they thought they had reached a
certain performance target (a 70%, 85%, or 90% chance of being correct). These
conditions were completed in a random order over six blocks of 100 trials (two
blocks of each condition). Before starting this task, observers completed a practice
block, where they were first shown 20 trials of 4, 8, 12, or 16 samples with
immediate feedback as to which distribution the orientations were actually drawn
from. They were then asked to practise responding at each of the performance
targets over 10 trials for each target. During this part of the practice, observers were
given feedback as to their average percent correct performance over the 10 trials. In
the Stopping task, participants were informed of their average performance over
mini-blocks of 20 trials, and were symbolically awarded 10 points for achieving the
performance target over the 20 trials, or 5 points for coming within 5% of the target
(for achieving 5% more or less than the target), but 0 points otherwise.

In the second session, participants completed two tasks: the Free task and the
Replay task, in that order. The Free task was the same as the Stopping task except
that participants were not given performance targets, but were instead asked to
respond when they ‘felt ready’. There were three blocks of 100 trials in this task,
and participants were not given any feedback as to their performance. In the Replay
task, observers were shown a specific number of samples and could only respond
after the sequence finished, which was signalled by the fixation point changing to
red. After entering their response, observers were also required to give a confidence
rating of how certain they were that they were correct on that trial, on a scale of 1
to 4. Unbeknownst to observers, the trials in the Replay task were actually designed
based on the observers’ responses in the Free task. There were three conditions; in
the Same condition, observers were shown the median number of samples that they
chose to respond to over the three repeats of that exact same trial in the Free task.
In the Less condition, observers were shown two fewer than the minimum number
of samples they had chosen to respond to on that trial in the Free task, and in the
More condition they were shown four more than the maximum number of
samples. For example, if the observer chose to respond after 4, 5, and 10 samples on
the three repeats of one pre-defined trial, they would be presented with 2, 5, and
14 samples in the Less, Same, and More conditions of the Replay task, respectively.
These conditions were randomly intermixed over three blocks of 100 trials.

Statistics and reproducibility. This manuscript presents a single experiment with
20 participants. This sample size was pre-registered and allows the detection of a
moderate effect size of 0.68 with a power of 0.8 at an alpha level of 0.05 for
standard two-sided t-tests. The majority of statistical comparisons were performed
within-subjects using non-parametric tests, making these analyses more con-
servative, but robust to deviations from normality, which cannot be reliably tested
in small sample sizes. All measurements were taken from distinct samples unless
otherwise specified.

Behavioural analysis. Raw behavioural data were used to calculate proportion
correct, sensitivity (d’), and the median sequence length (number of samples
observers saw) for each participant, for each experimental condition, and across
experimental blocks. We present the average proportion correct across conditions
in the Results. Non-parametric within-subject statistics were applied to sensitivity
(d’) to examine differences in performance across conditions, and to the median
sequence length. We also present parametric confidence intervals on the propor-
tion correct data. Throughout the analysis, Bonferroni corrections were applied to
p-values less than 0.05 when more than one statistical test was carried out per
hypothesis (with this indicated by bonf*[number of tests corrected for] in sub-
script), while non-significant p-values were reported uncorrected.

Pupillometry. Blinks were identified using the EyeLink automatic blink detection
algorithm and pupil dilation was linearly interpolated using a 100 ms window
before and after each blink. Additional outlier pupil dilation data points (greater
than 8 SD from the mean) were also interpolated. Data were downsampled to 50
Hz by averaging over consecutive windows of 20 ms. Time-points where the
observer was not fixating within 200 pix from fixation were tagged for exclusion
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and trials were excluded from the analysis if there was more than 100 ms of
exclusory data, or if any data were more than 3 SD from the mean (on average,
2.6% of trials in the Stopping task, and 5.3% of trials in the Replay task). Each
participant’s pupil size data were z-scored and epochs were taken relative to the
start of each trial (0 to 3 s) and relative to the response (−6 to 2 s). Epochs were
baselined by subtracting the group mean for each condition at the start of the
epoch from each participant. Pupil change was calculated based on the derivative of
the pupil size, which was conducted with some smoothing, by taking the differ-
ences between the sum of five time-points before and after each time-point and
dividing by five times the sample rate (50 Hz). Statistical inferences were performed
using a cluster-based procedure30. Significant clusters were found using Wilcoxon
sign rank tests at each time-point (at a statistical threshold of p < 0.05) and com-
paring the sum of the z-scores in these clusters to those obtained over 3000 per-
mutations. For tests against baseline in the response-aligned epochs, data were
permuted by shuffling the response times within each condition. For tests between
conditions, data were permuted by shuffling the condition labels of the trials.
Cluster-based corrections corrected for tests over multiple time-points, additional
Bonferroni corrections were applied to significant p-values when more than one set
of tests was performed (e.g., totalling three cluster-level analyses, one for each
condition separately in the Stopping and Replay tasks). As a secondary check that
the results were not influenced by the pupil response to stimulus onset, the analyses
were also performed on data where the pupil impulse response function to stimulus
onset was removed using an autoregressive model with exogenous inputs50, these
results can be found in the Supplementary Note 6 and Supplementary Fig. 8.

Computational modelling. A computational model was defined based on22. The
model takes the Bayesian optimal accumulation of sensory evidence in this task,
and disrupts this process with several sources parametrically defined sub-
optimalities. The Bayesian optimal observer is assumed to know the category
means, μ1 ¼ � π

4 ; μ2 ¼ π
4, and the concentration, κ= 0.5, and takes the evidence in

favour of category ψ (ψ= 1 or ψ= 2) based on the orientation presented on a
specific trial, for a specific sample n, as the probability of the orientation θn given
each category:

p θnjψð Þ ¼ eκ cos 2 θn�μψð Þð Þ
πI0ðκÞ

ð1Þ

Where I0(·) is the modified Bessel function of order 0. The optimal observer then
chooses the category ψ with the greatest posterior probability over all samples
for that trial, T (T varies from trial to trial), given a uniform category prior,
p ψð Þ / 1

2 :

p ψjθ1:Tð Þ / p θ1; ¼ ; θT jψð Þ ¼
YT

n¼1

p θnjψð Þ ð2Þ

This is achieved by accumulating the log probabilities of each category, given
each orientation presented in the sequence:

‘n;ψ ¼ log pðθnjψÞ ¼ κ cos 2 θn � μψ

� �� �
þ const: ð3Þ

Given the evidence for each category is perfectly anti-correlated over the
stimulus orientations, the evidence from each sample can be summarised as:

‘n ¼ ‘n;1 � ‘n;2 ¼ κ cos 2 θn � μ1
� �� �� κ cos 2 θn � μ2

� �� � ð4Þ
and the optimal observer sums this evidence over all samples in the trial (T):

z ¼
XT

n¼1

‘n ð5Þ

Such that the Bayesian optimal decision is 1 if z > 0 and 2 if z ≤ 0.
This optimal decision-making was disrupted by several sources of suboptimality

in order to account for each observer’s behaviour. First, variability is added to the
evidence accumulation process, such that independent and identically distributed
(i.i.d) noise, εn, is added to each evidence sample. The noise is Gaussian distributed
with zero mean, and the degree of variability parameterised by σ, the standard
deviation:

εn � N 0; σ2
� � ð6Þ

This noise represents inference noise, as it is added to the decision update as
opposed to the representation of stimulus orientation. It is noted that there could
be some contribution of sensory noise, where the representation of the stimulus
orientation does not veridically match the sensory input. However, previous
evidence22 suggests that the contribution of sensory noise to this task is minimal
(only very large values of sensory noise would contribute significantly to decision
variability in this task), thus no sensory noise parameter was explicitly fitted in
reported analyses.

The suboptimal observer does not accumulate evidence perfectly. Functionally,
during accumulation, the current accumulated evidence is weighted by α, before
accumulating the next sample, so that when α > 1 this creates a primacy effect and
later evidence affects the decision less than the initial evidence. In contrast when α
< 1 this creates a recency effect, and the observer’s decision places greater weight on
the more recent evidence than the initial samples. Thus, by the end of the sequence,

the weight on each sample n is equal to:

vn ¼ αT�n ð7Þ
Where T is the total samples in that trial and n ∈ [1,T]. Altogether, the suboptimal
accumulation of decision evidence takes the following form:

z ¼
XT

n¼1

‘n þ εnð Þ � vn ð8Þ

Several additional parameters were necessary to describe when observers would
respond. The optimal observer makes a decision as soon as the relative decision
evidence, given the sequence length (n), has crossed a decision boundary, Λ. In
order to maintain a constant likelihood of a correct response (as required by the
task) this bound was found to decrease as sequence length increases (such that the
bound represents a constant bound on proportion correct over sequence length,
further details in Supplementary Note 3 and Supplementary Fig. 4):

Λnþ ¼ n ´ aþ be�
n
λ

� � ð9Þ
For the positive decision bound (the negative bound, Λn–=− Λn+). The

likelihood f(n) of responding at sample n was estimated by computing the
frequencies, over 1000 samples from εn (Monte Carlo simulation), of first times
where the following inequality is verified:

XN

n¼1

‘n þ εnð Þ � vn
�����

�����>Λn ð10Þ

As we do not have access to when the decision is made, only when the response
is entered, two additional parameters are used to describe the mean, μU, and
variance, σ2U , of the non-decision time, which is assumed to be i.i.d across trials and
take the form of a Gaussian distribution. Thus, the likelihood of responding over all
samples n is calculated as:

f 0 nð Þ ¼ f nð Þ*g n; μU ; σ
2
U

� � ð11Þ
where f(n) is the likelihood of responding at sample n as above in Eq. 10, f′(n) is the
modified likelihood that takes into account a smoothing of the choices in time, and
g n; μU ; σ

2
U

� �
is the Gaussian kernel with mean μU and variance σ2U applied at

sample n.

Model fitting. First, the full model was fit to Type-I behaviour in each task and
condition separately. Responses in the Stopping task and the Free task were
modelled by optimising parameters to minimise the negative log-likelihood of
the observer making response r at sample n on each trial, using a Bayesian
Adaptive Direct Search51. As there is no known analytic solution to the like-
lihood function of the model, the probability of the observer making each
response at each sample, given the parameters, was numerically estimated using
Monte Carlo simulation. The sensitivity of this approach was tested using
parameter recovery. Simulating 300 trials we found a significant correlation
between the simulated and recovered parameters (using a Spearman’s correla-
tion, all p < 10−5, more details in Supplementary Note 4, and Supplementary
Fig. 6). The numerical estimation approach was also applied in the Replay task
for consistency, even though when only the Type-I discrimination response was
fit, the model does have an analytic solution.

The full model was then simplified using a knock-out procedure, by
comparing the Bayesian Information Criterion (BIC) of the full model with the
BIC of models with each parameter fixed to a neutral value in turn using
Bayesian Model Selection (implemented in SPM1252,53), for each condition of
each task. The full model contained response bias and lapse rate parameters
(not described above) that could be removed as they did not significantly
improve the fit (the exceedance probability of the model with response bias= 0
was xp= 0.93; and fixing lapse= 0.001, xp > 0.99). There was also little evidence
for response bias from the behavioural data (mean criterion= 0.03 [±0.05]).
Thus, the final Type-I model contained seven parameters for fitting both what
and when observers responded, and just two parameters for fitting only the
categorisation response. Next, we examined whether any of the parameters
systematically varied across conditions within tasks. For the Replay task, this is
described in the Results. For the Stopping task, this was used to assess which
parameters observers were adjusting to control their bounds. The only
parameter to significantly vary across conditions in the Stopping task was λ
(Kruskal–Wallis test χ2= 14.34, pbonf*7= 0.006) with all other p > 0.1
(uncorrected; and specifically, b, the other important bound parameter,
showed no evidence of adjustment across conditions: χ2= 1.51, p= 0.47). We
then fit all conditions of the Stopping task together, with three λ, one for each
condition.

Estimating optimal bounds. In order to calculate bound efficiency, observers’
actual bound separation was divided by the optimal bound separation. The optimal
bound separation was estimated by simulating observers’ performance across all
bounds, and taking the bounds that produced the target performance. Performance
was simulated by fixing all parameters except λ (the only parameter found to
systematically adapt across target performance conditions) and producing
responses to the orientations shown to observers over 1000 samples of noise from
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each observers’ εn. Bound efficiency was then calculated as the actual difference in
observers’ λ in the 70% and 85% target performance condition, divided by the
simulated difference in the λ that would have achieved 70% and 85% correct,
leaving all other parameters the same. This meant that the bound efficiency really
corresponded to the ability of the observer to appropriately adjust their bound,
irrespective of any absolute bias to set bounds too high or too low. The data from
the 90% correct condition was not used in this calculation as the model predicted
that 13 observers would have never reached 90% correct, and indeed, no observer
actually reached 90% correct overall in any task of the experiment.

Fitting Type-II responses. To fit Type-II confidence ratings, additional criteria
were required to partition the evidence for each confidence rating. We examined
the absolute evidence, jPN

n¼1 ‘n þ εnð Þ � vnj, that observers were exposed to in the
Replay task, as a function of sequence length, for each confidence rating. We found
that the evidence for each confidence rating tended to follow the same function as
for the ideal bound on the Type-I decision (Eq. 9; see Supplementary Note 3 and
Supplementary Fig. 3 for more details). Therefore, Type-II responses were mod-
elled by implementing three bounds (Λ1,Λ2,Λ3) as the upper limit on the evidence
for each confidence rating (with the highest confidence rating having no upper
limit). The three bounds were modelled with the same a and b, but different λ.
Model fitting was performed using the same method as for the Type-I behaviour,
except both the Type-I and the Type-II response were fit, such that the model
would respond [Type-I, Type-II]:

1; 1 if z > 0 \ zj j<Λ1

1; 2 if z > 0 \ Λ1 < zj j<Λ2

1; 3 if z > 0 \ Λ2 < zj j<Λ3

1; 4 if z > 0 \ zj j>Λ3

2; 1 if z < 0 \ zj j<Λ1

¼
2; 4 if z < 0 \ zj j>Λ3

ð12Þ

First, a model was fit using the same z for Type-I and Type-II responses.
Entirely separate parameters (leading to independent z for Type-I and Type-II
responses) were fit in the parallel model, where the Type-I parameters were fixed to
those fit to only the Type-I responses. In partially correlated models some
parameters for the Type-II z were fixed to be the same as those affecting the Type-I
z. These models compared all combinations of fixed/varied noise and leak, and
compared whether additional noise was added with each sample of evidence, or a
single sample of noise irrespective of sequence length. Model comparison showed a
partially correlated model, where Type-II z is affected by additional noise and a
different leak, best accounted for Type-I and Type-II responses: the exceedance
probability of this model over the model fit using the same z for Type-I and Type-II
responses was xp > 0.99; the exceedance probability over the parallel model was xp
> 0.999; the exceedance probability over the next best partial model (a model with
leak fixed to the Type-I leak) was xp= 0.54. We then compared models in which
the observer accumulates Type-II evidence over all samples and models
implementing a bound on Type-II evidence accumulation (either the same bound
as the Type-I bound, or an independent bound). There was no evidence for a Type-
II accumulation bound (Fig. 4b); Type-II z accumulated evidence across all
presented samples.

If the λ of a higher confidence bound was smaller than the λ of a lower
confidence bound, this resulted in negative likelihoods (as it is paradoxical to
require less evidence for higher confidence), and the model would sometimes
become stuck in a local minimum. We therefore implemented plausible lower and
upper bounds on the parameters, based on initial fits to participants where the
model was successfully able to apply the bounds. These plausible bounds are used
by the Bayesian Adaptive Direct Search to design the initial mesh of the parameter
search, and by specifying increasing but overlapping plausible bounds on the λ’s,
the model was able to successfully recover sensible parameters for all participants,
while not limiting the model’s ability to describe the behaviour of some of the more
extreme participants.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data can be downloaded from a fork of the pre-registration on Open Science Framework
(https://osf.io/c9xfr/).

Code availability
Model fitting code can be downloaded from a fork of the pre-registration on Open
Science Framework (https://osf.io/s6zfb/).
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