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Abstract: Metabolite identification in non-targeted NMR-based metabolomics remains a challenge.
While many peaks of frequently occurring metabolites are assigned, there is a high number of
unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis.
Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which
gives important information on possible structural and/or biological correlations from the NMR
spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their
metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification
based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a
hypothesis, a full structural elucidation approach would be required. The approach allows a higher
identification yield in NMR spectra, especially once pathway-related subclusters are identified.

Keywords: metabolomics; metabolite identification; urine; NMR spectroscopy

1. Introduction

Metabolomics deals with the comprehensive characterization of all small molecules,
metabolites, in a biological system. It is the most downstream omics discipline and, there-
fore, the closest to the phenotype. While giving a good snapshot of end-points of metabolic
processes, such as enzymatic reactions, it also provides insight into exogenous influences
from the diet, drug intake and the gut microbiome. The concept is applied to many different
biofluids, especially plasma, urine, stool extracts and saliva. Urine as the body’s waste prod-
uct is not homeostatically controlled, and therefore, provides both temporal and chronic
information of the metabolism from many different biological pathways and exogenous
factors. In particular, it gives insight into dietary regimens, gut microbial composition
and disease-related patterns. The chemical characterization of the whole metabolome is
challenging from an analytical and chemical point of view. The selection of the analytical
technique leads to some restrictions and pre-selection of detectable metabolites. The most
widely applied techniques, to date, are mass spectrometry (MS) and nuclear magnetic reso-
nance (NMR) spectroscopy, both having advantages and drawbacks. NMR spectroscopy is
a particularly robust technique, offering direct quantification of elucidated metabolites and
can be operated for both non-targeted and targeted metabolomics approaches. The robust
and quantitative nature of the data makes the application of multivariate data analysis on
the basis of correlation analysis particularly useful. Indeed, most statistical evaluations
have focused on correlation analysis when interrogating NMR data [1].

Metabolites 2022, 12, 992. https://doi.org/10.3390/metabo12100992 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12100992
https://doi.org/10.3390/metabo12100992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-0257-8837
https://orcid.org/0000-0003-0583-5093
https://orcid.org/0000-0001-6645-0985
https://orcid.org/0000-0003-0824-2664
https://doi.org/10.3390/metabo12100992
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12100992?type=check_update&version=1


Metabolites 2022, 12, 992 2 of 11

With NMR spectroscopy being, historically, an indispensable tool for the structural elu-
cidation of novel molecules, it provides a valuable tool for the identification of metabolites
in non-targeted metabolomics analysis [2]. While many metabolites in urine and plasma
are already known and identified [3,4], there are still many unknowns. Such unknown
metabolites typically arise in studies where novel biomarkers for nutritional interventions,
pharmacokinetics of medication and in relation to functional markers of the gut micro-
biome are sought. In this work, we report on a workflow for high-quality data curation and
metabolite identification. In order to retrieve educated suggestions for compound identifi-
cations, we suggest applying cluster analysis statistical spectroscopy (CLASSY) [5], where
correlation coefficients merge chemical shifts from the same metabolites into clusters, and
hierarchical cluster analysis maps statistically related metabolite clusters together. Similar
to statistical total correlation spectroscopy (STOCSY) analyses [6], such relationships are
often biologically explainable, such as through the same pathways, the same dietary origin,
etc. As an output, the peaks of the NMR spectrum are reordered from chemical shifts
(i.e., electron susceptibility of each proton caused by surrounding electrons) to statistical
relationships among all peaks.

We demonstrate that the application of both Spearman correlation and hierarchical
clustering to the NMR dataset achieves the clustering of metabolites largely by their
probable biological relationship. Which gives, in turn, valuable information for the further
identification of unknown metabolites. Our report is useful in two ways, first, we give a
list of commonly appearing microbial metabolites in urine NMR spectra that can serve
as a database to the reader, and second, we give a detailed workflow description of the
procedure enabling to reproduce our approach with other, large datasets for peak ID in
new datasets.

2. Materials and Methods
2.1. Dataset Description

The KORA (Kooperative Gesundheitsforschung in der Region Augsburg) research
platform has been collecting clinical and genetic data from the general adult population
in the region of Augsburg, Germany for over 20 years [7]. F4 (2006–2008) and FF4 (2013–
2014) cohorts are follow-up studies from the KORA S4 (n = 4261) survey carried out from
1999–2000. The KORA F4 cohort comprises 3080 subjects (aged 32–81 years), of whom
2161 participated in the follow-up study KORA FF4 (aged 39–88 years). For our sub-
cohort analysis, we excluded participants with cancer, hepatitis and HIV infection, as
well as samples with more than one freeze–thaw cycle. Further exclusion criteria were
non-fasting on the interview day and the regular use of ibuprofen and/or paracetamol.
A total of 998 samples have been selected randomly. In both studies, all participants
have given written informed consent and the ethics committee of the Bavarian Chamber
of Physicians, Munich, EC#06068) have approved the studies. Participants completed a
lifestyle questionnaire, including details on health status and medication use in the past
7 days and underwent standardized examinations with urine samples taken [7]. All urine
samples were stored at −80 ◦C until the analysis.

2.2. Sample Preparation

Samples were defrosted on ice or kept in the fridge at 4 ◦C overnight, sorted in
randomized order and homogenized by brief shaking. Aliquoting was performed by a
Hamilton Microlab STAR® (Hamilton Bonaduz AG, Bonaduz, Switzerland), where 150 µL
urine samples were placed in each Eppendorf, followed by a 10 µL KF buffer (4.5 M KF
in 100% D2O) and a 50 µL PO4 buffer (100% D2O, 0.1% TSP, 2 mM NaN3, pH 7.4). To
create a study QC sample, a pool consisting of 10 µL of each urine sample in the study
was collected. This QC was then thoroughly vortexed and aliquoted into 150 µL samples
and mixed with the two above-mentioned buffers, and used for daily QCs. All samples
were kept at −80 ◦C until analysis. Prior to NMR analysis, samples were defrosted on ice,
vortexed, centrifuged (12,000 rpm for 10 min at 4 ◦C) and 180 µL was transferred to 3 mm
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outer diameter NMR tubes. For every day of analysis, one QC sample was additionally
prepared.

2.3. NMR Analysis

Urine samples were analysed on a Bruker 800 MHz spectrometer operating at 800.35 MHz
with a quadruple inverse cryogenic probe. A standard one-dimensional pulse sequence with
water presaturation during the relaxation delay and the mixing time and the spoil gradient
(noesygppr1d) was acquired with a recycle delay (d1) of 4 s, acquisition time (aq) of 3 s, mixing
time (tm) set to 200 ms and a 90◦ pulse (p1) of 13 µs; 256 scans are collected into 64K data points
with a spectral width of 16 ppm. NMR tubes were placed in the 4 ◦C cooled autosampler and
quality checks were performed as follows: (i) weekly probe temperature control using 99.8%
MeOD sample and tempcal function (300 K ± 0.003); (ii) daily shimming (TSP half width
< 1.0 Hz) and water suppression quality using the QC sample. Phasing and baseline were
also checked. Subsequently, all samples were submitted for analysis via a cooled autosampler.
Once data acquisition was finished, all samples were briefly checked for phasing, baseline,
water suppression and shimming and re-analysed if necessary. 2D NMR was performed
on the QC sample and selected samples with a high concentration of peaks of interest. The
2D NMR analyses included J-resolved, TOCSY and HSQC, as previously described [8]. For
TOCSY, 19,228 × 2048 datapoints were collected using 32 scans per increment and in the
HSQC experiments 4788 × 1024 datapoints and 1024 scans per increment were collected.

2.4. NMR Data Processing

Acquired data were manually phased, baseline-corrected, calibrated to TSP (δ 0.00)
using the TopSpin 3.6. (Bruker BioSpin) software. All spectra were imported to Matlab
(Mathworks, Portola Valley, CA, USA), TSP peak and water peak residue were removed,
resulting in the spectral area from 0.50–4.70 ppm and 5.00–9.50 ppm at a resolution of
0.00025 ppm (34,820 data points). Remaining positional noise of the peaks was overcome by
a combination of local alignment of few distinct peaks and global alignment using the RSPA
alignment method relative to the QC sample [9]. Spectra were then normalized using the
probabilistic quotient normalization method [10]. The quality of the dataset was assessed
by principal component analysis (PCA), where the focus was given to (i) drivers of the first
principal components (i.e., exclude technical errors as a major driver of variation) and (ii)
cluster of all QC samples relative to the whole dataset.

2.5. Clustering Approach

Cluster analysis statistical spectroscopy (CLASSY) according to Robinette et al. [5] was
performed on the full dataset, consisting of a workflow with peak detection using the QC
sample, followed by an automated identification approach of local and global clustering.
For peak detection, a smoothed spectral derivative was calculated (Savitzky–Golay third-
order polynomial filter with a window size 0.005 ppm) and peaks were detected at zero
crossings [11]. Local clustering found structural correlation clusters based on Spearman
correlation (cut-off 0.7) and global clustering applies to a hierarchical cluster analysis to
arrange local clusters based on correlation clustering and average linkage. All settings were
applied as previously described [5]. Peaks of the same molecule (‘structural affiliation’)
clustered by local clustering (i.e., cut-off 0.7 for an indication as green boxes in the output
graphic), and peaks or molecules from the same pathway clustered (‘biological affiliation’)
close to each other in the global clustering (i.e., hierarchical cluster analysis and proximity
of peaks along the axis).

2.6. Metabolite Identification

The CLASSY analysis was used to provide a guided suggestion for the affiliation of
each peak to other peaks on the basis of correlation and cluster analysis. In some cases,
we carried out STOCSY analysis to add statistical correlation information of the peak
independent of peak picking. We also collected further information for every picked peak
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from the 2D experiments TOCSY and HSQC, i.e., their 1H-1H cross peaks and the 13C shift
of the neighbouring C atom. When the picked peak is known, e.g., citrate with chemical
shifts at δ 2.53 (d) and 2.67 (d) is present in every urine sample, we confirmed its identity
using chemical shift, multiplicity, COSY or TOCSY analysis and HSQC analysis using
information about shifts and multiplicities in databases such as HMDB [12]. When the
identity of the peak is ad hoc not known, we need a hypothesis for the possible identity of
the metabolite to avoid a full structural elucidation approach. The CLASSY approach gives
an idea of the biological and structural nature of the compound giving rise to the chemical
shift. Therefore, a hypothesis for its identity can be made and tested by 1D and 2D NMR, as
previously described, and, where necessary, standard spiking experiments are carried out.

2.7. Quality Assessment of the Dataset

A large and metabolically diverse dataset is necessary for assuring the presence of
many different metabolites of different levels of concentration. We have chosen a subset
of urine samples (n = 998) from the KORA epidemiological study. The stringent quality
check parameters (see Section 2) retrieved high-quality spectra. This is a crucial part
in data acquisition, especially when large batches of samples are measured or different
batches and studies are combined post analysis. In order to gain an overview of the data
quality and data structure, a principal component analysis (PCA) was performed. Both
univariate and pareto scaled PCA (SI 1, Figure 1) retrieved a close clustering of the 21 QC
samples, suggesting stability and absence of variation between measurement days. The
main variation in the dataset (UV-scaling PC1 12.5, PC2 5.2%, pareto-scaling PC1 33.2%,
PC2 9.2%) was attributed to biological variation, e.g., variation in the internal standard
TSP (SI 1, i.e., arising indirectly from urine dilution) and glucose (SI 1, i.e., glucosuria).
No apparent technical outliers (spectral quality (i.e., baseline variation, water suppression
issues) and processing quality (i.e., alignment, normalization)) were apparent in the PCAs.

Figure 1. Overview of the standard operating procedures workflow.

3. Results and Discussion
3.1. NMR Metabolomics Workflow and Metabolite Identification Approach

We established a metabolomics workflow that is suitable for large-scale studies. Urine
samples are analysed following a strict standard operating procedure including sample
collection, sample preparation, NMR acquisition, quality control and data processing
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considerations (Figure 1). It involves a cooled sample preparation (i.e., sample thawing
and mixing of 150 µL sample, 50 µL phosphate buffer and 10 µL KF) [13] and analysis, and
standardized NMR acquisition with daily quality control for instrument temperature and
acquisition performance. Acquisition performance is monitored using a quality control
(QC) sample concerning water suppression, shimming performance and sample stability.

The processing of the samples involves pre-processing of the spectra, i.e., phasing,
baseline correction and chemical shift calibration, water removal (4.7–5.0 ppm) RSPA align-
ment [9] and PQN normalization [10]. Subsequent quality assessment via PCA analysis is
used for validating (i) a cluster of QC samples and (ii) biological variation is the main origin
of main variation and no occurrence of technical outliers (spectral quality (i.e., baseline
variation, water suppression issues) or lack of processing quality (i.e., alignment, normal-
ization)), see also Supplementary Materials. Metabolites are relatively quantified by using
the data point at peak maximum (i.e., signal intensity), and thereafter called “peaks”, or by
applying a deconvolution algorithm which deconvolves and integrates peak areas under
the curve [14]. For the main CLASSY analysis, only data points at peak maximum were
used. Whereby peaks were selected by a peak-picking algorithm (see Section 2) based on
the quality control (QC) sample, which is a mixture of all submitted samples, and therefore,
theoretically contains all molecules of the dataset. The chosen peak-picking algorithm set-
tings retrieved 846 peaks, which was an excellent trade-off between avoiding the selection
of baseline, while finding most peaks above an S/N threshold of 5. In order to identify all
known metabolites in the NMR spectrum, we manually listed chemical shift, multiplic-
ity, 1H–1H cross peaks and 1H–13C cross peaks and information from STOCSY analysis
of all peaks. For identification, we included information from the HMDB database [15],
overview articles on the urine metabolome [3] information from the targeted platforms
from Nightingale Health, Lifespin GmbH and Bruker IVDr urine and original articles that
discuss methods and applications of NMR-based urine metabolomics [16–19]. Still, many
peaks remained without identification. We faced three main issues: (i) database search
by chemical shift suggested too many possibilities for manual inspection of all proposals;
(ii) the confidence level for the identification of singlets is very low, having only one 1H
and the corresponding 13C shift with often no or low statistical correlation from STOCSY
analysis; (iii) even though it had multiple peaks belonging to one metabolite (i.e., as seen
by TOCSY), we were not able to guess the structure nor identify the metabolite. Therefore,
we propose to add another level of information, which is cluster analysis statistical spec-
troscopy (CLASSY) [5], introduced by Robinette et al. This approach comprises (i) peak
picking, (ii) Spearman correlation-based local clustering and (iii) hierarchical clustering
(HC) based global clustering (Figure 2).

Figure 2. Overview of the CLASSY approach adopted from Robinette et al. Input data includes data
samples and a QC sample. A peak-picking approach with the QC sample as reference generates
the peak list. The CLASSY approach is comprised of a local clustering that finds peaks that cluster
(Spearman correlation, see green boxes in the CLASSY clustering output figure also in Figure 3) and
a global clustering based on HCA analysis for re-arrangement of the local clusters. The CLASSY
output figure gives information on the peak clusters (green boxes), the exact correlation coefficient
(colour-code red to blue) and a HCA dendrogram of all re-arranged peak clusters.
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Figure 3. (a) Overview of all metabolite correlations from the 846 picked peaks. The x and y axis
give the position of the peak in the metabolite correlation CLASSY cluster. Superimposed are the
correlation coefficients, ranging from −1 to 1 (−1 (blue) to 1 (red), the area with small correlation
coefficients, i.e., −0.3 to 0.3 is excluded (white)). The dendrogram (colour threshold 0.45) on the left
highlights clusters. (b) The microbial metabolite cluster (from box in (a)) summarizes metabolites
from amino acid breakdown (red dendrogram branch), from coffee consumption (green branch) and
hippurate and hydroxy-hippurate metabolites (blue branch). The chemical shifts of the associated
metabolites are listed in Supplemental Table S1.

The goal of this approach is to meaningfully re-arrange NMR peaks, which then give
insights into their structural and biological relationships based on statistical metrics. The
CLASSY approach works particularly well with large and diverse sample sets. Our dataset
included 998 samples from the epidemiological study KORA. The local clustering arranged
the 846 peaks into 635 local clusters, which were re-arranged in the global clustering by
hierarchical cluster analysis employing correlation distances and average linkage (Figure 3),
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as also suggested and discussed by Robinette et al. Other distance and linkage criteria were
compared; however, they retrieved inferior results (data not shown). Of the 635 clusters,
135 contained two or more peaks, while 500 clusters contained one peak. Owing to peak
overlap and some remaining positional noise, the Spearman correlation coefficient of some
peaks arising from the same molecule are below 0.7. However, such peaks mostly appear
next to each other in the HCA dendrogram for global clustering. Similar effects were
also observed when reducing the correlation threshold: peaks that were not defined as
local clusters remained next to each other in the global clustering. Detailed inspection
of the HCA cluster analysis revealed several observations: the main cluster (Figure 3b)
contained many identified metabolites that were previously discussed to be of microbial
origin, we therefore call this cluster “microbial cluster”. The other cluster contained mainly
metabolites of endogenous origin, such as amino acids and TCA metabolites. Dietary
metabolites were spread throughout the dendrogram. In the microbial cluster, several but
not all metabolites were known. We hypothesized that the remaining unknown metabolites
are metabolites of microbial origin, as discussed ahead.

3.2. Metabolite Identification Approach

The main separation in the HCA dendrogram contained known microbial metabolites
(Figure 3b). The first part of this cluster (Figure 3, red dendrogram branch) assembles mainly
metabolites from the microbial breakdown of the aromatic amino acids phenylalanine,
tyrosine and tryptophan. These are the well-reported metabolites, phenylacetylglutamine,
p-cresolsulphate and indoxylsulphate. Furthermore, we identified p-cresol-glucuronide (δ
5.09 (d)) as an alternative conjugate of p-cresol. The chemical shifts δ 6.80 (d) and δ 6.88 (d)
derived from 3-hydroxy-phenylacetate and 4-hydroxy-phenylacetate, respectively. All other
chemical shifts that belong to these two molecules are clustered directly next to each other
(see Supplemental Table S1). Both metabolites are known to derive from both dietary intake
and are associated with various gut bacteria. While 3-hydroxy-phenylacetate is linked to
the precursor rutin [20], a flavonoid found in different plants, 4-hydroxy-phenylacetate
is mainly associated to the intake of whole-grain consumption [21]. Both compounds are
markers of gut Clostridium species [22,23]. Quinolinic acid (δ 7.45 (dd)), a reportedly
mammalian breakdown product of tryptophan via kynurenine pathway also clustered
here [24]; trimethylamine-N-oxide (δ 3.27 s), a microbial breakdown product of choline [25]
and cinnamoylglycine (δ 6.73 d), did too. Interestingly, cinnamoylglycine is known to
derive from plant cinnamates [26]; however, Bar et al. [27] reported good prediction of
cinnamoylglycine levels in plasma by microbiome data and not diet data. Lastly, salicyluric
acid (δ 7.80 dd, 7.02 m, 7.49 ddd), which can derive both from acetylsalicylic acid (Aspirin®)
intake and consumption of vegetables [28], completed this cluster. The second subcluster
(Figure 3, green dendrogram branch) was characterized by metabolites deriving from coffee
consumption. These were N-methylpyridinium, quinic acid and trigonelline. Furthermore,
four unknown peaks (δ 9.056 (s), 2.191 (s), 3.205 (s), 2.177 (s)) occurred in this subcluster.

This led us to speculate that they are related to coffee consumption. Two-dimensional
NMR analysis showed no cross-correlation in TOCSY. HMDB database search within an
error window of 0.01 ppm retrieved 244 hits. However, the top two hits (with one of the two
shift matches) were xanthine derivate, which coincides with the lack of cross-correlations
in TOCSY, as caused by heteroatoms in the purine ring. None of the expected caffeine
derivates (i.e., caffeine, theobromine, paraxanthine, theophylline, 1,7-dimethyluric acid,
1,3,7-trimethyluric acid) matched the chemical shifts from chemical databases and standard
spiking experiments. However, 5-acetylamino-6-amino-3-methyluracil (AAMU) matched
the standard spiking into the urine, and the chemical shifts δ 2.177 and 3.205 were assigned
to AAMU. 5-acetylamino-6-formylamino-3-methyluracil (AFMU) standard was not avail-
able for purchase. Based on spectra prediction of chemical shifts and biological relationship
of AAMU to AFMU [29], we speculate that AFMU and several other xanthine derivatives
(e.g., δ 3.38 (s), 7.85 (s), 3.00 (s), 8.02 (s), 7.93 (s), 3.32(s)) are also present in the urine samples.
Two other metabolites, characterized by the chemical shifts 1.08 (d), and 2.42 (m) and
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1.03 (d) and 2.55 (m), respectively were assumed to be short-chain aldehydes, which are
also metabolites found in coffee. However, the standard spiking of isobutyrylaldehyde and
isovaleraldehyde did not match the chemical shifts. The blue subcluster (Figure 3), that
encompassed hippurate, its hydroxy-metabolites (3-hydroxyphenyl)-3-hydroxypropionic
acid (HPHPA), 3-hydroxyhippuric acid (3-HHA) and 4-hydroxyhippuric acid (4-HHA))
and several unidentified metabolites. Based on the chemical shift ranging from δ 6.37
to 6.97 ppm, we assumed that the remaining unidentified metabolites are likely to be of
polyphenolic origin and related to the consumption of tea, fruits and vegetables. Chemical
shifts and splitting patterns suggest m-coumaric acid, p-coumaric acid, 3,4-hydroxyphenyl
and pyrogallol. However, the available standard chemical compounds did not exactly
match, which is likely due to differences in the conjugation (e.g., with acetate and sul-
phate). A yet unassigned metabolite is known to derive from the consumption of Earl Grey
tea [30]. Taken together, we think that this subcluster contains metabolites of microbial
polyphenol breakdown. We observed a strong inter-correlation of all protein-derived gut
microbial metabolites, of all coffee metabolites and of all hippurate metabolites among them-
selves. Hippurate correlated also with many coffee metabolites, with cinnamoylglycine
and 3-hydroxy-phenylacetate but not with protein-derived gut microbial metabolites. In
summary, we identified 82% of the chemical shifts in the microbial cluster (161 of 197 peaks).
For another 12% (36 peaks) we are confident to classify them into a compound class (i.e.,
xanthines and benzol derivates).

3.3. Validation and Performance

We evaluated the performance of our CLASSY approach by (i) modifying the NMR
peak list and (ii) introducing additional independent datasets hence varying the input
data (see Figure 2). First, we modified the peak list, i.e., the list of chemical shifts of the
NMR signals of metabolites by using an alternative peak picking approach (i.e., based on
local maxima [14]), where n = 1250 instead of n = 846 peaks were picked. We assessed the
validity of the approach by comparing if the microbial cluster and if its subclusters were
still grouped. Indeed, the clustering persisted. Furthermore, we did another modification
of the peak list by drastically reducing the number of peaks, i.e., to n = 133 (only main peak
of “identified metabolites”). We still obtained a clustering of most microbial metabolites
(except for 3-hydroxy-phenylacetate and trimethylamine-N-oxide). We, therefore, can
conclude that the CLASSY approach also works with alternative peak lists; however, it is
beneficial to include a relatively large number of peaks without the previous exclusion of
peaks.

Second, we extended the dataset to samples from other studies, e.g., measured years
later with the same standard operating procedures protocol. These metabolomics studies
included n = 57 urine samples from chronic kidney disease (CKD) study [31] and a flaxseed
dietary study [32] on healthy individuals with n = 27 samples. Here again, the microbial
cluster and its subclusters remained. On a similar note, we reduced the sample set step-wise
by one hundred, down until n = 300 samples the clusters remained stable. However, the
complete CLASSY cluster dendrogram required > 700 samples to be stable. We, therefore,
advice to use large diverse datasets such as the KORA dataset as a basis for large metabolic
diversity and embed future studies with smaller sample sizes.

4. Conclusions

In conclusion, we describe a SOP workflow for the analysis, processing and metabolite
identification of urine samples for non-targeted metabolomics analysis using high-field
NMR spectroscopy. We suggest CLASSY analysis as an additional instrument for the
NMR metabolite identification toolbox. The CLASSY analysis approach utilizes correlation
analysis and cluster analysis and rearranges NMR peaks based on their statistical similarity
to each other. We show that the statistical similarity is largely caused by biological relation-
ships, e.g., from shared pathways or biological and chemical classes. As an example, we
give the microbial metabolites and their subclasses. These suggested affiliations allow an
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informed and narrower search in databases and a selection of chemical compound spiking
experiments. We describe the workflow in detail to enable a widespread application for
other users. However, the CLASSY analysis requires large and diverse datasets as input.
Smaller (e.g., <300 samples) or biased datasets (e.g., nutritional interventions, strong disease
impact, multiple sampling of few individuals) will introduce correlations based on the bias
rather than a biological pathway or other classifications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12100992/s1. Figure S1: quality assessment of the dataset;
Figure S2: Salicyluric acid; Figure S3: Experimental details for sample preparation and acquisition of
NMR spectra; Table S1: Table with metabolite annotations.
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