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Clostridioides difficile is a Gram-positive bacillus, which is a
frequent cause of gastrointestinal infections triggered by the
depletion of the gut microbiome. Because of the frequent
recurrence of these infections after antibiotic treatment,
mechanisms of C. difficile persistence and recurrence,
including biofilm formation, are of increasing interest. Previ-
ously, our group and others found that type IV pili, filamentous
helical appendages polymerized from protein subunits, pro-
moted microcolony and biofilm formation in C. difficile. In
Gram-negative bacteria, the ability of type IV pili to mediate
bacterial self-association has been explained through in-
teractions between the pili of adjacent cells, but type IV pili
from several Gram-negative species are also required for nat-
ural competence through DNA uptake. Here, we report the
ability of two C. difficile pilin subunits, PilJ and PilW, to bind
to DNA in vitro, as well as the defects in biofilm formation in
the pilJ and pilW gene-interruption mutants. Additionally, we
have resolved the X-ray crystal structure of PilW, which we use
to model possible structural mechanisms for the formation of
C. difficile biofilm through interactions between type IV pili
and the DNA of the extracellular matrix. Taken together, our
results provide further insight into the relationship between
type IV pilus function and biofilm formation in C. difficile and,
more broadly, suggest that DNA recognition by type IV pili and
related structures may have functional importance beyond
DNA uptake for natural competence.

Clostridioides difficile is a Gram-positive, spore-forming
anaerobic bacillus, which is a common cause of gastrointes-
tinal infections, particularly after the use of oral antibiotics or
other treatments which reduce the diversity of the gut
microbiome (1). These infections are treatable with one of
several oral antibiotic treatments, but in 20 to 30% of cases, the
infection reappears after the cessation of antibiotic treatment
(2, 3). Several mechanisms have been proposed for this
recurrence, including the possibility of a reservoir of C. difficile
biofilm which persists through the course of antibiotics (4, 5).
Notably, this same pattern of recurrence has been observed for
other bacterial infections in which the pathogen is known to
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form biofilm, including Pseudomonas aeruginosa infections
which form biofilms in the lung (6).

The ability of C. difficile to form biofilms in vitro is well
established from work by our group and others (7–11). These
bacterial communities contain populations resistant to anti-
microbials (12) and may contribute to the recurrence of
C. difficile infections either through persistent populations of
vegetative cells or through increased adherence of spores.
Biofilm formation in vivo by C. difficile has been observed in
animal models of infection (13). The formation of C. difficile
biofilms in vitro is typically studied in monoculture, but
in vivo, interactions with other bacterial species, either path-
ogens or commensal members of the gut microbiome, may
play an important role (14, 15), either cooperatively or
competitively.

Bacterial biofilms are composed not only of bacterial cells
but an extensive extracellular matrix composed of poly-
saccharides, extracellular DNA, and polypeptides (16–19),
either as monomers (20) or as surface assemblies (21, 22).
Previously, our group and others have reported a defect in
in vitro biofilm formation for mutations in the type IV pilus
(T4P) system in C. difficile (7–9). T4P are helical fibers
extended from the cell surface through the noncovalent
polymerization of thousands of protein subunits called pilins
(23). All T4P fibers appear to be heterogeneous, incorporating
multiple subunit types; one subunit, the major pilin, typically
predominates, making up over 99% of the fiber, with other
subunits incorporated either at the tip (24, 25) or sporadically
throughout the fiber (26, 27). We originally hypothesized that
C. difficile T4P promoted bacterial aggregation/assembly based
on the structural similarity of the C. difficile T4P major pilin,
PilA1, to TcpA, the major pilin subunit of the toxin-
coregulated pilus (TCP) of Vibrio cholerae (26, 28).

T4P systems can be found in a wide variety of Gram-negative
(29, 30) and Gram-positive bacteria (23, 31). These adhesive
fibers can be extended through a cytoplasmic hexameric
ATPase (PilB) and retracted quickly with considerable force (32)
through a homologous ATPase (PilT); the combination of
adhesion and retraction allows them to mediate several distinct
physiological processes: host-cell adhesion (25, 33), surface
(twitching) motility (34), horizontal gene transfer through DNA
uptake (33, 35, 36), and the formation ofmicrocolonies/biofilms
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Recognition of eDNA by C. difficile type IV pili
through bacterial aggregation (37, 38). None of these four
functions is found universally in T4P+ bacteria; although T4P
systems in some organisms such as Acinetobacter baumannii
(39–42) and P. aeruginosa (43–46) show all four. The functions
of T4P systems in Gram-positive bacteria are less well under-
stood, but considerable progress has been made recently in
characterizing the T4P of Clostridium perfringens (47–49),
Streptococcus sanguinis (50–56), andC. difficile (7–9, 26, 57). In
C. difficile, T4P-deficient mutants show defects in surface
motility (8) and biofilm formation (8, 9) but their role in adhe-
sion to host is more complicated (57) and no experimental
conditions have been reported in which C. difficile exhibits
natural competence. C. difficile T4P genes are upregulated both
in strains 630 and R20291 but the pattern differs between the
two strains (8, 9, 58).

Previously, we reported that C. difficile T4P promote biofilm
formation through an unknown mechanism (9). Here, we have
tested the hypothesis that interactions between C. difficile T4P
and extracellular DNA contribute to biofilm formation by
measuring the ability of recombinantly expressed C. difficile
T4P subunits to bind DNA. We have found that two pilin
subunits, PilJ and PilW, bind DNA in vitro. Based on these
results, we have measured the ability of gene-interruption
mutants of pilJ and pilW to form bacterial biofilms and
resolved the x-ray crystal structure of PilW to probe the
mechanisms by which these subunits adhere to DNA and how
Figure 1. Clostridioides difficile type IV pilus subunits. A, putative subunits f
by their N-terminal sequences) and gene clusters containing putative pilins are
noted below. B, alignment of the nine subunits based on the N-terminal amino
proposed scheme for heterologous subunit incorporation.
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these structurally distinct proteins are incorporated into the
pilus fiber.
Results

pilJ and pilW gene-interruption mutants show defects in
biofilm formation

Although T4P are primarily composed of single subunit, all
known T4P systems encode genes for multiple protein subunits
(30). While most of the research into the incorporation of mi-
nor T4P (and type II secretion) subunits has focused on initiator
pilins or initiation complexes at tip (56, 59–62), increasingly,
evidence from our own group and others (27) indicates that
some minor subunits are incorporated sporadically throughout
the length of the T4P fiber, including C. difficile PilJ (26). In the
UK epidemic strain R20291, the primary C. difficile T4P operon
includes all genes, which have been identified as necessary for
pilus polymerization, including an extension ATPase (pilB1), as
well as four pilin genes, including pilA1 (the major subunit).
Two other pilin gene clusters contain a total of three pilin genes
and a further two, pilJ and pilW can be identified outside of any
such gene cluster (31, 63) (Fig. 1A). For the majority of these
subunits, their role in the formation of pili or pseudopili re-
mains unclear, but the presence of multiple pilB, pilC, pilM(N),
and pilD genes suggest that multiple structures exist. While
sequence similarity between these genes is largely restricted to
or type IV pilus and type II secretion systems in C. difficile R20291 (identified
shown. For at least one pilin gene in each cluster, the NCBI gene identifier is
acid sequence (pre-pilin leader sequence and α1-N helix, �30 residues). C,
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the conserved N-terminal helix, that region is essential for in-
teractions between subunits in T4P (64) and may be able to
identify subunits capable of incorporation into a pilus fiber
composed primarily of PilA1. Figure 1B shows a dendrogram
created from the N-terminal sequences of the nine subunits, the
N-terminal tag which is removed by the peptidase pilD and the
α1-N transmembrane helix. Two clusters, (PilA1, PilJ, PilW)
and (PilU, PilV, PilK), were identified, suggesting that PilW and
PilJ could be incorporated sporadically along the pilus in the
place of PilA1 subunits (Fig. 1C), while the other six genes may
be incorporated into a tip complex (PilU, PilV, PilK) or a TIIS-
analog (PilA2, PilX, PilA3) (31).

T4P mutants defective for T4P synthesis show a reduction
in biofilm formation in multiple in vitromodels. Previously, we
found the greatest defect in a pilA1 gene-interruption mutant
at early time points (24 h), becoming less pronounced at
longer time points (7 days) using a static growth model with
biomass measured by Confocal Laser Scanning Microscopy
(CLSM) (9). Similarly, Purcell et al. found that pilA1 and pilB1
mutants were defective in biofilm production in static assays
over 24 to 48 h, quantified by crystal violet staining, as well as
in surface motility (8). To probe the structural basis for the
promotion of biofilm by C. difficile T4P, we measured the
ability of pilJ and pilW mutants to form biofilm in vitro using
models similar to those described above.

Figure 2 shows the results of the static biofilm formation
assays in which the bacteria were grown in BHIS on metal
coupons to facilitate attachment, with growth analyzed by
CLSM. Data are shown for WT R20291, the pilA1 gene-
interruption mutant, and its complement (using the p84151
plasmid) as well as pilJ and pilW gene-interruption mutants.
Figure 2A shows top-down images of the surface, while Figure
2B shows 3D reconstructions from z-stacks of confocal images.
The pilJ and pilW mutants show phenotypes for biofilm for-
mation intermediate between the WT and the pilA1 mutant,
Figure 2. Biofilm formation by Clostridioides difficile R20291 mutants. A, to
mutants; pilA1, pilJ, and pilW are gene-interruption mutants of their respectiv
containing the pilA1 gene. B, 3D reconstructions of biofilms from z-stacks. CLS
suggesting that these strains produce T4P with a functional
defect. These results fit a model in which PilJ and PilW are
accessory subunits which functionalize T4P without being
essential for their synthesis. In Figure 3A, we quantify this
biofilm formation using crystal violet staining of horizontal
biofilms, which agrees well with the CLSM data. In this assay,
pilJ forms 70% less biofilm than WT R20291 and pilW 50%
less; both more than the pilA1 mutant, implying that some
T4P function is retained in these mutants. We note that
Tremblay et al. found pilW to be upregulated in biofilm but
found no defect in biofilm formation for a pilW mutant of
strain 630 (58); we attribute this difference to differential
expression of pilW between R20291 and 630 (8). Measure-
ments of twitching motility (a type of T4P-dependent surface
motility) showed defects in the pilA1, pilJ, and pilW mutants
with incomplete recovery for a pilA1 complement (Fig. S1).

Extracellular DNA is essential for the stability of C. difficile
biofilm

To determine the degree to which extracellular DNA
(eDNA) in the biofilm matrix stabilizes these in vitro biofilms,
we incubated mature biofilms in fresh media (BHIS) with or
without the addition of recombinant DNAse I. In Figure 3B,
the results show that a 15 min DNAse treatment reduced the
biomass by approximately 50% when compared with media
alone (p = 0.00001123). These results are similar to those
previously described for in vitro bacterial biofilms (65, 66),
including Dawson et al. (67) which found that the addition of
DNAse potentiated the activity of vancomycin against
C. difficile biofilms.

X-ray crystal structure of PilW

The incorporation of PilJ into C. difficile T4P has profound
structural implications because PilJ has an unusual dual-pilin
fold, in which the N-terminal domain is incorporated into
p-down CLSM images of in vitro biofilms of C. difficile R202091 WT and pilus
e genes, pilA1 + ppilA1 is the pilA1 mutant complemented with a plasmid
M, confocal laser scanning microscopy.
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Figure 3. Quantification of Clostridioides difficile biofilm formation. A, quantification of biomass by crystal violet staining. B, biomass recovered after
treatment incubation with either BHIS media or BHIS with recombinant DNAse.
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the pilus in a manner similar to PilA1, but the C-terminal
domain extends out from the pilus to provide a distinct
interaction surface (26). However, sequence analysis of PilW
led us to expect a single soluble domain more similar to PilA1.
To understand how the incorporation of PilW would alter the
T4P fiber, we resolved the X-ray crystal structure of PilW, as a
C-terminal fusion to maltose-binding protein (MBP) at 2.5 Å
resolution (Table 1). MBP crystallizes readily and can serve as
a molecular chaperone to increase the propensity for crystal-
lization (68), Fig. S2 shows the asymmetric unit of the MBP-
PilW crystal, where contracts between MBP and PilW pre-
dominate. Fitting with the notion that MBP serves as a sort of
molecular chaperone, the relative B-factors are lower for MBP
than the majority of PilW, particularly the PilW surface loops
(Fig. S3). However, the electron density for PilW is sufficient to
build the entire structure through residue 152 in two of the
four chains, leaving gaps in the αβ-loop in the other two as
described below (Fig. S4).

Like PilA1, PilW has a single transmembrane helix (α-1N)
followed by a soluble domain and a central α-helix (α-1C) with
a β-sheet packed against it. Figure 4A shows a sequence
alignment of PilW and PilA1 by PROMALS3D (69),
4 J. Biol. Chem. (2022) 298(10) 102449
highlighting the overlap in predicted secondary structure; the
soluble domains (that is excluding the TM helix, residues
1–25) of PilW and PilA1 are 30% identical with the majority of
the overlap occurring in the α-1C helix. Figure 4B shows the
soluble portion of PilW colored from blue (N-terminus) to red
(C-terminus) and in Figure 4Ca superimposition of the PilA1
(gray) and PilW (orange) soluble domains. The majority of the
two structures is superimposable, including the four strands of
the PilA1 β-sheet and the C-terminal α-helix (which is also
found in a superimposition of PilA1 and PilJ); the most
obvious point of divergence is the αβ loop, which has a short
helical section in PilA1, but adds two strands to the β-sheet of
PilW. This loop appears to be highly flexible; in the four
molecules of the PilW asymmetric unit, it can be traced in two
distinct conformations (chains B and C), with insufficient
density to resolve it in the other two. These two molecules
differ in the conformations of all of the surface loops despite
their general similarity (RMSD: 1.8 A) with the vast majority of
the difference stemming from the αβ loop. (Fig. 4D).

The comparison of the PilA1 and PilW structures also
presents an opportunity to explain the unusual immunogenic
cross-reactivity of the proteins. Maldarelli et al. found that



Table 1
X-ray crystal structure of MBP-PilWa

Wavelength (Å) 1.033
Resolution range (Å) 38.33–2.487 (2.576–2.487)
Space group P 1
Unit cell (Å) 65.3257 Å 81.7962 Å 102.964 Å,

92.441� 90.9457� 113.367�
Total reflections 150,043 (10,852)
Unique reflections 64,217 (6634)
Multiplicity 2.3 (2.4)
Completeness (%) 93.50 (96.17)
Mean I/sigma(I) 6.8 (2.5)
Wilson B-factor (Å2) 41.35
R-merge 0.088 (0.221)
R-meas 0.122 (0.301)
R-pim 0.060 (0.207)
CC1/2 0.993 (0.901)
CCa 0.999 (0.987)
Reflections used in refinement 64,180 (6634)
Reflections used for R-free 3188 (298)
R-work 0.1864 (0.2321)
R-free 0.2182 (0.2563)
Number of nonhydrogen atoms 15,965
macromolecules 15,236
ligands 104
solvent 625

Protein residues 1984
RMS(bonds) (Å) 0.004
RMS(angles) (�) 0.78
Ramachandran favored (%) 95.09
Ramachandran allowed (%) 4.31
Ramachandran outliers (%) 0.61
Rotamer outliers (%) 1.73
Clash score 4.19
Average B-factor (Å2) 61.99
MBP (residues 0–370) 49.16
PilW (residues 1026–1152) 102.1
macromolecules 62.32
ligands 72.23
solvent 52.20

Number of TLS groups 32
a Values in parentheses are for the highest resolution shell.
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murine antisera generated from PilW was cross-reactive
against all six C. difficile T4P proteins tested, PilA1
(CDR20291_3350), PilA2 (CDR20291_3155), PilU
(CDR20291_3344), PilV (CDR20291_3345), PilW
(CDR20291_2191), and PilJ (CDR20291_0683) (63), implying
that some common structural motif(s) exist beyond the
conserved N-terminal TM helix. In fact, the greatest response
to PilA1, which was generally poorly immunogenic, was from
the PilW antisera, and across the six mice immunized with
PilA1, responses to PilW were slightly higher than those to
PilA1. Our comparison of the two structures reveals a region
of striking similarity on what would be the interior face (buried
in the assembled pilus), which may help to explain both the
antibody cross-reactivity and the incorporation of multiple
subunits into T4P fibers (Fig. S5).

Like other type IV pilin proteins from Gram-positive bac-
teria (26, 50), PilW lacks the C-terminal disulfide bond found
in the vast majority of their counterparts from Gram-negative
bacteria (29). Unlike PilA1, PilW does not have a two-strand
anti-parallel β-sheet in its place, despite the overall similarity
of the two structures in this region. However, contrary to our
expectations, the Prediction of the Stability Curve of Proteins
(SCooP) algorithm (70) predict greater thermal stability for
PilW. We verified this prediction using differential scanning
calorimetry and CD as shown in Fig. S6; both methods show
slightly greater thermostability for PilW. One potential
explanation is the amount of buried surface area for each
protein which is greater for PilW than PilA1, despite the for-
mer’s wider central β-sheet. Calculations of solvent-excluded
surface area using a 1.4 Å probe give buried surface area
values of 7912 Å2 for PilA1 and 8843 Å2 for PilW.

The structure of PilW is broadly representative of type IV
pilins; the results of a structure-based search of the PilW co-
ordinates using DALI (http://ekhidna2.biocenter.helsinki.fi/
dali/) are primarily T4P subunits; the top 10 are all subunits
from the structurally related Streptococcus typhi pilus (PilS,
3FHU), ETEC longus pilus (CofA, 3S0T), and the V. cholerae
TCP (TcpA, 3HRV, 1OQV). All of these subunits are from
type IVb pilus systems, which we previously noted resemble
the C. difficile pilus (26). Surprisingly, PilA1 does not appear,
even in the top 100 results, but of those 100, 89 are various
pilin subunits and 9 are various DNA- or RNA-binding pro-
teins, including a poly(a)-specific ribonuclease (2A1S), which
suggested nucleotide binding as a possible mechanism for the
defect in biofilm formation.
Modeling incorporation of PilW and PilJ into C. difficile T4P

The inclusion of accessory pilins into T4P at low frequency
is an obvious mechanism for the incorporation of divergent
molecular surfaces. To model the consequences of PilW
incorporation, we created an atomistic model of the C. difficile
T4P fiber. We modeled the N-terminal TM helices using the
extended conformation resolved for the near-atomic cryo-EM
reconstructions of P. aeruginosa and Neisseria meningitidis
T4P (64) as the conservation of these domains between T4P
subunits from different organisms is such that we would
expect the extension and ‘melting’ of the helix to be a general
feature of T4P and related fibers. Figure 5 shows the model
composed entirely of PilA1 in side (Fig. 5A) and top-down (Fig.
5B) views; the width of the pilus model is �9 nm, wider than
the type IVa pili for which we have high-resolution cryo-EM
reconstructions because of the somewhat bulkier PilA1
headgroups.

Figure 5C shows full-length models of PilA1, PilW, and PilJ
based on our x-ray crystal structures of the soluble domains.
As described above, the a1-N regions (in gray) for these three
proteins are similar in sequence and are modeled with iden-
tical backbone conformations to model their incorporation
into the fiber. Figure 5D shows the conserved interaction
residues previously identified by our group for assembly of
C. difficile T4P and by Craig et al. in the V. cholerae TCP (28),
Lysine 30, and Glutamate 75 (PilA1)/Glutamate 76 (PilJ).
Equivalent residues in similar positions can be observed in the
PilW structure, at Lysine 30 and Aspartate 85. This conser-
vation agrees with the hypothesis that accessory subunits must
maintain certain structural motifs for incorporation into T4P
fibers even in the absence of general structural similarity.

In Figure 6A, models of C. difficile T4P are shown with and
without the incorporation of PilJ and PilW. While the C-ter-
minal domain of PilJ extends out from the pilus fiber, PilW is
nearly identical to PilA1 in size (the mature proteins, without
J. Biol. Chem. (2022) 298(10) 102449 5
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Figure 4. X-ray crystal structure of PilW. A, sequence alignment of PilW and PilA1. B, 3D structure of PilW (molecule B), colored in a spectrum from blue (N-
terminus) to red (C-terminus). C, superimposition of the PilW (molecule B, orange) and PilA1 (gray) structures. D, detail of the PilW αβ loop, superimposition
of molecules B (olive) and C (orange).

Figure 5. Incorporation of multiple subunits in Clostridioides difficile T4P. A, side view of C. difficile T4P model based on the ‘melted’ helix found in
recent cryo-EM reconstructions; the salt bridge between glutamate 5 and the amino terminus of the next subunit is shown as an inset panel. B, top-down
view of the pilus model. C, full-length models of PilA1, PilJ, and PilW with the α1-N (gray) based on cryo-EM reconstructions of intact T4P fibers. D, su-
perimposition of PilA1 (blue), PilJ (red), and PilW (orange), Lysine 30 and its proposed salt-bridge partners are shown as inset panels. T4P, type IV pilus.
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Figure 6. Heterologous type IV pilus models. A, fiber models showing the incorporation of PilJ and PilW into the Clostridioides difficile T4P fiber. B, groove
between adjacent subunits with PilA1 and PilW subunits modeled in. T4P, type IV pilus.
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the pre-pilin leader sequence, are 185 and 179 amino acids,
respectively); but due to its extended αβ loop, PilW is wider
along the helical axis of pilin incorporation than PilA1 or PilJ.
The conformer found in chain C of our crystal structure can be
accommodated in our pilus model with only minor adjust-
ments to the backbone, while the conformer in molecule B
would require a total rearrangement, leading us to conclude
that the chain C conformation is close to the native confor-
mation found in the assembled fibers. When PilW subunits are
modeled in, the αβ-loop of PilW extends into a groove be-
tween PilA1 subunits. Figure 6B shows PilA1 and PilW sub-
units in an identical position; the extended conformation of
the PilW αβ-loop alters the exposed interaction surface,
occluding region of neighboring subunits.

Although both PilJ and PilW can be incorporated into our
model individually without significant changes to the confor-
mation of the surrounding PilA1 molecules, our model sug-
gests there is some preference in their relative position if
incorporated at adjacent positions. Relative to PilJ, PilW is
easily accommodated in the i + 1 position (that the next pilin
along a helical axis extending out from the bacterial cell, in
reverse order of polymerization). However, in the i-1 position,
the αβ loop of PilW would clash with the loop formed by
residues 176 to 184 of PilJ (Fig. S7). However, if there is no bias
in the polymerization machinery, one would expect this to
occur rarely; although PilA1, PilJ, and PilW are the most highly
expressed subunits in strain R20291 based on RNA-seq by our
group (9) and qPCR by Purcell et al. (8), we estimated that
there are �2000 molecules of PilA1 for each molecule of PilJ
(26), and pilW is less highly transcribed than pilJ.
PilJ and PilW bind DNA in vitro

As described above, C. difficile T4P mutants show pro-
nounced defects in in vitro biofilm formation. Similar patterns
have been observed for T4P mutants in other bacterial systems
(21, 40, 71–73), but because of the diverse array of functions
ascribed to T4P, defining the mechanistic basis for these ef-
fects remains difficult. Conceptually, we considered four
possible mechanisms for the nucleation of biofilm through
T4P-dependent effects; (i) the bundling of type IV pili between
adjacent bacterial cells, (ii) the adhesion of T4P to bacterial
cell-surfaces, (iii) interactions between T4P and poly-
saccharides in the extracellular matrix, and (iv) recognition of
extracellular DNA by T4P (See Fig. S8). Of these, (i) and (iv)
are supported by the literature demonstrating interactions
between enteropathogenic Escherichia coli cells through the
bundle-forming pilus (74–76) and DNA binding by T4P in
competent bacteria (77–81).

While C. difficile does not exhibit natural competence
in vitro, natural transformation has been difficult to detect for
many species and many require specifically tailored experi-
mental conditions to observe (46, 82). Extracellular DNA is
clearly required for C. difficile biofilm stability (Fig. 3B). If
T4P–DNA interactions contribute to biofilm formation, we
would expect to see DNA binding by the recombinant subunits
J. Biol. Chem. (2022) 298(10) 102449 7
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similar to what has been reported previously; DNA-binding
T4P subunits have been identified in N. meningitidis (78, 83)
and Thermus thermophilus (81). These proteins, ComP and
ComZ respectively, show no sequence or structural similarity;
but in both cases, DNA binding could be observed in vitro
using the soluble domains of individual pilin subunits even in
the absence of the identification of a specific DNA uptake
sequence.

Figure 7A shows the results of EMSAs for recombinantly
expressed soluble PilA1, PilJ, and PilW. PilA1 shows no shift,
indicating an absence of any stable protein–DNA complex,
while both PilJ and PilW show concentration-dependent shifts
in the motility of the DNA, with the reduction in motility
indicating DNA binding. In Figure 7B, we quantify the binding
of PilJ and PilW for plasmid DNA at 25C, where saturation
could clearly be observed for both. The apparent affinity
constants under these conditions are 2.2 ± 2 μM for PilJ and
14.5 ± 0.6 μM for PilW. Importantly, these values are only of
relative importance as they appear to vary considerably based
on the temperature, salt concentration, and whether linearized
or supercoiled DNA is used.

To understand how PilJ and PilW might recognize DNA,
in the absence of a clear DNA-binding motif, we analyzed
the surface electrostatics of both proteins and found that
while neither had a basic patch equivalent to that of
N. meningitidis ComP (78), both had basic regions which
would be exposed in the assembled pilus based on our
model (Fig. 4, C and D).
Figure 7. DNA binding by Clostridioides difficile T4P subunits. A, EMSA as
quantification of affinity for DNA at 4C. T4P, type IV pilus.
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Pangenomic variation in pilW

Uniquely among the nine pilin subunit genes which have
been identified in C. difficile, pilW is not present in all strains.
Maldarelli et al. identified pilW genes in 13 of the 19 fully-
assembled genomes available at that time (63). Our analysis
of 237 C. difficile genomes has identified pilW genes in 206
genomes. To confirm that these absences are true negatives
and not simply the genes too divergent to be identified algo-
rithmically, we compared the region where pilW is found
universally in the pilW+ strains to the equivalent regions in the
31 pilW strains. Figure 8A shows a comparison of equivalent
regions of the R20291 and NAP08 genomes, bounded by two
conserved genes, OmpR (C3L34_12455 and
HMPREF0220_1291) and an unnamed putative transcription
factor (C3L34_12490 and HMPREF0220_1282). Recombina-
tion in the region between these two genes results in the
appearance of pilW in R20291, while no T4P subunits appear
in this region of the NAP08 genome. Table S1 lists the iden-
tified pilW strains, which are heterogeneous and distributed
across several ribotypes. We note the appearance of multiple
078 (M120, NAP07, NAP08, T20, QCD23m63), 027 (CIP
107932, QCD37x79, BI1), and 017 (CF5, M68, E13) strains.

Despite its unusual absence in many C. difficile strains,
when present, PilW is, like PilJ, well conserved; Figure 7C
shows a Shannon entropy plot for PilW based on our pan-
genomic alignment. Those residues which vary are clustered
on the surface in regions which would be surface exposed on
the assembled pilus. Notably, the lysine-rich portion of the αβ
sessment of DNA binding at 4C; B, EMSA assessment of binding at 25C. C,



Figure 8. Pangenomic analysis of pilW genes. A, analogous regions of the Clostridioides difficile R20291 and NAP08 genomes highlighting the presence
and absence of pilW. B, alignment of PilW from R20291 and ATCC. C, PilW based on sequence conservation from cyan (totally conserved) to maroon (highly
variable) and Shannon entropy plot from the PilW alignment.
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loop shown in Figure 4D (residues 67–72) is conserved across
the alignment (Fig. 7B), supporting the hypothesis that this
motif is important for DNA recognition.
Discussion

DNA binding by T4P represents an attractive hypothesis for
the mechanism by which they promote biofilm formation in no
small part because of the established importance of eDNA in
bacterial biofilms. In the in vitro biofilm experiments described
here and in numerous other studies, the depletion of extracellular
DNA retards biofilm formation and can even disperse biofilm at
early time points (65, 66). Similarly, defects in the secretion of
DNA impede biofilm formation inHaemophilus influenzae (84).
The polypeptides which interact with eDNA in bacterial biofilms
can be conceptually divided into two classes, (i) proteins which
are secreted and cross-link eDNA to stabilize the extracellular
matrix and (ii) proteins which are bound to cell surface and
mediate the attachment of bacterial cells to the extracellular
matrix, the latter could be monomeric membrane proteins or
incorporated into surface assemblies such as T4P (85).

Indeed, T4P are part of a larger class of helically-assembled
extracellular filaments which also includes competence (com)
pili and tad/flp pili, under the umbrella of type IV Filaments
(T4F or TFF) (86). These fibers are established as essential for
natural competence (through DNA uptake) in dozens of spe-
cies of bacteria across a wide variety of bacterial taxa, Gram-
positive and Gram-negative (35). T4F subunits all possess N-
terminal TM helices, but their C-terminal headgroups vary
considerably, from T4P, which universally have β-sheets
packed against the soluble region of the α-helix (30), to
competence pili which have three-helix bundles (87) to tad/flp
pili which appear to have only short loops following the α-helix
(88). Representatives from all three T4F subclasses have been
shown to mediate DNA uptake despite the complete lack of
identifiable homology between their subunit proteins.

However, while only a few DNA-binding pilus subunits have
been identified, some general trends appear to exist within
related fibers. DNA binding has been shown to occur at the
tips of several related T4P systems from Gram-negative bac-
teria (type IVa, T4aP) including V. cholerae, N. meningitidis,
and T. thermophilus (79, 81, 89). Conversely, DNA binding by
competence pili in Gram-positive Streptococcus pneumoniae
occurs along the length of the pilus, rather than the tip, despite
the absence of DNA binding by the major subunit (ComGC)
(90, 91), which suggests the incorporation of a DNA-binding
J. Biol. Chem. (2022) 298(10) 102449 9
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subunit sporadically throughout the fiber in a manner similar
to C. difficile PilJ and N. meningitidis PilV and, we presume
C. difficile PilW. The ability of PilJ to bind to DNA suggests a
functional relation between the C. difficile T4P system and the
S. pneumoniae com system rather than the more closely ho-
mologous T4Pa systems. We propose that this distinction
stems from differences in polymerization/secretion between
Gram-positive and Gram-negative T4F systems, which impact
the ability of DNA to be taken up depending on whether it is
bound at the tip or along the length.

In terms of the specifics of molecular interactions between
T4P and DNA, the identification of PilJ and PilW as DNA-
binding subunits does little to establish a general pattern
because they have little structural similarity to ComP or
ComZ; much less than the major pilin subunits of these three
T4P systems, PilA1 (C. difficile), PilA4 (T. thermophilus), and
PilE (N. meningitidis). The implication of this diversity in
DNA-binding T4P subunits, both in their manner of incor-
poration (specific incorporation at the tip versus sporadic
incorporation along the length of the fiber) and their molec-
ular structures implies that DNA binding evolved separately in
these species after T4P were established. Correspondingly, we
may hypothesize that the ancestral T4F system did not bind
DNA and that the evolution of natural competence began with
the addition of DNA binding to T4F fibers already capable of
retraction for surface motility.

However, despite the wide variety of minor pilin structures,
including DNA-binding subunits, within a given species, mi-
nor pilin subunits appear to be universally more conserved
than the major subunit (24, 40, 92, 93). That is, the pattern we
observe for PilJ, PilW, and PilA1 is replicated in other T4P
system; the major subunit has the least conserved amino acid
sequence within a given taxonomic group. For commensal and
pathogenic bacteria, this pattern can be explained in terms of
diversifying selection pressure on the major subunit because of
its greater abundance. In this context, adhesive interactions
would have to occur through minor subunits, either as tip
adhesins (GspK, CofB, ComZ) or through the addition of
minor pilin subunits incorporated sporadically; either would
allow for a conserved interaction surface at relatively low
abundance.

Because pilJ and pilW are (uniquely among the
nine C. difficile T4P subunits) found outside of a cluster of
T4P-related genes, we have hypothesized that they are later
additions to the T4P system; accessories rather than core
components. For pilW, this is doubly probable because it is not
found in all C. difficile genomes, but its pattern of presence
and absence is not correlated with overall taxonomy. Pan-
genomic analysis of pilW genes indicates that pilW is present
across a wide range of C. difficile strains and pilW strains can
be found in multiple, seemingly unrelated taxa (ribotypes 027,
017, 078). These features suggest to us that the C. difficile
common ancestor was pilW+ and those strains which lack
pilW have lost it through recombination. However, no pilW
homolog can be detected in the genome of Paeniclostridium
sordellii, in which other T4P genes, including pilA1 and pilJ,
are well conserved with their counterparts in C. difficile.
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One important outstanding question is, given that fairly
divergent structures can be incorporated into T4P fibers, why
are accessory subunits like PilW found only in some strains
within a species, not more common? A key factor in their
occurrence may be sporadic incorporation, as subunits at the
pilus tip are the first to be incorporated into the developing
fiber (the reverse of flagellar synthesis) and the importance of
that initiation may act as a barrier to diversification. While
many minor pilins which form part of a tip initiation complex
can be identified by homology to the tip complex of the type II
secretion pseudopilus (GspH, GspI, GspJ, and GspK), it is
unclear for many other minor pilins whether they are incor-
porated as solely at initiation or sporadically. Experimentally,
this can be difficult to determine; for immunogold TEM, even
small amounts of cross-reactivity with the major subunit could
provide false positive results for sporadic incorporation.
Relative abundance could be a useful indicator as sporadic
incorporation should require greater abundance than incor-
poration solely at the tip, just as the major pilin can be iden-
tified by its greater abundance. However, while our previous
quantification of transcription levels by RNA-seq did show
pilA1, pilJ, and pilW as the most abundant transcripts in strain
R20291, Purcell et al.’s comparison of transcription levels in
R20291 and 630 showed much lower transcription levels in
strain 630 for pilA1 and pilW and much greater transcription
for pilA5 (8). Similarly, divergent results can be found for
changes in the expression of T4P subunits during biofilm
formation; Maldarelli et al. found a small but significant
downregulation in the expression of pilW in strain R20291
during biofilm formation (9), whereas Tremblay et al. found
pilW to be upregulated in strain 630 (58).

In short, the ability of minor T4P subunits to functionalize
pilus fibers with DNA-binding subunits has a measurable
impact on biofilm formation in C. difficile, suggesting that the
evolution of DNA binding by T4P has not been driven solely
by DNA uptake. DNA binding by T4P occurs through diverse
molecular mechanisms, less conserved than the overall pilus
architecture. We anticipate that as more DNA-binding sub-
units are identified and their structures resolved, we will see a
wide variety of modes of DNA recognition, some optimized for
recognition of specific DNA sequences and others with little or
no sequence specificity. With this diversity of structure comes
a diversity of function as DNA binding by T4P systems may
impact a range of functions beyond DNA uptake in bacterial
species with and without demonstrable natural competence.
Experimental procedures

Bacterial strains and growth conditions

The C. difficile R20291 strain was used for these experi-
ments as its genetic sequence is known and mutants of the
T4P system are available. Generation of the R20291
pilA1::ermB, R20291 pilJ::ermB, R20291 pilW::ermB, and
R20291 pilA1::ermB ppilA1 C. difficile strains were previously
described (Piepenbrink et al. 2015); the ppilA1 complement
was made by cloning pilA1 into the p84151 modular plasmid
using the NotI and XhoI restriction enzymes. Gene



Recognition of eDNA by C. difficile type IV pili
interruptions were confirmed by colony PCR using the
following forward and reverse primers: pilA1F (50 cccaaat-
tatctgctgtaacacttgta), pilA1R (50 gcagtagtggcagttccagctttattt),
pilJF (50 ggcagttacatgtctttctaatagag), pilJR (50 ggaccc-
catccctctttagaatg), pilWF (50 ggcaataatagcacttccagc), pilWR (50

gaccacttttgcttatttctcc). Insertion of the compliment was
confirmed by colony PCR using the forward primer (thio-F1, 50

ctactagtacgcgttatattgataaaaataataatagtgg) and reverse primer
(ermB-R1, 50 gcgactcatagaattatttcctccc). Strains were main-
tained on BHISTA plates (37 g/l Bacto brain heart infusion,
5 g/l yeast extract, 10% w/v L-cysteine, 10% w/v taurocholate,
and 1% w/v agar) with antibiotics for gene-interruption mu-
tants or plasmid maintenance as necessary. Overnight cultures
of C. difficile were a cell scrap from the BHISTA plates grown
in 40 ml of BHIS broth (37 g/l Bacto brain heart infusion, 5 g/l
yeast extract, 10% w/v L-cysteine) in an anaerobic chamber
(Coy Lab Products) with an atmosphere of 5% H2, 5% CO2,
and 90% N2. For experiments, C. difficile was diluted 1:4 in
BHIS for growth and maintenance unless otherwise specified.
Antibiotics were used individually for maintaining the gene-
interruption mutants at the following concentrations: eryth-
romycin (2.5 μg/ml), cefotaxime (60 μg/ml), and lincomycin
(20 μg/ml). Thiamphenicol (15 μg/ml) was used to maintain
the compliment plasmid in all experiments.

Preparation of biofilm for microscopy

Overnight C. difficile strain growths were diluted 1:4 in
20 ml of BHIS with thiamphenicol for plasmid maintenance in
10-cm2

flat tissue culture tubes (TPP Techno Plastic Products
AG) containing upright 1/8 × 1-inch untreated stainless-steel
fender washers (Everbilt). Stainless-steel washers were steril-
ized by washing and autoclaving prior to use. Cultures were
grown statically at 37C for 7 days, changing the media by
decanting every 24 h. On the seventh day, the media were
changed 4 h before pre-stainless steel washer removal to
ensure robust germinating growth on the surface of the bio-
film. After 4 h, the stainless-steel washers were removed and
placed in 6-well tissue culture plates that contained 10% w/v
formalin in PBS and incubated for 15 min. After 15 min, the 6-
well tissue culture plates were removed from the anaerobic
chamber and the rest of the protocol was performed aerobi-
cally. The stainless-steel washers were washed with PBS at
least 3 times. The stainless-steel washers were then incubated
in (1 μg/ml) FM 1 to 43 (Thermo Scientific) for 30 min at
room temperature wrapped in foil. Once stained, the steel
washed were transferred to PBS and washed twice then
mounted using (mounting medium name and company) be-
tween a slide (25 × 75 × 1.0 mm) and a coverslip (22 × 22 mm
No 1.5). The mounting medium was allowed to polymerize for
48 h at room temperature and then were stored at -20C until
imaging as described below.

Confocal laser scanning microscopy

Biofilms were grown on stainless-steel surfaces and pre-
pared as described above. Imaging was performed using CLSM
on a Nikon A1 Confocal System with an upright Nikon Ni-E
fluorescent scope and Nikon NIS-Elements. We used the 488
laser line with a PlanApo 60XA/1.2 WI 0.15 to 0.18 WD water
immersion lens. Z-stacks were acquired for each of the five
stainless-steel washers for each strain with three Z-stacks from
each washer. The biomass volume to surface area ratio was
analyzed using the Comstat2 software package (http://www.
comstat.dk/). The 3D representations of the biofilms were
generated using the 3D viewer plugin in FIJI distribution of
ImageJ (http://3dviewer.neurofly.de/).

Preparation of biofilm for crystal violet

Overnight C. difficile strain growths were diluted 1:5 in 5 ml
BHIS with thiamphenicol for plasmid maintenance in 6-well
tissue culture plates. Cultures were grown statically for
7 days at 37C, changing the media via pipette every 24 h. On
the seventh day, media was removed, and samples were left to
dry for 4 to 6 h until ready for crystal violet staining as
described below.

Crystal violet biofilm assay

Dried samples were prepared as described above and then
incubated in 1% w/v crystal violet for 10 min, then washed
three times with PBS. Samples were then incubated overnight
at 4C in 1 ml of 100% ethanol and quantified at the absor-
bance, corresponding to crystal violet, which was measured at
a λ570 nm with a nanodrop spectrophotometer (Thermo Sci-
entific NanoDrop One). 100% ethanol was used as a blank.
Every experiment had five replicates of each strain.

DNAse treatment of mature biofilm

Overnight C. difficile WT growth was diluted 1:5 in 5 ml
BHIS in 6-well tissue culture plates. Cultures were grown
statically for 3 days at 37C, changing the media via decanting
and pipette every 24 h. On the third day, media was removed,
and samples were then left to air dry, the media was removed,
or the media was changed with to either BHIS or BHIS +
100μg/ml recombinant DNAse (Sigma) (67). After 15 min of
exposure to DNAse, the media was removed, and all samples
were left to air dry for 4 to 6 h until ready for crystal violet
staining as described above.

Protein expression and purification

For DNA-binding assays, PilA1, PilJ, and PilW (beginning
with the first residue of the soluble domain, residue 25 of PilW,
26 of PilA and PilJ from the mature protein) were expressed in
pET30a as described previously (26, 94), with the exception
that NiCo21 cells were used rather than BL21. Briefly, 300 ml
of LB-kan (50 μg/ml) was inoculated from glycerol stocks and
grown to saturation overnight. The following morning, 30 ml
of this culture was added to six flasks containing 1l of LB-kan
and the cultures were grown to an A600 of approximately 0.5 at
37C. The temperature was then reduced to 18C and IPTG was
added to 500 μM. These flasks were grown for a further 18 h
before being harvested by centrifugation at 7000g for 20 min.
Cells were freeze thawed, resuspended in 20 mM Tris–HCl,
500 mM sucrose, 5 mM NaEDTA, 2 mM MgCl2, 50 mM
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NaCl, and 0.1% NaN3 and lysed using lysozyme (0.5 mg/ml),
DNAse I (0.02 mg/ml), 1% NaDeoxycholate, and 0.5% triton-
X100. The resulting lysate centrifuged again, this time at
20,000g for 30 min. The supernatant was purified using a
nickel-NTA column on a GE Åkta Start. The Ni elution was
further purified through size-exclusion chromatography over a
GE S200 Superdex column using an Biorad NGC FLPC. For X-
ray crystallography, PilW was cloned into an MBP-fusion
vector, making use of previously described surface entropy
reduction mutations and a rigid linker terminated with three
alanine residues (pMal E) (95), starting with residue 26 of the
mature protein (with the addition of a C-terminal 6xHis tag),
expressed and purified as described previously (26, 39, 40)
again with NiCo21 cells being used for expression.
X-ray crystallography

MBP-PilW was concentrated to 30 mg/ml (with and without
the addition of maltose) in 10 mM Tris–Hcl pH 8.5, 100 mM
NaCl and screened for crystallization conditions by sitting
drop vapor diffusion using an ARI Gryphon at room temper-
ature. Crystals were observed after 3 days in several related
conditions in the Hampton Index screen (82–85, 0.2 M MgCl2
hexahydrate, 25% PEG3350, various buffers at 0.1 M) without
the addition of maltose. After optimization, the final crystal-
lization conditions were 0.1 M Hepes pH 7.5, 0.2 M CsCl2, 25%
PEG3350, 0.005% n-Octyl-β-D-glucoside, 0.348 M NaCl, 0.7%
ethanol, and 18 mg/ml protein at 4C. Crystals were cryo-
protected in mother liquor with 20% ethylene glycol before
flash-freezing. Data were collected at Stanford Synchrotron
Radiation Labs (SSRL) beamline 12-2 and GM/CA at the
Advanced Photon Source, Argonne National Labs, with the
final dataset being collected on beamline 23-ID-D. Multiple
datasets were collected with either multiple lattices or high
mosaicity and anisotropic diffraction, complicating integration
and phasing. Ultimately, the addition of NaCl and ethanol
increased the proportion of single crystals and growth at 4C
and reduced the mosaicity of the final dataset collected on 23-
ID-D. With this dataset, we were able to determine that the
correct space group was P1 (triclinic) rather than monoclinic.

Reflections were integrated by XDS (96), and after two
datasets, from the same crystal were combined in Blend (97),
scaled, and merged by Aimless (98) and truncated by STAR-
ANISO (99) to account for the anisotropic diffraction. Initial
phases were generated by molecular replacement using Phaser
(100) using a sequential search of 1) four copies of unliganded
MBPand 2) four copies of a truncated PilA1 with all loops
deleted. Phenix and Coot were used for generating the initial
solution, iterative building, and refinement (101–104). After
numerous cycles of building and refinement (using both
refmac and phenix.refine) and validation using Molprobity
(105), the resulting structure contains four copies of MBP-
PilW, one of which contains a gaps in the αβ-loop and three
of which are complete, resulting in a final R-work of 0.186 and
R-free of 0.218. The crystallographic parameters of the refined
data are summarized in Table 1; geometric and residual sta-
tistics were calculated using phenix.Table 1 and Aimless. To
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reduce the effect of bias on the calculated electron density
maps, phenix.maps was used to calculate a composite omit
map as well as a feature-enhanced map (FEM) (106) shown in
Fig. S4.

Pilus modeling

Modeling of pilus fibers incorporating PilA1, PilJ, and PilW
was performed as described previously (26). Models of full-
length PilA1, PilJ, and PilW were created from the crystal
structures of the soluble domains using the high-resolution
cryo-EM model of the P. aeruginosa T4P, which shows a
conformation of the a1-N helix expected to be general across
T4P systems (64). Based on the similarity of PilA1 and TcpA,
an initial model incorporating only PilA1 was created through
superimposition using the TCP cryo-EM model (28). Modeling
the incorporation of PilJ and PilW individually required
replacement of a PilA1 subunit as well as rigid-body minimi-
zation using MMTK with AMBER OPLS forcefield with the
atoms of the PilA1 subunits fixed. As noted above, the creation
of a model incorporating PilJ and PilW in adjacent positions
was only possible with PilW in i + 1 position (relative to PilJ).

Electrophoretic mobility shift assays

C. difficile T4P subunits were expressed and purified as
described above. For EMSA assessment at 25C, PilA1, PilJ, and
PilW were individually incubated for 30 min with 10 ng of
DNA in a total volume of 10 μl with 10 mM Tris–HCl pH 8.5,
50 mM NaCl, and 1 mg/ml bovine serum albumin. DNA was
separated on a 1.5% agarose gel inoculated with ethidium
bromide (EtBr) for 30 min at 50 V. For EMSA assessment at
4C, PilA1, PilJ, and PilW were individually incubated for
30 min with 500 ng of DNA in a total volume of 10 μl with
20 mM Tris–HCl pH 8.3 and 100 mM NaCl. DNA was
separated on a 0.8% agarose gel inoculated with EtBr for
45 min at 100V. DNA mobility as a function of protein con-
centration was measured by UV-visualization of EtBr.

Twitching motility assay

BHIS+1% glucose and 1.8% agar plates were prepared fresh
and allowed to equilibrate in the anaerobic chamber for 24 h
prior to use. Thiamphenicol was used for plasmid mainte-
nance. Plates were made by pipetting 8 ml of medium into a
60-mm Petri dish and allowing to air dry with the lid on the
sterilized bench. C. difficile strains were grown overnight on
BHISTA 1% agar plates from a spore stock. After equilibra-
tion, each plate was stab inoculated with one colony from
their respective overnight strain plate. Plates were immedi-
ately placed into a sealable container and grown in the
anaerobic chamber for 72 h at 37C. To visualize the bacteria
movement, plates were removed from the anaerobic chamber
and their agar was also removed. The plates were not washed
in between agar removal and staining. The plates were
stained using 1% crystal violet, 1% formaldehyde, 1% meth-
anol in PBS for 5 min. After 5 min, the stain was removed,
and the remaining liquid was wicked off using kim wipes. The
plates were then allowed to air dry for 24 h with the lid off
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inverted on kim wipes. Once dry, the motility area was
quantified by using mm measurements on a ruler, taking
measurements of the widest point and a perpendicular
measurement. The equation used to find the area was as
follows: Surface Area ¼ Π � ðL2Þ � ðW2 Þ. The experiment was
performed with n = 5 per strain.

Data availability

The structure of MBP-PilW is deposited in the Protein Data
Bank under PDB ID 8DX4.
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