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The sequences of all different RNA transcripts present in a cell or tissue that are
related to the gene expression and its functional control represent what it is called a
transcriptome.The transcripts vary between cells, tissues, ontogenetic and environmental
conditions, and the knowledge that can be gained through them is of a solid relevance for
genetic applications in aquaculture. Some of the techniques used in transcriptome studies,
such as microarrays, are being replaced for next-generation sequencing approaches. RNA-
seq emerges as a new possibility for the transcriptome complexity analysis as well as
for the candidate genes and polymorphisms identification of penaeid species. Thus, it
may also help to understand the determination of complex traits mechanisms and genetic
improvement of stocks. In this review, it is first introduced an overview of transcriptome
analysis by RNA-seq, followed by a discussion of how this approach may be applied in
genetic progress within penaeid stocks.
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INTRODUCTION
The term RNA-seq has been used to make reference to a transcrip-
tome produced by methods of next generation sequencing (NGS),
which ensure a good coverage of transcripts detection, due to the
sequencing of millions of reads ranging from 25 to 300 bp, depend-
ing on the platform used (Wang et al., 2009; Oshlack et al., 2010).
The full set of transcripts in a cell is known as transcriptome. They
involve all types of ribonucleic acids (RNAs), including the protein
coding messenger ribonucleic acid (mRNA) and the non-coding
ribonucleic acid (ncRNA) such as ribosomal RNAs (rRNA), trans-
fer RNAs (tRNA), and the small nuclear RNAs (snRNA). These
RNAs may be differentially expressed according to the tissue,
the stage of development and the physiological condition being
accessed (Wang et al., 2009; Anders and Huber, 2010).

Transcriptome studies have been widely conducted in order
to identify new genes, prospect simple sequence repeats (SSR)
and single nucleotide polymorphisms (SNP) markers and to ana-
lyze differentially expressed genes. Such approaches have been
helping to understand different mechanisms related to cellular
control and describe important metabolic pathways, what enables
a better understanding of the genotype–phenotype relationship
(Marguerat and Bähler, 2010; Khatri et al., 2012; Qian et al., 2014).

Small and large scale transcriptome analyses and differential
expression studies, such as Expressed Sequence Tags (ESTs) and
microarrays, have been carried out in some penaeid shrimp species
(Rojtinnakorn et al., 2002; La Vega et al., 2007; James et al., 2010;
Brady et al., 2013). However, RNA-seq approaches are still incip-
ient in shrimp (Table 1; Li et al., 2012, 2013; Guo et al., 2013;
Sookruksawong et al., 2013; Xue et al., 2013; Zeng et al., 2013;
Baranski et al., 2014; Yu et al., 2014). Therefore, the method herein
has emerged as a new possibility for the transcriptome complexity

analyses in face of varied production and/or experimental con-
ditions. Consequently, such approach aims to develop genetically
improved strains, focusing mainly on the resistance factor.

In order to obtain a transcriptome via RNA-seq, some steps
should be followed: (i) selection of tissue of interest and isolation
of RNA molecules; (ii) construction of cDNA libraries; (iii) uti-
lization of a NGS platform; and (iv) the reads analysis in order
to establish unigenes and the transcriptome assemble through
bioinformatics tools.

The tissue choice should be based on the study aim and/or
the genes nature to be analyzed. As a parallel, a transcriptome
consists in taking a photograph from a specific time in a cell,
highlighting only the condition at that short period of time. In
this manner, tissue selection and the suitable time to perform
a transcriptome requires preparation, otherwise the experiment
as a whole may be biased (Wang et al., 2009). Libraries estab-
lishment is crucial for the final result in face of the many
laboratorial procedures that are conducted, leading to some
biases in the obtained results (Wang et al., 2009). Bioinformat-
ics analysis is also an important step and includes the use of
computational tools that guarantee the processing of large vol-
umes of data generated by next-gen (Gavery and Roberts, 2012;
Guo et al., 2013).

Within this review, it is presented a brief overview of the
RNA-seq method, including its main advantages and limitations.
Following that, it will be discussed how such technique may be
applied to obtain genetic progress in penaeid shrimp farming.

RNA-seq: ADVANTAGES AND LIMITATIONS
The transcriptome assembly may be based on a reference genome
available (Wang et al., 2009), which allows to quickly locate similar
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Table 1 | Summary of studies on penaeid shrimp using the RNA-seq approach.

Reference/species NGS platform Application Annotation of genomic information

Baranski et al. (2014)/Penaeus monodon Illumina SNPs and microsatellite prospecting 136,223 contigs; 473,620 SNPs

Li et al. (2013)/Fenneropenaeus chinensis Illumina Immune response to WSSV 46,676 unigenes; 805 differentially expressed

genes

Yu et al. (2014)/Litopenaeus vannamei Illumina SNPs prospecting 96,040 SNPs

Guo et al. (2013)/L. vannamei Illumina Stress; immune response;

apoptosis

42,336 unigenes; 2,445 differentially expressed

genes

Sookruksawong et al. (2013)/L. vannamei Illumina Immune response to TSV 61,937 contigs; 1,374 differentially expressed

contigs

Zeng et al. (2013)/L. vannamei 454 Immune response to TSV;

microsatellites prospecting

15,004 unigenes; 770 microsatellites; 1,311

differentially expressed genes

Xue et al. (2013)/L. vannamei Illumina Immune response to WSSV 52,073 unigenes; 1,179 differentially expressed

genes

Li et al. (2012)/L. vannamei Illumina Genomic annotation 109,169 unigenes

regions using local alignment algorithms and presents higher reli-
ability due to the large volume of small sized reads coming from
alternative splicing. It equally provides a more even coverage of
the genome (Anders and Huber, 2010; Qian et al., 2014). On the
other hand, even when there is no reference genome available,
de novo transcriptome assembly may be carried out using specific
algorithms, which stands as a solid advantage for some species that
have not been widely studied yet (Howe et al., 2013; O’Neil and
Emrich, 2013).

When performing transcriptome via RNA-seq, a high coverage
is obtained, which allows the discovery of new genes and poly-
morphisms (Marguerat and Bähler, 2010; Yu et al., 2014). Li et al.
(2012) evaluated the abundance and coverage of transcriptomes
obtained by RNA-seq in Litopenaeus vannamei. By comparing such
data to the ESTs available on GenBank, it was found that only
14.2% (15,519 out of 109,169) of unigenes obtained by RNA-seq
were also found in the EST libraries, generating a lot of new infor-
mative data. In addition to that, the wide coverage associated with
high resolution provided by this technique ensured high accuracy
in SNP discovery in coding genes (Yu et al., 2014).

That taken, RNA-seq allows the detection of variations in a sin-
gle nucleotide, enabling the detection of the expression of protein
isoforms and their respective allelic variants, characterizing SNPs
(Baranski et al., 2014; Yu et al., 2014). Polymorphic microsatellites
or SSRs have equally been identified through RNA-seq analysis
(Mohd-Shamsudin et al., 2013; Zeng et al., 2013; Baranski et al.,
2014). On those cases, though, a wider coverage of the reference
genome is suggested (Qian et al., 2014) once the presence of highly
repetitive regions could stand as a limiting factor by compromising
the transcriptome assembly.

As could be observed, RNA-seq has been considered a solid
method for the large-scale gene expression analysis due to the fact
it does not require prior genome knowledge (Wang et al., 2009) and
enables the detection of isoforms arising from alternative splicing
(Ghosh and Qin, 2010). Even when involving several samples, such
technique is accessible with moderate costs. In this case multiplex

runs containing up to 10 samples per sequencing lane can be per-
formed in some platforms and the costs are no longer a limiting
factor.

Another RNA-seq advantage is its wide dynamic range (ratio
between the minimum and maximum expression level). This
feature makes it suitable for measuring low, medium and high
expression levels of the genes, not requiring very sophisticated
normalization. By contrast, DNA microarrays show reliable results
only for medium expression levels and therefore have a much
smaller dynamic range. Thus, RNA-seq provides much more infor-
mative data, requiring less biological material and lower costs,
becoming this technique popular for measuring gene expression
on a large scale (Sharov et al., 2004; Wang et al., 2009).

RNA-seq APPLICATION WITHIN PENAEID SHRIMP
AQUACULTURE
The use of RNA-seq in species of penaeid shrimp can be focused
on transcriptome characterization, functional annotation, gene
expression profiles analysis, and gene-associated markers iden-
tification. In this section, the emphasis is given to the analysis of
differential expression, identification of molecular markers, and its
potential to promote genetic gain and development of improved
penaeid strains. Similar studies have allowed the identification
of candidate genes or quantitative trait loci (QTLs), which could
be related to traits of interest for aquaculture, such as reproduc-
tion, sex determination, growth, immunity, and tolerance against
environmental stress. Data involving pathways are also relevant
in order to obtain more details about the interaction mecha-
nism between the expressed products and their importance and
applicability.

IDENTIFYING CANDIDATE GENES THROUGH DIFFERENTIAL
EXPRESSION ANALYSIS
Although the applicability of RNA-seq in transcriptome and dif-
ferential expression in aquatic organisms have increased in the
past 3 years, the results found in literature and in the Sequence
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Read Archive Database of the National Center for Biotechnol-
ogy Information (SRA-NCBI) indicate that such approach still
is incipient for penaeid shrimp. SRA databank, per instance,
presents only 28 deposits of data generated by NGS in what regards
the species L. vannamei, L. stylirostris, and Penaeus monodon
(http://www.ncbi.nlm.nih.gov/sra/?term=penaeidae). In litera-
ture, it has been found next-gen data only for P. monodon (Baranski
et al., 2014) Fenneropenaeus chinensis (Li et al., 2013) and L. van-
namei (Li et al., 2012; Guo et al., 2013; Sookruksawong et al., 2013;
Xue et al., 2013; Zeng et al., 2013; Yu et al., 2014). Mostly, the
research in this field has been covering the identification of genes
connected to immunity, mainly concerning the white spot syn-
drome virus (WSSV) and the taura syndrome virus (TSV; Li et al.,
2013; Sookruksawong et al., 2013; Xue et al., 2013; Zeng et al., 2013;
Baranski et al., 2014). Both syndromes have caused great economic
losses for the shrimp industry throughout the past few decades.

Despite the fact that crustaceans do not own an immune sys-
tem, some candidate genes have been obtained from hemolymph
and hepatopancreas tissues. It is clearly seen in some differen-
tial expression studies concerning L. vannamei species, which
represents the biggest portion of the marine shrimp worldwide
production (Gucic et al., 2013). Among the main genes stud-
ied, it is possible to find those related to toll-like and signalizing
receptors, apoptosis, Vibrio cholerae infection and other immune
proteins (e.g., phagosome, hemocyanin, crustacyanin, antiviral),
antioxidant enzymes (the peroxidases and glutathione ones), and
lectins (Figure 1; Li et al., 2012, 2013; Sookruksawong et al., 2013;
Xue et al., 2013; Zeng et al., 2013; Baranski et al., 2014; Yu et al.,
2014).

Data related to toll-like and lectin proteins demonstrate that
those may act as signaling molecules, what causes the increase
of peptides expression responsible for controlling the immune
response (Wang et al., 2014). On the other hand, genes associated
with apoptosis may indicate an attempt to prevent proliferation of
viruses and possible damages to genetic material, through death of
infected cells. Specifically in what regards large number of proteins
related to infection by V. cholerae response is due to the recurring
presence of this group of bacteria within shrimp farming tanks
(Banerjee et al., 2012).

Information regarding the main metabolic pathways and the
quantity of most frequent genes in each pathway were also col-
lected, as part of the data obtained via functional annotation
for RNA-seq. In penaeid, the most commonly described path-
ways were those involving the general metabolism, spliceosome,
RNA transport, V. cholerae infection, phagosome and the antiox-
idant ones, which include peroxidase enzymes (Li et al., 2012,
2013; Sookruksawong et al., 2013; Xue et al., 2013; Zeng et al.,
2013; Yu et al., 2014). Spliceosome and RNA transport path-
way supposedly act in new transcripts formation, providing
genetic variants that may contribute to resistance (Yang et al.,
2007).

Regarding Gene Ontology (GO) categories, all studies in
penaeid have mainly reported the same data. Considering the bio-
logical processes, per instance, the most frequent were metabolism
and biological regulation. In what regards cellular components,
genes are mostly expressed at the cell and some unspecific
organelles. Finally, concerning the molecular function, the most

common ones were catabolic activity and binding (Li et al.,
2012, 2013; Sookruksawong et al., 2013; Xue et al., 2013; Zeng
et al., 2013; Baranski et al., 2014; Yu et al., 2014). Overall results
such as these were expected, since the penaeid species previ-
ously mentioned herein have too little information about their
genomes available. In the case of L. vannamei, only approx-
imately 12,000 gene products were described, which may be
useful in a comparative approach concerning a de novo assem-
bly (http://www.ncbi.nlm.nih.gov/protein/?term=Litopenaeus+
vannamei).

IDENTIFYING GENE ASSOCIATED MARKERS
In what regards RNA-seq technology, it has also been proving to be
an extremely useful tool for identifying SNPs, which may be also
used to develop high density SNPs chips for studies concerning
the genome wide association (GWAS) and to build high density
linkage maps (Baranski et al., 2014; Yu et al., 2014). Furthermore,
SNPs can be used as markers in order to distinguish allelic tran-
scripts whilst studying the allele-specific expression (Bell and Beck,
2009).

In a recent study, Yu et al. (2014) prospected SNPs in L.
vannamei. A total of 58,717 unigenes and 36,277 high quality
SNPs were predicted by transcriptomes “M” (produced by the
authors themselves) and “P” (downloaded from SRA database,
session number SRR346404, which was published by Li et al.,
2012), respectively. Those SNPs were spread out among 25,071
unigenes and allocated to 254 pathways at the KEGG (Kyoto Ency-
clopedia of Genes and Genomes) database. The main pathways
containing high number of SNPs were metabolic pathways, amoe-
biasis, V. clolerae infection, RNA transport, and actin cytoskeleton
regulation.

Baranski et al. (2014) used the approach to build a high den-
sity linkage map in P. monodon. A total of 6,000 out of 473,620
SNPs/indels putative were genotyped by using the Illumina iSe-
lectCerca genotyping matrix. Out of those SNPs, 3,959 were
mapped in 44 linking groups and out of those 2,340 were func-
tionally annotated according to the GO database (see dataset S5
and S6 from Baranski et al., 2014). According to the authors, these
polymorphisms may be causal or closely related to other muta-
tions that affect important traits, such as resistance to diseases and
reproductive performance.

The identification and functional annotation of SNPs identi-
fied by Baranski et al. (2014) and Yu et al. (2014) studies represent
a useful resource to comprehend mechanisms determining com-
plex traits and, consequently, to develop programs aiming the
genetic improvement of these characters in penaeid shrimp strains.
That taken, those SNPs can be applied both in marker assisted
selection (MAS), using SNPs closely associated with QTL, and in
genomic selection, through complete set of identified SNPs. That
increases the rate of genetic gain per generation in traits of great
interest to the shrimp industry, such as growth and resistance to
disease.

FINAL CONSIDERATIONS
One of the possible challenges that arise within genetic gain
is the development of penaeid strains that may simultaneously
present high growth development and pathogens resistance.
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FIGURE 1 | Compilation based on the immune genes in Supplementary

Material available online from seven studies. Details from the study and
the respective files are as follow: Li et al. (2012; Tables S5, S6 and S7), Li et al.
(2013; Tables S3 and S6), Sookruksawong et al. (2013; Tables S5 and S6), Zeng

et al. (2013; Tables S4 and S5), Xue et al. (2013; Table S1), Baranski et al. (2014;
Tables S5 and S6), and Yu et al. (2014; File 1). The most frequent genes found
are in gray and the main pathways in which these genes are distributed can
be seen in black.

Genetic correlation studies have shown that there is a negative
phenotypic correlation between the resistance to diseases and
the weight gained by the animals (Argue et al., 2002; Gitterle
et al., 2005; Cock et al., 2009). Cock et al. (2009), reinforce the
fact specimen potentially resistant to WSSV also present low
reproduction efficiency. Such remarks suggest that genes with
pleiotropic effects may be responsible for the trade-off observed
between these traits in penaeid shrimp. From this perspec-
tive, the RNA-seq technique can be used for discovering such
genes, since the overlapping of differentially expressed genes
in both strains resistant to pathogens and in large weight gain
strains can also be verified. Therefore, up-regulated or down-
regulated genes expressed in these two strains could indicate a
possible pleiotropic effect. Besides, mRNA studies allied with
RNA-seq method could also be used for micro RNAs (miRNA)
analyses. This approach was applied in aquaculture species,
such as freshwater prawn Macrobrachium rosenbergii (Tan et al.,
2013), and tilapia (Huang et al., 2012). As a result, it has been
shown that miRNAs are critical regulators of generalized cel-
lular functions such as differentiation, proliferation, and cell
growth.

Another challenge within aquaculture is the difficulty in achiev-
ing sexual maturity and spawning of penaeid species (except
for L. vannamei), under the farming conditions (Lo et al., 2007;
Brady et al., 2013). As an attempt to overcome such prob-
lem, ablation of the eyestalk has been conducted for many
years. Nevertheless, such practice is associated to high mor-
tality rates, and low spawning and survival rates (Huberman,
2000). Considering this, the transcriptome analysis obtained
from reproductive organs of native and captive specimens of
penaeid shrimp via RNA-seq may significantly contribute to the

identification of the underlying causes of reproductive dysfunc-
tion observed in farmed animals. Furthermore, the discovery of
genes involved in gonadal maturation and reproductive perfor-
mance may assist in gametogenesis, handling studies involving
these species.

Finally, transcriptome and differential expression analysis
by RNA-seq may be a powerful approach to optimize the
penaeid diet composition (nutrigenomics), especially for those
species that do not count on a specific availability of diet. The
approach may be used to identify specific changes in molec-
ular level (Chávez-Calvillo et al., 2010), which in turn also
cause metabolic and physiological changes in shrimp treated
with different diets (e.g., levels of crude protein, levels of plant
protein inclusion and of antioxidants, vitamins, and polyunsatu-
rated fatty acids). Thus, nutrigenomics can be used to produce
healthy animals and safe and high quality products for the
consumer, emerging as a promising area of research for sustain-
ability and profitability in aquaculture (Cerdà and Manchado,
2013).

Although NGS technologies are showing their efficiency in
works related to gene expression, other methodologies such
as third-generation sequencing, also referred to as single-
molecule sequencing (Single-Molecule Real-Time, SMRT), are
being developed, but already showing limitations. More advanced
techniques of sequencing are also on the way, such as “next-
next-generation,” which it is capable of handling millions of
DNA molecules simultaneously, including cDNAs from the
RNAs.

Considering the many technologies that are already avail-
able or emerging, researchers can only venture in this world of
possible and promising technologies. Various research groups
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should seek to unite efforts in order to overcome the diffi-
cult and challenging task of applying the enormous potential of
these new methods to advance and progress in penaeid shrimp
aquaculture.
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