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Metabolic rearrangement is a marker of cancer that has been widely studied in recent years. One of the major metabolic
characteristics of tumor cells is the high levels of glycolysis, even under aerobic conditions, a phenomenon that is called the
“Warburg effect.” We investigated the expression and copy number variation (CNV) frequency of all glycolysis-related genes in
multiple cancer types and found many differentially expressed genes, particularly in clear cell renal cell carcinoma (ccRCC).
Single nucleotide variants (SNVs) showed that the overall average mutation frequency for all genes was low. The purpose of this
study was to establish a predictive model by studying glycolysis-related genes in ccRCC. We compared the expression of
glycolysis-related genes in 539 ccRCC tissues and 72 normal renal tissues from The Cancer Genome Atlas dataset and identified
17 upregulated and 26 downregulated genes. Pathway analysis revealed that PSAT1 and SDHB could activate the cell cycle,
RPIA could activate the DNA damage response, and HK3 could activate apoptosis and EMT signaling, while PDK2 could
inhibit apoptosis. The results of the drug sensitivity analysis suggested that some of these differentially expressed genes were
positively correlated with drug sensitivity. Thirteen genes were selected from the gene coexpression network and the LASSO
regression analysis. The Kaplan-Meier overall survival curves showed that the expression of upregulated genes in ccRCC
patients was associated with lower overall survival. We established a predictive model consisting of 13 genes (RPIA, G6PD,
PSAT1, ENO2, HK3, IDH1, PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2, and SUCLG2). This predictive model correlated
well with the development and progression of ccRCC. Thus, it is of great value in the diagnosis and prognostic evaluation of
ccRCC and may aid the identification of potential prognostic biomarkers and drug targets.

1. Introduction

Renal cell carcinoma (RCC) is the third most common
malignant cancer of the urinary system and accounts for
approximately 90% of all malignant renal tumors [1, 2].
According to recent statistics, more than 400,000 new cases
of RCC have been reported, resulting in approximately
175,000 deaths worldwide annually [3]. In the United States
alone, 73,820 new cases of RCC are reported each year and
14,770 people die from this disease [4]. Clear cell renal cell
carcinoma (ccRCC) is the most common and fatal subtype,

accounting for 75% of all RCCs [5]. As ccRCC is prone to
metastasis in the early stages, approximately one-third of
the patients exhibit distant metastases at the time of diagnosis
[6]. These patients may have missed the best window for
treatment. In addition, ccRCC is resistant to radiotherapy
and traditional chemotherapy and has a poor prognosis.

For ccRCC, the gold standards for clinical diagnosis
include computerized tomography (CT) and histopathologi-
cal analyses. During the follow-up, CT is routinely performed
to gauge disease progression, but histopathological analysis is
an invasive procedure, which is not easily accepted by
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patients and is not suitable for regular monitoring. Moreover,
it is difficult to detect small pathological changes in the early
stages using CT scans, and there is a risk of radiation damage
in patients who need long-term monitoring. At present, the
identification of novel diagnostic and prognostic markers
for ccRCC is a necessity.

In the early 1920s, Otto Warburg found that even with
sufficient oxygen supply, cancer cells converted glucose into
lactate [7]. Later, researchers termed this phenomenon as
“aerobic glycolysis” or the “Warburg effect” [8]. The War-
burg effect is frequently observed in tumors; it is one of the
key mechanisms underlying carcinogenesis, and many stud-
ies have investigated tumor-related glycolytic genes in recent
years [9, 10]. To date, the Warburg effect and the glycolytic
genes have been studied in lung cancer, breast cancer, ovar-
ian cancer, gastric cancer, liver cancer, colorectal cancer,
esophageal cancer, prostate cancer, bladder cancer, and other
tumors [11–19], but there are few reports on ccRCC.

We used bioinformatics to explore glycolytic genes that
are differentially expressed in 539 ccRCC tissues and 72 nor-
mal control tissues from The Cancer Genome Atlas (TCGA).
A predictive model containing 13 genes was established after
performing a series of investigations, including pathway
analysis, drug sensitivity analysis, gene coexpression analysis,
Lasso regression analysis, and survival curve analysis. This
model showed great promise for the diagnosis and prognosis
of ccRCC and may help in the identification of potential
prognostic biomarkers and drug targets in ccRCC.

2. Materials and Methods

2.1. Data Collection. We acquired the data, including CNV,
SNV, and mRNA expression for ccRCC patients, from The
Cancer Genome Atlas Database (TCGA) (https://
cancergenome.nih.gov/) [20]. TCGA dataset contained 539
ccRCC tissue samples and 72 normal control samples. In
addition, we screened 53 glycolysis-related genes based on a
literature survey [21].

2.2. Pathway Analysis. We analyzed the activation and inhi-
bition of pathways using GSCALite (http://bioinfo.life.hust
.edu.cn/web/GSCALite/) [22], which enables the analysis of
the following: differential expression between tumor and
normal tissues, survival between tumor and normal tissues,
pathways related to gene expression, miRNA gene regulatory
networks, and drug sensitivity.

2.3. Gene Coexpression Network and Transcriptional Factor
Network. The gene coexpression network of glycolysis-
related genes and heat maps of transcriptional factors were
generated using R. We used the Corrplot software package
for gene coexpression analysis and the Gene Expression Pro-
filing Interactive Analysis (GEPIA) (http://gepia.cancer-pku
.cn/) [23] for analyzing the correlation between different
genes. The overall survival (OS) and disease-free survival
(DFS) of ccRCC patients were collected from the GEPIA
website. Cytoscape was used to visualize the networks of
coexpressed genes and transcriptional factors and identified
differentially expressed genes [24].

2.4. Data Processing and Analysis. We downloaded the offi-
cial R software from the CRAN website (https://www.r-
project.org/). As the R software is complex to navigate, we
used RStudio, which is a simple and powerful operation plat-
form (https://www.rstudio.com/). In terms of data process-
ing and analysis, Perl and other R packages were used in
this study. The heat maps were generated using Phatmap.
The Limma software package was used to perform differen-
tial expression analysis of glycolysis-related genes and tran-
scriptional factors. Glmnet and Survival software packages
were used to perform the LASSO regression analysis. The
survival curves were generated using the Survival software
package, and the ROC curves were analyzed and drawn using
the survival ROC software package. A p < 0:05 indicated a
significant difference between the two groups of data.

3. Results

3.1. Identification of Glycolysis-Related Genes in ccRCC. We
searched the literature and identified 53 genes involved in
glycolysis. We used these genes to map the glycolysis and tri-
carboxylic acid cycle pathways (Figure 1). First, we investi-
gated the alteration in the expression of the glycolysis-
related genes in 14 cancer types. The results revealed the
presence of many differentially expressed glycolysis-related
genes in various cancers compared to that in the control sam-
ples (Figure 2(a)). We then explored the copy number varia-
tion (CNV) alteration frequency for all genes and found that
CNV alterations were widespread. The genes with CNV
amplifications exhibited a significantly higher expression in
cancer tissues than in normal controls (e.g., HK3 and
ENO2), while the genes with CNV deletions exhibited signif-
icantly lower expression (e.g., ALDOB and PSAT1)
(Figure 2(b)). Single nucleotide variants (SNVs) showed that
the overall average mutation frequency of all genes was low,
especially in ccRCC (0.00–1.09%; Figure 2(c)). Combined
with the changes in gene expression, we speculated that
CNV alterations may be one of the important mechanisms
for modifying gene expression in ccRCC.

We first explored the relationship between gene expres-
sion levels and the hazard ratio (HR) of ccRCC. The OS
and disease-free survival (DFS) of ccRCC patients were
obtained from the GEPIA website. The high expression of
HK3, ENO2, ENO3, and PSAT1 indicated a short OS and a
high risk of developing renal cancer. The high expression of
GPI, FBP1, ALDOB, and SUCLA2 indicated longer OS and
a low risk of developing renal cancer (Figure 3(a)). The high
expression of GAPDH, PSAT1, PGLS, and LDHC indicated a
short DFS and a high risk of developing renal cancer. The
high expression of FBP1, ALDOB, LDHD, and SUCLA2
indicated a longer DFS and a low risk of developing renal
cancer (Figure 3(b)). Next, we compared the expression
levels in 539 ccRCC tissues and 72 normal renal tissues in
TCGA dataset and obtained 43 differentially expressed
glycolysis-related genes. Compared with those in the normal
control group, patients with ccRCC exhibited higher expres-
sion of PGK1, GPI, ALDOA, TPI1, GAPDH, ENO1,
ALDOC, PDK1, LDHA, HK2, SHMT2, ENO2, HK3, SDS,
PGLS, G6PD, and PRIA (Figure 3(c)). The expression levels
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of genes involved in glucose metabolism were consistent with
this result (Figure 3(d)). Therefore, we speculated that these
43 differentially expressed glycolysis-related genes may be
related to the occurrence of ccRCC.

3.2. Gene Coexpression Network Analysis and the Search for
Potential Transcriptional Factors. Coexpression network
revealed that glycolysis-related genes exhibited a strong coex-
pression relationship. We used the GEPIA website to analyze
the correlation between GAPDH and TPI1 and found that
they were very significant (R = 0:61). When the GAPDH
gene was upregulated, TPI1 was also most likely upregulated
(Figure 4(a)). As shown in Figure 4(b), transcription factors
differentially expressed in the cancer and normal control
groups were observed in the heat map. We analyzed all
the differentially expressed transcriptional factors, and the
volcano plot revealed that 41 transcription factors were
upregulated and 19 transcription factors were downregu-
lated in ccRCC (p < 0:05, log2 fold − change > 1)
(Figure 4(c)). To investigate transcriptional factors
upstream of the main differentially expressed genes in
ccRCC, we generated a transcriptional factor network and
observed that several core transcriptional factors were asso-
ciated with the differentially expressed genes namely, FLI1,

ETS1, SREBF2, PML, CEBPB, RUNX1, MYBL2, CENPA,
FOXM1, and LMNB1 (Figure 4(d)).

3.3. Categories Determined by Consensus Clustering Were
Closely Correlated to the Clinical Outcomes and
Clinicopathological Features. ConsensusClusterPlus was used
to group 539 cancer tissues. Based on the similarity in the
expression of glycolysis-related genes, k = 2 had the smallest
CDF value; therefore, the cancer tissues were divided into
two groups (Figures 5(a) and 5(b)). We analyzed the two sub-
groups to validate our classification by PCA, and the results
showed that both cluster1 and cluster 2 could also be clus-
tered independently (Figure 5(c)). Furthermore, we analyzed
the clustering results and OS curves of 539 ccRCC patients
and found that the cluster 1 subgroup was associated with a
significantly shorter OS than the cluster 2 subgroup
(Figure 5(d)). Moreover, we found that most of the
glycolysis-related genes were highly expressed in the cluster
1 subgroup. Compared to the cluster 2 subgroup, the cluster
1 subgroup was significantly correlated with a higher stage,
higher grade, higher T status, higher M status, and fustat
(Figure 5(e)).

3.4. Drug Sensitivity and Pathway Analysis. Drug sensitivity
was analyzed using Genomics of Drug Sensitivity in Cancer
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(GDSC; https://www.cancerrxgene.org/) [25]. The expres-
sion of some differentially expressed genes, such as PRIA,
SUCLG2, ENO2, and G6PD, was positively correlated with
drug sensitivity. The high expression of G6PD was positively
correlated with sensitivity to 5-fluorouracil, CX-5461, AT-
7519, and PHA-793887, and the high expression of HK3
was negatively correlated with sensitivity to 5-fluorouracil,
ATRA, and I-BET-762 (Figure 6(a)). Pathway analysis
revealed that PSAT1 and SDHB could activate the cell cycle,
RPIA could activate the DNA damage response, and HK3
could activate apoptosis and EMT, while PDK2 could inhibit
apoptosis (Figure 6(c)).

3.5. Establishment of a Risk Signature and Its Prognostic
Value in ccRCC. To explore the prognostic role of differen-
tially expressed glycolysis-related genes in ccRCC, we sub-
jected gene expression data from TCGA to univariate Cox
regression analysis. Twenty-five genes were found to have
prognostic value with respect to ccRCC (p < 0:05)
(Figure 6(b)). Among these, IDH1 (HR = 1:022, 95%CI =
1:008 – 1:037), G6PD (HR = 1:043, 95%CI = 1:028 – 1:057),
HK3 (HR = 1:151, 95%CI = 1:089 – 1:217), ENO2
(HR = 1:088, 95%CI = 1:004 – 1:012), ENO3 (HR = 1:030,
95%CI = 1:007 – 1:054), RPIA (HR = 1:103, 95%CI = 1:041
– 1:170), PSAT1 (HR = 1:016, 95%CI = 1:010 – 1:023),

GAPDH (HR = 1:000, 95%CI = 1:000 – 1:001), TALDO1
(HR = 1:010, 95%CI = 1:004 – 1:016), and PGLS
(HR = 1:031, 95%CI = 1:017 – 1:046)—upon being expressed
at high levels—resulted in a short survival duration in ccRCC
patients. On the contrary, SHMT1 (HR = 0:971, 95%CI =
0:956 – 0:987), ENO1 (HR = 0:999, 95%CI = 0:999 – 1:000),
ACO1 (HR = 0:955, 95%CI = 0:921 – 0:991), PDK4
(HR = 0:997, 95%CI = 0:996 – 0:999), SUCLG2 (HR = 0:961
, 95%CI = 0:941 – 0:982), SDHB (HR = 0:958, 95%CI =
0:937 – 0:978), OGDH (HR = 0:981, 95%CI = 0:972 – 0:991
), PDK2 (HR = 0:915, 95%CI = 0:880 – 0:950), SUCLA2
(HR = 0:917, 95%CI = 0:887 – 0:947), ACO2 (HR = 0:979,
95%CI = 0:971 – 0:988), FBP1 (HR = 0:982, 95%CI = 0:973
– 0:991), PGK1 (HR = 0:996, 95%CI = 0:994 – 0:998),
PGM2 (HR = 0:894, 95%CI = 0:845 – 0:945), PKLR
(HR = 0:978, 95%CI = 0:959 – 0:998), and LDHD
(HR = 0:955, 95%CI = 0:922 – 0:989)—upon being expressed
at high levels—resulted in a longer survival duration in
patients with ccRCC.

Subsequently, we selected 20 genes that were identified as
being significant in the univariate Cox analysis (p < 0:01) for
the LASSO regression analysis. Thirteen genes were selected
to generate the risk signature, and the coefficients obtained
from the LASSO algorithm were used to calculate the risk
score (Figures 6(d) and 6(e)). We then stratified the ccRCC
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Figure 2: Alterations in the expression genes involved in glycolysis. (a) The gene expression alterations in 14 cancer types. (b) The CNV
alteration frequency of genes across cancer types. The left part of each grid shows the amplification frequency, and the right part shows
the deletion frequency. (c) The SNV alteration frequency of genes across cancer types.
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Figure 3: Relationship between gene expression levels and hazard ratio (HR) of ccRCC. (a) The relationship between gene expression levels
and overall survival (OS). (b) The relationship between gene expression levels and disease free survival (DFS). (c) The expression levels of 52
genes in 539 ccRCC samples and 72 normal control samples. (d) The expression levels of all genes involved in glycometabolism in ccRCC.
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patients into the low-risk and high-risk groups according to
the median risk score; the results indicated that patients in
the high-risk group had a lower survival rate (Figure 7(a)).
ROC curve analysis was performed to predict the risk scores
and survival rate of ccRCC patients; the area under the curve
(AUC) was found to be 0.731. The results showed that the
risk scores could predict the survival rate of patients with
ccRCC (Figure 7(b)).

3.6. The Risk Signature Was Closely Related to the
Clinicopathological Characteristics of ccRCC. We studied the
relationship between the 13 selected genes in the high- and
low-risk groups—from TCGA—and the pathological charac-
teristics of cancer, including age, stage, grade, T status, M sta-
tus, and N status. We found that these 13 genes were closely
related to the pathological characteristics of cancer. More-
over, compared with patients in the low-risk group, ccRCC
patients in the high-risk group exhibited higher expression
of RPIA, G6PD, PSAT1, ENO2, HK3, and IDH1 and lower
expression of PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2,
and SUCLG2 (Figures 7(c) and 7(h)).

We performed univariate and multivariate Cox regres-
sion analyses on TCGA data. Univariate Cox regression anal-
yses indicated that the risk score, age, stage, grade, T status,
and M status were all related to OS. As the risk score, age,
stage, grade, T status, and M status increased, the risk
increased. Multivariate Cox regression analyses indicated
that the risk score, age, stage, and grade were independent
risk factors (Figures 7(d) and 7(e)). Furthermore, as the risk
scores increased, the risk of developing cancer and the num-
ber of deaths increased (Figures 7(f) and 7(g)). Based on
these results, we conclude that the established risk signature
is closely correlated with the clinicopathological characteris-
tics of ccRCC.

4. Discussion

Glycolysis is a natural process that occurs in normal tissues
under hypoxic conditions. Glycolysis has also been observed
in areas of malignant tumors with sufficient oxygen. To
enable the proliferation of tumor cells and to enable the for-
mation of a membrane structure, it is necessary to produce a
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Figure 4: Coexpression network for the glycolysis-related genes and the transcriptional factor network between ccRCC group and normal
control group. (a) Coexpression network for glycolysis-related genes and the correlation between GAPDH and TPI1. (b) The expression
levels of transcriptional factors in 539 ccRCC samples and 72 normal control samples. (c) Volcano plot of all transcriptional factors; red
color represents transcriptional factors with high expression, green color represents transcriptional factors with low expression, and black
color represents transcription factors with no differential expression. (d) The transcriptional factor upstream of the main differentially
expressed glycolysis-related genes in ccRCC. The purple triangle represents the transcriptional factors, the red color represents
upregulated glycolysis-related genes, and the green color represents downregulated glycolysis-related genes.
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large number of fatty acids, a process that requires aerobic
glycolysis, also known as the Warburg effect. This phenome-
non is very common in malignant tumors [26–29]. Glycoly-
sis is very important for tumors, and tumor cells exhibit high
expression of key enzymes involved in the process of glycol-
ysis to generate more energy. In addition, tumor cells can also
produce energy through the fermentation of lactic acid, a
product of glycolysis [30]. The Warburg effect and glycolytic
genes have been studied in lung cancer, breast cancer, ovar-
ian cancer, gastric cancer, liver cancer, colorectal cancer,
esophageal cancer, prostate cancer, bladder cancer, and other
tumors [11–19].

A recent study has shown that the Warburg effect in
ccRCC is more pronounced than that in other tumors
[31]. A report based on metabolic atlas showed that
ccRCC is characterized by an increase in the level of
metabolites during glycolysis and a decrease in the level
of metabolites during oxidative phosphorylation, suggest-
ing that glycolysis is active in ccRCC [21]. Therefore, we
chose to study the expression of glycolysis-related genes
in ccRCC patients to identify biomarkers that can predict
the prognosis of the disease. Unlike many previous studies
that may be limited to a single gene [32, 33], our research

attempts to further understand the occurrence and devel-
opment of tumors by studying the entire biological path-
way. This new type of research is currently being
respected and has made progress [34–36].

Our study included 539 ccRCC tissue samples and 72
normal control tissue samples from the TCGA dataset. We
analyzed 53 glycolysis-related genes and identified 43 differ-
entially expressed genes between the ccRCC and normal con-
trol groups. In addition, we identified 25 genes related to the
prognosis of ccRCC patients using univariate Cox analysis.
Finally, we used LASSO regression analysis to construct a risk
model consisting of 13 genes: RPIA, G6PD, PSAT1, ENO2,
HK3, IDH1, PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2,
and SUCLG2.

ENO2 is a key gene in glycolysis, which catalyzes the
dehydration of 2-phosphoglyceric acid to produce phospho-
enolpyruvate. It can promote cell growth, upregulate
glycolysis-related genes, and activate Akt signaling pathway
through phosphorylation of glycogen synthase kinase3β, so
as to induce cell proliferation and glycolysis [37]. Increased
expression of ENO2 has been found in many types of tumors.
The high expression of ENO2 in glioma and colorectal cancer
is related to glycolysis in the tumor cells [38, 39]. The
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Figure 5: Identification of consensus clusters based on glycolysis-related genes and overall survival of ccRCC in the cluster 1/2 subgroups. (a)
Consensus clustering matrix for K = 2 − 5. (b) Consensus clustering cumulative distribution function (CDF) for K = 2 − 9, relative change in
area under the CDF curve for K = 2 − 9. (c) PCA of the total genes in TCGA dataset. (d) Kaplan-Meier overall survival (OS) curve for 539
ccRCC patients. (e) Based on the results of this cluster analysis, heat map shows the correlation with clinicopathological characteristics.
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increased expression of ENO2 promotes glycolysis in gastric
cancer cells, which is related to tumor growth and liver
metastasis [40]. In terms of Warburg effect in renal cell carci-
noma, recent studies proposed that the expression of ENO2
was significantly higher in the tissues and serum of RCC
patients [41, 42]. In addition, the increase in serum ENO2
level was related to clinical stage, tumor grade, and disease

recurrence; therefore, it is a potential biomarker for the prog-
nosis of RCC [43, 44]. In our study, ENO2 was highly
expressed in the tissues of ccRCC patients and played a role
in activating the cell cycle, EMT, and PI3K/AKT signaling
pathway, which was consistent with our expectations. Mean-
while, the results indicated that ENO2 may promote the
growth and invasion of ccRCC cells through glycolysis and
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Figure 6: Drug sensitivity analysis and signaling pathway analysis of the glycolysis-related genes and the process of establishing the risk
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that the high expression of ENO2 may be related to the War-
burg effect.

Metabolic transfer to glycolysis is related to changes in
the signaling pathways involved in energy metabolism. This
process involves the ingestion and fermentation of glucose.
HK3 is a key gene in glycolysis, and the first step of hexoki-
nase- (HK-) catalyzed glycolysis has been confirmed to be
very important in the development of colorectal cancer and
melanoma [45]. The expression of glycolytic enzymes,
including HK3, was also increased in breast cancer, and
HK3 was considered to be the most important gene in pedi-
atric acute lymphoblastic leukemia; it plays an important role
in the prognosis of the disease through the glycolytic pathway
[46, 47]. The increased expression of HK3 is related to EMT
in colorectal cancer, which is involved in the rapid growth
and metastasis of colorectal cancer [48]. At present, there
are few reports on HK3 in renal cell carcinoma. In our study,
HK3 played a role in activating apoptosis and the EMT sig-
naling pathway, which is consistent with previous research
results. Based on the expression of HK3 in other tumors,
we speculated that the high expression of HK3 in ccRCC
was related to the Warburg effect, and HK3 could promote
the rapid proliferation, invasion, and metastasis of ccRCC by
enhancing apoptosis and epithelial-mesenchymal transition.

FBP1 catalyzes the formation of fructose-6-phosphate
from fructose-1,6-diphosphate and water, which plays a key
role in gluconeogenesis. FBP1 is a downstream glycoisoen-
zyme and tumor suppressor that inhibits glycolysis and
tumor growth and partially inhibits tumor growth by inhibit-
ing mitotic signal transduction [49, 50]. As a tumor suppres-
sor, decreased expression of FBPT1 in a variety of tumors has
been reported in many studies. The low expression of FBP1
promoted the invasion of hepatocellular carcinoma cells
through the Warburg effect [51]. When FBP1 was downreg-
ulated, glycolysis increased, and the decrease in FBP1 level
reprogrammed the metabolism of glioblastoma cells [52].
The expression of FBP1 was downregulated in gastric cancer
and gastric cancer cell lines, and this downregulation was
related to theWarburg effect in tumors [53]. High expression
of FBP1 inhibits the growth, metastasis, and glycolysis of

breast cancer [54]. Previous studies have shown that FBP1
could inhibit glycolysis in kidney cancer, and the expression
of FBP1was significantly lower in patients with high-grade
ccRCC than in patients with low-grade ccRCC [55]. FBP1
could antagonize the glycolytic flux of renal tubular epithelial
cells, the assumed cells of ccRCC, thus inhibiting the War-
burg effect [56]. In our study, FBP1 was downregulated in
the tissues of ccRCC patients, suggesting that glycolysis was
enhanced in ccRCC, while gluconeogenesis was decreased,
which was consistent with our expectations. In addition,
FBP1 plays a role in inhibiting the cell cycle and EMT path-
ways, and thus, FBP1 had an inhibitory effect on tumor
growth, invasion, and metastasis.

These genes are closely related to the pathological charac-
teristics of cancer. According to clinical characteristics,
ccRCC patients were divided into the high-risk and low-
risk groups. Compared with the low-risk group patients, the
high-risk group patients had a higher proportion of RPIA,
G6PD, PSAT1, ENO2, HK3, IDH1, and lower proportions
of PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2, and
SUCLG2. As the risk score, age, stage, grade, T status, and
M status increased, the risk increased. The Kaplan-Meier
overall survival curves showed that the high-risk group had
a lower survival rate than the low-risk group, which sug-
gested that the predictive model could predict the survival
rate and evaluate the prognosis of ccRCC patients.

The results of drug sensitivity analysis suggested that the
low expression of ENO2 and HK3 genes and the high expres-
sion of PGK1 were positively correlated with drug sensitivity.
In addition, some glycolysis-related genes were positively
correlated with drug sensitivity, which could be used as
potential targets for drug therapy. We performed a transcrip-
tion factor network for the main differentially expressed
genes of ccRCC, and several core transcriptional factors were
identified: FLI1, ETS1, SREBF2, PML, CEBPB, RUNX1,
MYBL2, CENPA, FOXM1, and LMNB1. The discovery of
these transcription factors provides a basis for protein and
functional research.

In this study, we first explored the expression of
glycolysis-related genes in ccRCC using integrated
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Figure 7: Relationship between the risk scores, clinicopathological factors, and clusters. (a) Kaplan-Meier overall survival (OS) curves based
on this risk model. (b) ROC curves showed the predictive ability of the risk signature. (c) The heat map showed the expression levels of the 13
glycolysis-related genes in low- and high-risk ccRCC patients and the correlation analysis with clinicopathological factors. (d) Univariate Cox
regression analyses. (e) Multivariate Cox regression analyses. (f) The relationship between risk scores and high risk and low risk. (g) The
relationship between risk scores and survival time. (h) The heat map showed the expression levels of the 13 glycolysis-related genes in
low- and high-risk ccRCC patients.
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bioinformatic analysis. We identified key glycolysis-related
genes that are differentially expressed in ccRCC, analyzed
the effects of these genes on common signaling pathways,
and generated a predictive prognostic model for ccRCC.
However, there are still some limitations. Our results have
not been validated by in vitro experiments, such as quantita-
tive real-time polymerase chain reaction and western blot-
ting. Further studies on human tissue samples are required
to validate these results.

5. Conclusions

In conclusion, we identified that key glycolysis-related genes
are differentially expressed in ccRCC, analyzed the effects of
these genes on common signaling pathways, and constructed
a predictive model of ccRCC. This predictive model corre-
lated well with the development and progression of ccRCC
and showed great diagnostic and prognostic value. This
model may serve as a potential prognostic biomarker and
drug target for ccRCC.
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