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Abstract

Background: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the
application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several
potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors
(e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed
for these new data types, especially for individual-specific genome data.

Methodology: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly
taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-
specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our
weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The
empirical P value obtained then provides an adjusted statistical evaluation.

Principal Findings/Conclusions: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset
and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the
weighted resampling method performs as well as the standard methods for significant pathways with strong evidence.
Importantly, our method could effectively reject many marginally significant pathways detected by standard methods,
including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases,
pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored
and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for
accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and
methylation) that have similar bias problems.
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Introduction

In large-scale sequencing studies of cancer genomes, one of the

central challenges is to distinguish disease-causing ‘‘driver’’

mutations from ‘‘passenger’’ mutations, and allow the develop-

ment of targeted therapy and medication. While statistical

methods have been under active development to test mutation

events at the gene level, the combinatorial occurrence of many

genes shows distinguishable patterns. Some well-studied examples

include mutually exclusive mutations such as EGFR and KRAS in

lung cancer [1], and TP53 and MDM2 in glioblastoma. Most of

these mutations were frequently observed in certain focused

pathways, e.g., four genes from the EGFR-RAS-RAF signaling

pathway, EGFR, KRAS, HER2, and BRAF, behave in a mutual

exclusive fashion in lung cancer [1,2]. In addition, the most recent

findings of The Cancer Genome Atlas (TCGA) projects strongly

suggested the convergence of mutations at the pathway level (e.g.,

three key pathways in glioblastoma, [3]).These observations

promoted an emerging consensus that driver genes could be

analyzed at the pathway level and induce more straightforward

functional interpretation.

The rapid advance in next-generation sequencing (NGS)

technologies has made it possible to sequence individual genomes

in a timely and cost-efficient manner. For example, whole genome

sequencing can provide a full spectrum of the genetic mutations,

including single nucleotide variants (SNVs), short insertions/

deletions (indels), copy number variations (CNVs), and structure

variants. So far, many individual cancer genomes have been

successfully sequenced [4,5,6], and even more are expected in the

near future. These applications provide valuable sequencing data

for individual genomes and make it possible to conduct analysis in
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a sample-centered way, greatly quickening our steps towards

personalized diagnose and medication.

In this work, we aimed to perform a pathway-enrichment test of

a group of putative cancer genes detected in individual patients. In

contrast to most traditional data types, personalized sequencing

data is typically complicated by the following features: (1) the

mutated genes are related to one individual and likely differ across

multiple individuals; (2) the mutated genes occur at an individual-

specific background mutation rate, which could be subject to

personal life-style, the frequency and dosage of exposure to

mutagens, and the particular disease; and (3) the mutated genes

are attributed to gene length under the assumption that mutations

evenly occur across the whole genome. Due to these challenges,

methods that have been well-studied and widely applied in

standard gene set analyses are not directly applicable. For

example, a functional enrichment test is an important way to

explore the biological functions for a list of genes of interest.

Traditionally, the genes of interest are derived through studies of a

group of samples, e.g., differentially expressed (DE) genes derived

from case/control design, and standard statistical tests such as the

hypergeometric test or Fisher’s exact test can be performed to test

if a gene set (e.g., pathway or functional group) is significantly

enriched with DE genes. Notably, a common assumption

underlying these tests is that all the genes (corresponding to the

balls in an urn) have an equal chance of being selected. However,

when applied to NGS data, the mutation unit is genomic DNA,

e.g., SNVs or small insertions/deletions (indels), and they are

assumed to occur evenly across the genome. In contrast, the

analyzing unit of a pathway enrichment test is gene. A bias

frequently observed in the process of relating SNVs or indels to

genes is that long genes tend to harbor more mutations, as they

occupy larger parts of the genome, and thus, long genes tend to

have higher chance to be mutated. Therefore, the standard

hypergeometric test or Fisher’s exact test is no longer applicable to

such data types.

The long gene effect has been recognized in NGS mutation

data. In the recent work of Wendl et al. [7], to estimate the

probability of a pathway being enriched with mutated genes, a

brute force way of computing the exact P values was described,

and a convolution-based approximation strategy was proposed

aiming to reduce the computational burden. The gene length bias

has also been recognized in RNA sequencing data, in which long

transcripts tend to have more reads mapped to them. In the work

by Young et al. [8], the authors proposed to fit a probability

weighting function and quantitatively estimate the probability of a

transcript being selected as DE as a function of its transcript

length. The Gene Ontology (GO) enrichment test is then

performed based on the estimated probability for each tran-

script/gene. Notably, the gene length bias appears in many aspects

of pathway-related analysis, such as pathway crosstalk within each

sample and pathway co-mutation profile across multiple samples

[9]. Appropriate adjustment could warrant the accuracy of these

analyses.

In this study, we proposed a bias-reducing strategy for pathway

enrichment test by taking the background of gene-specific

mutation rates. This strategy, namely the weighted resampling

method, takes into account gene length to estimate the pathway P

values and has proved to be computationally efficient. Under the

weighted resampling framework, personalized pathway crosstalk

could subsequently be explored, revealing the complex interaction

at the pathway level. In addition, we showed that with effective

reduction of gene length bias, a more functionally relevant co-

mutated pathway map could be derived. The work we proposed

here will find wide applications in the near future as more

personalized sequencing data are expected to be available.

Materials and Methods

Datasets
Pathway collection. We collected all the pathways from

KEGG [10] using the R package ‘org.Hs.eg.db’ (version 2.5.0), in

which the KEGG pathways were downloaded as of March 15,

2011. A total of 229 pathways and 5891 genes were involved in

this version. To avoid pathways defined for too specific or too

Figure 1. The flowchart of the pathway enrichment pipeline. For a given sample, suppose there are a total of n genes in the genome, G = {gi;
i = 1,…, n}, and N of them are mutation genes (MutGenes). MutGenes are labeled as 1 while the others are labeled as 0. (a) Hypergeometric test. (b)
Regular resampling. (c) Weighted resampling. (d) The three analysis scenarios we performed.
doi:10.1371/journal.pone.0037595.g001

Pathway Enrichment Map of Cancer Mutation Data
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general biological processes, we selected those with at least 10 and

at most 500 genes, resulting in 213 valid pathways for our

subsequent analysis.

Lung adenocarcinomas data. The lung cancer dataset was

initially reported in Ding et al. [11], in which a total of 188 lung

adenocarcinomas samples were sequenced for 623 genes. In

summary, 163 samples were observed to have mutations in at least

one gene, and 356 genes were observed to have mutation(s) in at

least one sample. To ensure the statistical power, we included only

those samples having at least 10 mutated genes (Figure S1). This

filtering rule resulted in 33 samples with 277 genes involved, and

they were subsequently used as our working dataset. The

background mutation rate was set as 2.761026 for these samples

as indicated in the original work [11].

Glioblastoma data. The glioblastoma data detected 223

genes with at least one non-silent somatic mutation in one or more

samples with experimental validation [3]. A total of 91 samples

were examined, including 72 untreated cases and 19 treated cases.

To ensure statistical power, we required that a sample would be

included for our follow up analysis if it has $5 mutated genes. We

selected this less stringent cutoff here compared to lung samples

due to sample-specific features. As shown in Figure S1, there

would be only a few samples remaining if we applied 10 in the

glioblastoma data. Thus, using 5 as the cutoff value, 18 samples

remained suitable for the following pathway analysis.

As identified in the original work [3], there are 7 hypermutated

glioblastoma samples with a high somatic mutation rate, all of

which belong to treated samples. These samples resulted in an

unequal background mutation rate for treated and untreated

samples. Accordingly, we set the mutation rate to be 3.761026 for

untreated samples and 6.461026 for treated samples (http://tcga-

data.nci.nih.gov/docs/publications/gbm_2008/TCGA_GBM_

Level4_Significant_Genes_by_Mutations_DataFreeze2.xls).

Weighted resampling based pathway enrichment test in
single sample

The underlying assumption of the standard hypergeometric test

in gene set enrichment analysis is that all the genes in the genome

have an equal chance to be selected. This assumption is no longer

valid when the analyzing unit is transferred from mutations to

genes, because longer genes tend to have more chances to harbor

mutations, assuming the mutations evenly occur across the

genome. Thus, the standard hypergeometric test is not applicable

in such cases. To this end, we proposed a weighted resampling

strategy to build the null distribution, and compared the observed

mutated genes in each pathway with the estimated null

distribution.

Let m be the background mutation rate for a cancer sample.

Previous studies have shown that m is on the order of 1026/nt [12]

and varies greatly in different diseases [11,12]. Here, nt denotes

nucleotide. Let l be the gene length and li for the ith gene, and

G = {gi; i = 1,…, n} be the set of all genes for a total of n genes in

the genome. Assuming a genomic locus (e.g., nucleotide position)

in the genome has two statuses, mutated or not, the probability of

the ith gene, gi, not being mutated could be formulated as

exp(2m6li) according to the Bernoulli probability, where exp is the

exponential function. Accordingly, its mutation rate is

mi = 12exp(2m6li). We noted that the estimation of the gene-wise

mutation rate could be more complex than simply replying on

gene length. Here, we specifically adjusted the gene length bias

[7], while a more detailed theorem could be found in literature

[12,13,14,15].

Suppose in an individual genome, a total of N genes were

detected as mutated among G = {gi; i = 1,…, n}, and we denote

them as ‘‘MutGene(s)’’, where MutGenes(G. We assign a label

for each gene to indicate its mutation status: yi~

1,mutated

0,not mutated

�
, i~1,:::,n (Figure 1). Given a pathway S with

k MutGenes, our aim is to provide a statistical test to examine

whether S is significantly enriched with MutGenes. To do so, we

can build a null distribution of the MutGenes by randomizing

gene labels (Figure 1). Normally, unweighted randomization

process assumes every gene has the same chance to be selected

as MutGenes. For example, for the n genes in G, a random

number is generated for each of them, i.e., frig, where ri[½0,1� and

i = 1,…, n. Thus, by ordering genes according to their ri values,

gene symbols are randomized while MutGene label, yi, is fixed

(Figure 1b). Repeating this way of permuting gene labels for many

times (e.g., 10,000), the background distribution of MutGenes for

each pathway can be constructed and the significance of the

pathway can subsequently be estimated. This resamping based

method of estimating pathway enrichment is complementary to

the hypergeometric test, both of which build on the assumption

that all the genes have an equal chance to be selected.

In contrast, we proposed the weighted resampling strategy

which aims to build the null distribution by projecting each

distribution with the same pattern of gene length bias (Figure 1c).

Specifically, in each weighted resampling, frig is generated in the

Figure 2. Pathway enrichment test in the lung adenocarcino-
mas samples. Pathways are represented as rectangles and organized
by samples. For each sample, the sample ID is presented on the left and
the three rows on the right correspond to results from the weighted
resampling method (top row), the regular resampling method (middle
row), and hypergeometric test (bottom row), respectively. For each
method, the pathways were placed from left to right according to their
P values with lower P values on the left, and, when multiple pathways
have the same P values, they were ordered by their KEGG ID. To
visualize the comparison among methods, each pathway was assigned
only one color proportional to its rank in the results from weighted
resampling, with darker red implicating lower P values. Pathways that
are identified by regular resampling or hypergeometric test but not by
the weighted resampling are notated in white. Thus, the color of the
pathway implicates its rank in the weighted resampling method, and
the discordance in the other two rows for a sample shows the different
ranking using the other two methods. Note that two samples with the
largest number of significantly enriched pathways were not presented
in this figure due to space limitations. They are the sample 16668 with
34 significant pathways and the sample 17210 with 22 significant
pathways.
doi:10.1371/journal.pone.0037595.g002
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same way as in the regular resampling method. However, frig is

adjusted for each gene according to the gene-specific mutation

rate, i.e., a new random number, r’i~r
1=mi

i , i~1,:::,n, is generat-

ed, where ri[½0,1� is random numbers and mi is the gene-wise

mutation rate. Genes from G are then ordered according to r’i.
The top N genes in the ordered gene list are then assigned as

MutGenes for the resample. Note that for longer genes with large

values of mi, limmi?1r’i~limmi?1r
1=mi

i ~ri, and for shorter genes

with small values of mi, limmi?1r’i~limmi?0r
1=mi

i ~0. Therefore,

for each resample, long genes are more likely to be selected as

MutGenes, and these random sets will have the same pattern of

gene length as in the real sample. Finally, for each pathway, an

empirical P value is computed using Pemp~PrfK§kg~
# resamplesfK§kgz1

# resamplesz1
, where k is the number of MutGenes in

the observed case and K is the number of ‘‘MutGenes’’ in a

resample.

Pathway crosstalk
We proposed the node-based pathway crosstalk using the Jaccard

coefficient (JC) measurement, which has been widely applied in set-

based analysis [16,17]. Let U indicate the set of genes in pathway

A and V indicate the set of genes in pathway B, the native JC is

computed as follows: JC(A,B)~
U\V

U|V
.

To account for the presence of length bias, we also computed

JC in each weighted resample and computed an empirical

P value for each pair of pathways as follows: P(emp, JC)~
#fJC(p)§JCgz1

# resamplesz1
, where JC(p) is the JC value in the pth

resampling.

Co-mutated pathway map
Pathways that are frequently co-mutated across multiple

samples could implicate coordinated functions at systems level.

To investigate co-mutation events, we first constructed a pathway

mutation profile across related samples. As shown in Figure 1d, for

each pathway, its mutation status is defined by a binary indicator,

i.e., a pathway is indicated as 1 if it is significantly enriched by the

weighted resampling strategy; otherwise, 0. For a pair of pathways

denoted by A and B, four categories were proposed to describe the

combination pattern of their mutation statuses, i.e., (a) both

pathway A and B are significantly enriched, and thus harbor

MutGenes, in the same sample, (b) pathway A was significantly

enriched, but pathway B was not, (c) pathway B was significantly

enriched, but pathway A was not, and (d) neither pathway A nor

Table 1. Summary of the sample information and significant pathways (PBonferroni,0.05) for the lung adenocarcinomas samples.

Sample ID # MutGenes # MutGenes in KEGG
# pathways by
weighted resampling

# pathways by regular
resampling

# pathways by
hypergeometric test

17210 49 32 22 27 28

16668 38 27 34 32 35

16660 36 22 14 20 21

16835 30 18 2 4 4

16686 29 17 4 5 5

16678 28 20 8 11 17

17759 24 12 1 1 2

17290 23 15 5 5 5

16628 22 13 3 4 5

16632 20 16 10 16 19

17218 17 9 1 1 2

16953 16 12 14 16 19

16608 13 7 5 7 7

16734 13 9 1 3 3

16802 13 9 7 10 10

17174 13 12 17 20 20

17262 13 9 10 10 10

17268 12 10 4 8 6

16600 11 7 12 13 12

16724 11 10 2 3 3

17060 11 8 4 8 6

16949 10 6 1 1 1

17042 10 6 4 5 6

17156 10 7 1 1 1

17242 10 7 7 7 8

17763 10 9 8 9 10

MutGenes: mutation genes.
doi:10.1371/journal.pone.0037595.t001
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pathway B was significantly enriched. A 262 contingency table

was subsequently formulated, and Fisher’s exact test was

performed to indicate whether the mutation profiles of the two

pathways were correlated. Of note, unlike the previous studies

which typically counted all pathways that were involved [9], here

we only included the significantly enriched pathways identified by

our weighted resampling method, as the mutation events in other

pathways could be raised by chance.

Results

Case study 1: lung adenocarcinomas
Pathway enrichment test. For the 33 lung adenocarcino-

mas samples applicable for pathway enrichment test, the number

of MutGenes ranged between 10 and 49, and most (24/

33 = 72.72%) were no more than 20 (Figure S1). Using the

weighted resampling strategy, 26 samples were identified to have

at least one significantly enriched pathway (PBonferroni,0.05). As

shown in Figure 2, the number of significant pathways varied

greatly among samples. The largest number of significant

pathways were observed in the sample 16668, with 34 pathways

significantly enriched among 38 MutGenes (Table 1), followed by

the sample 17210, with 22 significant pathways among 49

MutGenes (data not shown in Figure 2 due to space limitation).

Three samples (samples 17174, 16953 and 16660) in the following

have 17, 14 and 14 significant pathways, each of which has 13, 16

and 36 MutGenes respectively (Figure 2). Conversely, there are

five samples that have only one significant pathways based on the

weighted resampling method, while their MutGenes range

between 10 and 30, indicating that the number of MutGenes

has less influence on the number of significantly enriched

pathways in each sample.

The most frequently mutated pathways that occurred in more

than 10 samples are hsa05220: chronic myeloid leukemia (13/26

samples), hsa05212: pancreatic cancer (12/26 samples), hsa05214:

glioma (12/26 samples), hsa05213: endometrial cancer (11/26

samples), hsa05218: melanoma (11/26 samples), and hsa05223:

non-small cell lung cancer (11/26 samples). The other lung cancer

related pathway, hsa05222: small cell lung cancer, occurred in 3

samples. Table S1 listed the MutGenes that are contributable to

the enrichment of these pathways in each of the corresponding

samples.

Comparison of pathway enrichment methods. As a

comparison, we also implemented the standard hypergeometric

test and the regular resampling strategy, both of which build on

the assumption that all genes have an equal chance of harboring

Figure 3. Pathway enrichment map for the lung adenocarcinomas samples. For each sample, the top panel shows the pathway crosstalk
map, and the bottom panel shows the genes contributing to the crosstalk. In the top panel, each node represents a pathway with the node color
proportional to the pathway enrichment P value. The edge represents crosstalk event between the connected nodes (pathways), with edge width
proportional to shared MutGenes and edge color proportional to the P value of the crosstalk event. In the bottom panel, a matrix shows the profile of
genes in the significant pathways, with rows for MutGenes and columns for pathways. When a MutGene is observed in a pathway, the corresponding
box is in red.
doi:10.1371/journal.pone.0037595.g003
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mutations. For the hypergeometric test, the P values for each

pathway were adjusted by Bonferroni multiple testing correction.

For the regular resampling method, the empirical P value for each

pathway was also adjusted by Bonferroni correction. In all three

methods, significant pathways were selected as those with

PBonferroni,0.05.

We compared the results of the different methods in two ways:

the overlapped pathways and the rank of the overlapped

pathways. As shown in Figure 2 and Figure S3, approximately

two thirds (17 out of 26) of lung adenocarcinomas samples with $1

significant pathways have more overlap pathways between the

regular resampling method and hypergeometric test than those

between regular and weighted resampling methods or those

between hypergeometric test and weighted resampling method. In

most samples, the pathways identified by the weighted resampling

strategy are less than those of regular resampling and standard

hypergeometric test (Table 1, Figure S3). Next, we examined the

rank of the results using these methods and found that the two

resampling based methods showed similar ranking for pathways,

while the ranking order of pathways gleaned from the hypergeo-

metric test differs from the other two methods. This is shown by

the inconsistency of colors in Figure 2.

Given the difference of the overlap and the rank, we observed

that the dissimilarity typically occurred at the end of the pathway

list, while the three methods differ only slightly among the most

significant pathways. This result indicates that the weighted

resampling strategy mainly affects marginally significant pathways,

while the pathways with strong evidence of enrichment signals

were robust to the gene length bias. This is consistent with a

previous work by Wendl et al. [7], who also found that most

pathways identified by the standard hypergeometric test did not

substantially depart from those identified through unbiased

methods, especially for those ranked at the top of the lists.

However, the pathways at the bottom of the enrichment lists tend

to be false positives, and could only be distinguished when

explicitly adjusting the potential biases.

The pathways that are most frequently identified by hypergeo-

metric test but not by weighted resampling include hsa04360:

axon guidance (6/26 samples) and hsa05216: thyroid cancer (5/26

samples), followed by hsa04010: MAPK signaling pathway and

hsa04012: ErbB signaling pathway in 4 samples, and all the others

in less than 4 samples. It is not surprising to see the axon guidance

pathway, because it has a large proportion of long genes, and the

median gene length of this pathway falls into the upper region of

the whole distribution (Figure S2). Similarly, the pathways that are

most frequently identified by standard resampling but not by

weighted resampling include hsa04360: axon guidance in 5

samples, hsa04010: MAPK signaling pathway in 4 samples,

hsa04012: ErbB signaling pathway in 4 samples, and others in less

than 4 samples.

Pathway crosstalk. A total of 18 samples were observed to

have at least 2 pathway crosstalk events (Pemp,0.05). We

performed multiple testing correction but found no event had

PBonferroni,0.05. Thus, we selected crosstalk events based on their

nominal P values, i.e., those with Pemp,0.05. As shown in Figure 3,

the crosstalk maps of these 18 samples fell into two major groups:

one group with intensive and strong edges among the significant

pathways (Figure 3a–3f, 3h, and 3l–3o) and another with sparsely

connected networks. Most of the samples in the former group

formed cliques or close-to-clique topological units. Here a clique

means a fully connected graph in which any two nodes are

connected by an undirected edge. In addition, the nominal P

values of these crosstalk events based on the weighted resampling,

as indicated by the darkness of the edges, are typically lower than

the later group. The pathways that are frequently involved in this

group are mainly related to cancer, such as those with their

KEGG ID starting with hsa052XX (X denotes any digit)

belonging to the ‘‘human diseasesRcancers’’ category in KEGG

Figure 4. Co-mutation pathway map for the lung adenocarcinomas samples. Node represents pathways that have been identified as
significant in at least one sample. An edge between pathways indicates a significant co-mutation event, with edge width proportional to the number
of occurring samples of the co-mutation event, and edge color representing the P values of the event. Darker edge indicates lower P values.
doi:10.1371/journal.pone.0037595.g004
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map [10]. This outcome is not surprising, because in the original

definition of pathways in the KEGG database, these cancer

pathways share a large proportion of component genes. Further

examination of the mutated genes showed that clique-based

crosstalk was typically driven by several ‘‘hot’’ MutGenes that

participate in multiple cancer-related pathways. For example, the

genes TP53 and KRAS co-occur in 11 clique-based crosstalk maps

(Figure 3a–3c, 3e, 3f, 3h, 3l–3o), as do other genes such as RB1,

PIK3CD, and PDGFRA.

Five samples formed a sparsely connected crosstalk map

(Figure 3g, 3i, 3j, 3k, and 3p). Although cancer-related pathways

are still the major functional participants in this type of map, there

are additional pathways involved, such as hsa04210: apoptosis and

hsa04620: toll-like receptor signaling pathway. Investigation of the

MutGenes in this type did not show a strong trend toward any

gene(s) substantially contributing to the crosstalk events as

observed in the clique-group. Finally, two samples displayed the

rarest crosstalk events (Figure 3q and 3r), both of which are

dominated by the genes APC and TP53.

Pathway co-mutation profile. To explore the co-mutation

events that occur among pathways, we started with a list of

significantly enriched pathways for each sample (see above). To

ensure high quality, pathways that harbored MutGenes but were

not significant in a sample were not included for this sample in the

co-mutation analysis. As a result, a total of 49 pathways and 26

samples were involved.

We selected pathways that were co-mutated in 2 or more

samples, and had a co-occurrence P value that was nominally

significant. As shown in Figure 4, two groups were self-clustered,

one of which contains several cancer-related pathways, and the

other contains several immune-related pathways. In the cancer-

related cluster, we observed hsa05214: glioma, hsa05218: mela-

noma, hsa05219: bladder cancer, hsa05220: chronic myeloid

leukemia, and hsa05212: pancreatic cancer. Interestingly, we

observed several immune-related pathways in the other cluster,

such as hsa04650: natural killer cell mediated cytotoxicity,

hsa04660: T cell receptor signaling pathway, hsa04662: B cell

receptor signaling pathway, and hsa04210: apoptosis.

Case study 2: glioblastoma
For the glioblastoma MutGenes, there were a total of 18

samples eligible for the pathway enrichment test (Figure S1), each

of which was required to have at least 5 MutGenes. Applying all

three methods, i.e., weighted resampling, regular resampling, and

the hypergeometric test, we found 15 samples were enriched with

at least one pathway by the weighted resampling methods, and

these samples were used for the subsequent analysis.

As shown in Figure 5, the similar trend of pathway overlap and

ranking order has been observed in GBM samples as in the lung

adenocarcinomas samples. The ranking order between the two

resampling methods are closer to each other, and in all the 15

GBM samples the overlapped pathways are found more frequently

in the regular resampling method and hypergeometric test than in

the weighted resampling results (Figure S4). The most frequently

enriched pathways are hsa05200: pathways in cancer (11/15

samples), followed by hsa05214: glioma (9/15 samples), hsa05218:

melanoma (9/15 samples), and so on (Figure 5).

A total of 8 samples were observed to have at least two pathway

crosstalk events (Figure 6). Similarly, most of them formed a

clique-based topological unit with intensive connections contrib-

uted by several ‘‘hot’’ MutGenes such as TP53, EGFR, RB1,

PIK3R1, and PTEN [3,18].

Co-mutated pathways in GBM samples are not as prevalent as

in lung cancer samples. As shown in Figure 7, there are only five

co-mutated events that were observed to be significant (nominal P

value,0.05, represented by the five edges in Figure 7), involving 5

pathways (represented by the five nodes in Figure 7). They are the

pathways of hsa05214: glioma, hsa05218: melanoma, hsa05215:

prostate cancer, hsa05219: bladder cancer, and hsa05222: small

cell lung cancer. The most frequent co-mutation event was

between the pathway of glioma (hsa05214) and prostate cancer

(hsa05215), and the pathway of melanoma (hsa05218) and

prostate cancer (hsa05215), both of which occurred in 7 samples.

Discussion

We proposed a bias-reducing strategy in the pathway enrich-

ment test for sample-centered cancer mutations primarily identi-

fied from NGS data. By taking the background mutation rate

individually, our method performs weighted resampling for

pathway enrichment analysis in a sample-specific fashion. Based

on this, advanced pathway analyses such as pathway crosstalk as

well as pathway co-mutation events could be examined robustly

after adjusting the sample-specific mutation rate. Note that our

analyses are computationally oriented and with no experimental

validation yet. Thus, caution should be taken in interpretation of

the results. Although these results are statistically sound, validation

in the future work, either by experiments or by other computa-

tional approaches, would affirm our findings of driver pathways.

Figure 5. Pathway enrichment test in the glioblastoma
samples. Pathways are represented as rectangles and organized by
samples. For each sample, the sample ID is presented on the left and
the three rows on the right correspond to results from the weighted
resampling method (top row), the regular resampling method (middle
row), and hypergeometric test (bottom row), respectively. For each
method, the pathways were placed from left to right according to their
P values with lower P values on the left, and, when multiple pathways
have the same P values, they were ordered by their KEGG ID. To
visualize the comparison among methods, each pathway was assigned
only one color proportional to its rank in the results from weighted
resampling, with darker red implicating lower P values. Pathways that
are identified by regular resampling or hypergeometric test but not by
the weighted resampling are notated in white. Thus, the color of the
pathway implicates its rank in the weighted resampling method, and
the discordance in the other two rows for a sample shows the different
ranking using the other two methods.
doi:10.1371/journal.pone.0037595.g005
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As has been well-studied in previous research, the cancer

genome harbors both ‘‘driver’’ mutations, which contribute to the

malignancy of cancers, and ‘‘passenger’’ mutations, which have no

obvious relationship with the cancerous cells. Many of the

passenger mutations are likely by-product events rather than

causal factors of the abnormality of the cancer genome, and they

could occur randomly in the genome. Due to the limitation of our

current knowledge, it is still hard to confidently distinguish driver

mutations from passenger mutations, and almost all the current

pathway-level analyses use the two types of mutations together. In

such a context, it is necessary to adjust potential biases when

handling the data to avoid false positive discoveries.

In this study, considering the sample and disease specific

mutation characters, we used different cutoff values when selecting

lung samples and GBM samples for pathway analysis. Preferably,

a cutoff value around 10 to 20 would statistically be more

appropriate to ensure the eligibility of the test [19]. In cancer

genomes, the mutation rate and mutation patterns differ greatly

among various types of cancer, resulting in a great variety of the

number of mutation genes among cancer samples. For example,

Figure 6. Pathway enrichment map for the glioblastoma samples. For each sample, the top panel shows the pathway crosstalk map, and the
bottom panel shows the genes contributing to the crosstalk. In the top panel, each node represents a pathway with the node color proportional to
the pathway enrichment P value. The edge represents crosstalk event between the connected nodes (pathways), with edge width proportional to
shared MutGenes and edge color proportional to the P value of the crosstalk event. In the bottom panel, a matrix shows the profile of genes in the
significant pathways, with rows for MutGenes and columns for pathways. When a MutGene is observed in a pathway, the corresponding box is in red.
doi:10.1371/journal.pone.0037595.g006
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previous studies reported that lung cancer patients typically harbor

more mutation genes compared to other types of cancer [20,21].

In our work, we found a higher cutoff value such as 10 worked

reasonably for lung samples, resulting in a selection of an

appropriate number of samples for eligible pathway analysis.

However, if the same cutoff value (i.e., 10) was applied to GBM

samples, it would have only 7 samples after filtering, all of which

belong to the treated group, for follow up pathway analysis. As

shown in the original work [3], the treated group generally

contains more mutations than the untreated group. To make the

analysis informative, we subsequently decreased the cutoff value to

5 in GBM sample analysis. This adjustment ensured us to include

enough samples from the untreated group.

Our weighted resampling method depends on the gene-wise

mutation rate, which relies on two factors, the sample-specific

background mutation rate m and the particular gene length l.

Inclusion of m ensures that when comparing different individual

samples, and even different diseases, the analysis can be built on

the same scale. Thus for cross-sample analysis, such as the

pathway co-mutation map, the sample-specific rate m is particu-

larly important. However, for a given sample in which m is fixed,

the gene-wise mutation rate will mainly behave as a function of

gene length. Our weighted resampling method explicitly incorpo-

rates gene-wise mutation rate in order to build the gene-length

matched null distribution for each pathway. Thus, the empirical P

values obtained in this way can overcome the length bias and

provide more accurate statistic evaluation of the enrichment

signals.

The estimation of the background mutation rate in most studies

adopted the formula m = rNS = rS6R, where rNS is the nonsynon-

ymous (NS) mutation rate, rS is the synonymous (S) mutation rate,

and R is the ratio of NS to S substitutions [11,12,13,15]. rS can be

directly computed by rS = {#synonymous}/{#sequenced base

pairs}, and R can be estimated through a random mutation model

that takes into consideration nucleotide composition in the coding

regions [22,23]. In our study, we used the somatic mutation data

for lung and GBM samples which were initially detected through

targeted sequencing in pre-selected genes. Although in each study,

hundreds of genes were sequenced, they still did not reach the

genome-wide scale and the number of NS/S mutations was

limited in each sample. The original studies for these two datasets

estimated the mutation rate by collapsing all samples [11], or by

sub-groups of samples [3], rather than computing individual level

mutation rate. In future studies, since mutation data from whole

genome sequencing and whole exome sequencing will be easily

obtained for individuals [24], our method will find more

applications by using these data for mutation background

estimation.

As shown in the lung cancer sample, there were indeed several

pathways with long genes filtered out by the weighted resampling

strategy, while they were included in both regular resampling and

the hypergeometric test. However, the difference among the three

methods we tested seems to only affect marginally significant

pathways, i.e., pathways that are ranked at the end of the resultant

pathway list by each method (Figure 2). This is not surprising, as

the length bias may not be substantially significant in all samples,

and the sequenced genes we used in this study are limited to pre-

defined candidate genes rather than genome-wide sequencing. For

example, the lung cancer data was collected from a total of 623

candidate genes consisting of oncogenes, tumor suppressor genes,

genes from protein kinase families, and others [11], and the

glioblastoma data was from sequencing of 601 pre-selected genes

[3]. Nevertheless, in both cases, there are pathways that were

identified as significant through standard statistical tests (e.g.,

hypergeometric test or the regular resampling method) but were

found to be non-significant by the weighted resampling strategy

after considering gene length bias. Importantly, most of these

error-prone pathways contain long MutGenes. An example is the

pathway of axon guidance (hsa04360) in 6 lung cancer samples.

The rejection of these long gene pathways by the weighted

resampling method shows the rationality of reducing length bias.

It is important to recognize the long gene effect, and the

possibility of false discovery using methods without length bias

adjustment. For example, Gu et al. [9] analyzed the co-mutation

profile of pathways in the same lung adenocarcinomas data as we

used here. However, without appropriate adjustment of gene

length, several pathways that are known to harbor long genes were

included in their co-mutated pathway network, such as axon

guidance, long-term potentiation, and long-term depression [9].

These pathways function in neuro- and brain-systems, but there is

rare evidence showing their functions related to cancer. We

provided an updated co-mutation profile using the significant

pathways resulting from the weighted resampling strategy,

effectively removing these possible false discoveries.

The gene length problem not only exists in mutation data, but

many other types of data where there is a necessary step to map an

original analysis unit (e.g., mutated locus, SNP, CNV, methylation

locus) to the unit of gene (i.e., the unit for pathway organization).

For example, in pathway enrichment analyses of genome-wide

association studies, in which millions of single nucleotide

polymorphisms (SNPs) are genotyped using microarray chips,

the step of mapping SNPs to genes could generate more SNPs for

Figure 7. Co-mutation pathway map for the glioblastoma
samples. Node represents pathways that have been identified as
significant in at least one sample. An edge between pathways indicates
a significant co-mutation event, with edge width proportional to the
number of occurring samples of the co-mutation event, and edge color
representing the P values of the event. Darker edge indicates lower P
values.
doi:10.1371/journal.pone.0037595.g007

Pathway Enrichment Map of Cancer Mutation Data

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e37595



long genes and, thus, long genes would have a higher probability

to be significant. Another example is CNV data, where there is a

similar problem in that long genes tend to be more frequently

affected by CNV regions [25] and require careful adjustment

before any conclusion is made. Thus, the weighted resampling

strategy we proposed in this study for cancer mutation data could

be easily extended to other types of genetic mutations and widely

applied to different kinds of diseases.

In summary, we proposed a weighted resampling strategy to

adjust gene length bias in pathway enrichment analysis of a set of

cancer genes. This strategy incorporates gene mutation rates and is

implemented in a sample-specific way, thus enabling the

identification of a personalized pathway enrichment map.

Demonstrated in two cancer projects, the weighted resampling

strategy could effectively reduce the burden of long gene pathways

and provide a complementary method in the field.

Supporting Information

Figure S1 Distribution of the number of mutation genes
in the lung adenocarcinomas dataset (a) and in the
glioblastoma dataset (b). The horizontal dash lines indicate

the cutoff values we applied to select samples with appropriate

number of mutation genes for pathway analysis. The vertical dash

lines indicate that the samples on the right of the lines were

selected.

(PDF)

Figure S2 Distribution of the gene length for KEGG
pathways. We used the median values of the gene lengths for

each pathway. The red line indicates the pathway hsa04360: axon

guidance.

(PDF)

Figure S3 Venn diagrams showing the overlap path-
ways identified in each lung adenocarcinomas sample
by three methods: hypergeometric test (hyper), regular
resampling (regular), and weighted resampling (weight-
ed).

(PNG)

Figure S4 Venn diagrams showing the overlap path-
ways identified in each glioblastoma sample by three
methods: hypergeometric test (hyper), regular resam-
pling (regular), and weighted resampling (weighted).

(PNG)

Table S1 The most frequently mutated pathways (.10 samples)

in lung adenocarcinomas data.

(DOCX)
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