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Abstract: Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising
potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of
iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to
osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint
disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling
and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-
related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived
disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their
broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct
3D models in recapitulating various conditions, particularly the OA environment, were further
discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more
widely used for OA disease modeling and 3D model construction, which could further expand OA
drug screening, risk assessment, and therapeutic capabilities.

Keywords: osteoarthritis; induced pluripotent stem cell; disease modeling

1. Introduction

Pluripotent stem cells (PSCs) have promising potential in regenerative medicine
because of their ability to undergo unlimited self-renewal and differentiate into any adult
cell type (Figure 1) [1,2]. Four types of PSCs have been extracted from various bodily
locations so far [1]. The most well-known type is the human embryonic stem cells (hESCs),
which were first derived from human blastocysts by Thomson et al. in 1998 [3,4]. However,
there are many ethical and political controversies surrounding hESCs that have hindered
their research and use [5]. Regarding the application of hESCs, arguments regarding when
human life exactly begins and what constitutes an ethical abortion have attracted political
views [5,6]. Thus, the volatility associated with the research and use of hESCs has pushed
for the search for alternate sources of PSCs. The other types of PSCs have their respective
limitations [7]. Nuclear transfer stem cells (NTSCs) have only recently been generated from
primates in 2007 and from humans in 2013 [8,9]. Furthermore, adult stem cells often involve
complicated extraction procedures and have questionable clinical utility [7,10,11]. Hence,
induced PSCs (iPSCs) have emerged as the most practical candidate for stem cell therapy.
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Figure 1. The differentiation potential of pluripotent stem cells, specifically iPSCs. Once the somatic 
cells are reprogrammed into iPSCs, they can be differentiated into any type of adult cell in the hu-
man body, as shown above. These iPSCs can then be used for different clinical purposes. 

2. Induced Pluripotent Stem Cells (iPSCs) and Their Advantages 
In 2006, iPSCs were first generated from murine embryonic and adult fibroblasts via 

the delivery of four transcription factors: OCT3/4, Sox2, KLF4, and c-MYC. They are also 
known as OSKM factors (Figure 2) [12]. Together, these four transcription factors repro-
grammed the somatic cells to re-acquire pluripotency [13]. Using the same OSKM factors, 
iPSC generation was successfully replicated in adult human fibroblasts a year later [14]. 
As iPSCs can overcome the limitations of previous types of PSCs with additional benefits, 
they are expected to play a more diverse role in regenerative medicine. 

 
Figure 2. Key steps in generating iPSCs from the human samples. iPSCs can be formed by transduc-
ing OSKM factors into somatic cells derived from various locations. Notably, urine, blood, and skin 
are the most common samples used to collect somatic cells. 

For joint-related disease modeling and 3D model construction, patient-specific iPSCs 
surpass the limitations presented by animal models (interspecies differences, i.e., etiology) 
and chondrocyte culture (more complicated harvesting procedures, less realistic model, 

Figure 1. The differentiation potential of pluripotent stem cells, specifically iPSCs. Once the somatic
cells are reprogrammed into iPSCs, they can be differentiated into any type of adult cell in the human
body, as shown above. These iPSCs can then be used for different clinical purposes.

2. Induced Pluripotent Stem Cells (iPSCs) and Their Advantages

In 2006, iPSCs were first generated from murine embryonic and adult fibroblasts
via the delivery of four transcription factors: OCT3/4, Sox2, KLF4, and c-MYC. They are
also known as OSKM factors (Figure 2) [12]. Together, these four transcription factors
reprogrammed the somatic cells to re-acquire pluripotency [13]. Using the same OSKM
factors, iPSC generation was successfully replicated in adult human fibroblasts a year
later [14]. As iPSCs can overcome the limitations of previous types of PSCs with additional
benefits, they are expected to play a more diverse role in regenerative medicine.
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Figure 2. Key steps in generating iPSCs from the human samples. iPSCs can be formed by transducing
OSKM factors into somatic cells derived from various locations. Notably, urine, blood, and skin are
the most common samples used to collect somatic cells.

For joint-related disease modeling and 3D model construction, patient-specific iPSCs
surpass the limitations presented by animal models (interspecies differences, i.e., etiology)
and chondrocyte culture (more complicated harvesting procedures, less realistic model,
rapid dedifferentiation in vitro) [15,16]. Regarding the clinical applications of stem cells,
iPSCs can be generated from several different somatic cells to avoid any complicated
harvest procedures and minimize ethical conflicts in contrast to ESCs and adult stem
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cells. The most common somatic cells used to generate iPSCs are obtained from blood,
skin, and urine (Figure 2) [7,15]. All the iPSCs generated from different somatic cells
have shown similar expression of pluripotent markers, despite some variations in their
potential beyond pluripotency [17]. Although more studies are required to determine
the relationship between iPSC characteristics and different harvest sites, the stability and
reliability of iPSCs were certainly assured in recent years [17]. Moreover, the ease of
isolating iPSCs from various sites has made autologous transplantation possible in almost
all cases, further reducing the risk of transplantation rejection commonly seen in non-
autologous transplantations [7,18].

Challenges in iPSCs

Despite the numerous advantages of iPSCs mentioned above, a major limitation that
prevents their use is their tumorigenic potential [19–21]. Many studies and reviews have
raised concerns regarding the development of teratomas at various body sites after iPSC
administration [21–24]. Various approaches were undertaken to suppress the tumorigenic
potential of iPSCs and eliminate any safety concerns. For instance, Wernig et al. repro-
grammed iPSCs in the absence of c-MYC, which is the most oncogenic OSKM factor [19,25].
Chemical treatments via quercetin/YM155 inducing the apoptosis of undifferentiated
iPSCs have also emerged as an alternative solution [26,27]. Furthermore, some studies
have used immunotherapy to target the tight-junction protein Claudi-6 or SSEA-5 glycan
and eliminate any undifferentiated iPSCs [28–30]. Nevertheless, more research is required
to effectively suppress the tumorigenic potential of iPSCs so that they can be used on a
larger scale.

There were also some concerns regarding the vast collection of confidential personal
information, possible use of genetically modified cells, and informed consent by donors [5,
31]. The use of iPSC technology certainly calls for exercising more caution because this
technology holds vast amounts of private information (such as DNA) with unknown
potentials and risks [31]. Hence, regulations and guidelines for iPSC studies must be
developed to closely monitor clinical trials involving iPSCs [32].

3. Osteoarthritis

Osteoarthritis (OA) is a degenerative joint disease whose incidence rate is expected to
increase exponentially in the next decade [10,33,34]. OA is primarily characterized by joint
narrowing, cartilage degradation, and synovial membrane inflammation (Figure 3) [35–37].
With the gradual worsening of these symptoms, joint function and movement are heavily
restricted to a point where total joint replacement is required [35]. Although intra-articular
(IA) injections and non-steroidal anti-inflammatory drugs (NSAIDs) have been explored for
OA treatment, they face many limitations such as the short duration of action and minimal
pain relief [37]. Furthermore, the complex nature of OA imposes limitations on drug
availability, as they can only target specific aspects of OA, such as the inflammatory path-
ways, pain management, or redox signal pathways [38]. Consequently, high-risk, invasive
surgical procedures are the only effective treatment for preventing OA progression [37,38].
Thus, many ongoing clinical trials are testing the safety and efficacy of various prospective
OA treatments [38]. Most notably, regenerative stem cell therapies and metabolic syndrome
therapies are valuable candidates that could potentially prevent or arrest OA progression
without surgery [38].

OA is classified into two groups based on its etiology: primary (idiopathic and
gene-dependent) or secondary (post-traumatic) [39]. However, the two groups of OA
are similar in terms of disease progression; both are characterized by joint degeneration
and inflammatory reactions [39–41]. OA prognosis is affected by various conditions,
including genetic factors, age, sex, and ethnicity [10,39]. In a 2014 Research Arthritis
and Articular Cartilage (RAAK) study, the genome-wide gene expression of 33 matched
OA-affected and preserved cartilage sample pairs was analyzed [40]. Of the 19 genes
that were expressed differently with fold-changes of 2 or more, the expression of immune
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response genes such as CRLF1 and PTGES was upregulated, whereas that of cartilage
development genes such as COL9A1 and CHRDL2 was downregulated [40]. More recently,
Tachmazidou et al. and Boer et al. have identified additional novel OA-associated signals,
such as Fibrillin 2 signal and the FGF-signaling cascade (FGFR3, FGF18, PIK3R1) in their
respective genome-wide analysis [42,43]. Other risk factors for OA include obesity, physical
injuries, and inflammation [10,44]. For instance, a 2016 study by Reyes et al. found a
positive correlation between obesity and OA risk [45]. They concluded that individuals
with grade II obesity were 4.7 times more likely to suffer from knee OA compared to
individuals with a normal weight [45]. This is because the reactive oxygen species (ROS)
production by OA chondrocytes stems from the mechanical overload of the joints, which
further amplifies cartilage degradation [10,46]. Therefore, OA is often developed in weight-
bearing joints and is mostly observed in the decreasing order of the knee, hip, and hand [33].
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4. iPSC Disease Modeling

Disease modeling has greatly expanded our knowledge of pathology by recapitulating
the pathophysiology and etiology of various human diseases [47,48]. For decades, animals
have served as the most common experimental models of disease before human trials
are performed [47]. Nevertheless, the limitations due to interspecies differences have led
to high rates of translation failure between human and animal models [47,49]. Hence,
constructing a disease model using human iPSCs (hiPSCs) became lucrative in 2008 when
Park et al. were able to generate disease-specific iPSCs from patients diagnosed with
genetic diseases (Parkinson’s disease, Huntington’s disease, Gaucher disease type III,
etc.) [47,48,50,51]. By establishing a personalized disease model using the somatic cells
from each patient, iPSC modeling can precisely detect any adverse side effects of potential
treatments and provide a better understanding of disease phenotypes [47,50,51].

Recent advancements have considerably improved the efficacy and applicability of
iPSC disease modeling. Most notably, Volpato and Webber have suggested new strategies
to reduce any genetic variations by obtaining homogeneous cellular composition and
establishing controls using stem cell banks [52]. Furthermore, advancements in three-
dimensional organoids, microfluidic organ chips, and bioprinting (which will be dis-
cussed later) have opened new doors for iPSC disease modeling beyond the previous
two-dimensional co-culturing [50].
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iPSC Disease Modeling in Various Fields

Disease modeling using iPSCs has already been used to model various neurological,
cardiological, and hepatological disorders. As the earliest hESC differentiation protocols
were used to generate neurons, iPSC disease models were also initially created from
patients with neurological diseases [53]. Most notably, iPSC disease modeling has helped
in understanding the pathogenesis of Alzheimer’s disease (AD) [53,54]. By constructing an
iPSC-derived neuronal model, Israel et al. identified the relationship between proteolytic
processing of amyloid-β precursor protein (APP) and phosphorylated-tau that causes
neurofibrillary tangles [54–56]. Moreover, Wang et al. provided evidence regarding the
role of apolipoprotein E4 (apoE4) in AD pathogenesis by tau phosphorylation, increased
amyloid-β production, and degeneration of GABAergic neurons [57]. These discoveries
and results were able to be made via hiPSC disease modeling, as apoE4 increases amyloid-
beta production only in human neurons and not in those of mice, further demonstrating
the benefits of iPSC disease modeling [57].

The mouse heart rate is 10 times faster than the human heart rate with key electrophys-
iological differences. Therefore, mouse models can be imprecise when studying human
myocardial disorders [54]. In contrast, iPSC models can recapitulate cardiovascular diseases
via cardiomyocyte differentiation [15,53,54]. In 2019, Zhou et al. constructed a patient-
specific iPSC-derived cardiomyocyte (iPSC-CM) model of the MYL2-R58Q mutation, which
is involved in severe cardiac hypertrophy [58,59]. Upon assessing the iPSC-CM model,
common hypertrophic cardiomyopathy (HCM) phenotypes such as hypertrophy, myofib-
rillar disarray, and irregular beatings were observed, providing an optimistic outlook for
understanding the pathology behind cardiovascular diseases [59].

Disease modeling of human hepatocytes is largely restricted because it requires
invasive harvesting procedures and hepatocytes rapidly lose their metabolic activity
in vitro [60]. However, iPSC disease modeling was able to overcome these limitations
and provide a deeper understanding of hepatological diseases [54,60,61]. Numerous at-
tempts have been made to develop an iPSC disease model of familial hypercholesterolemia
(FH) [60–62]. The iPSC-derived FH model was confirmed to recapitulate key phenotypes
such as deficiencies in low-density lipoprotein (LDL) uptake and the increased secretion of
lipidated apoB-100 [62,63]. With relative success from FH iPSC modeling, cell lines with
variants of FH are also being generated to cover a wide range of diseases [64].

5. iPSC Disease Modeling in Arthritic Diseases

Arthritic diseases were previously studied in animal models such as mice, guinea
pigs, rabbits, and dogs [65,66]. However, there are several key limitations of studying
arthritis in animal models [65–69]. As mentioned above, the distinct genetic composition
of animal models presents various challenges regarding pathological characteristics that
translate to human models [70,71]. Furthermore, the differences in the mechanical and
clinical features, such as cartilage metabolism and antibody production, widens the gap
between interspecies models for studying arthritic diseases [71–74].

iPSC-derived disease modeling for arthritic diseases avoids these complications and
has proven to be an optimistic option for further exploration. To date, only a limited number
of studies have been published on this topic. Kim et al. in 2018 differentiated hepatocytes
from iPSCs of patients with rheumatoid arthritis (RA) [75]. These hepatocytes in 3D culture
were then used to examine the effects of methotrexate (MTX)-induced hepatotoxicity that
could be used for developing safe treatments in the future. Upon successful attempts by
Kim et al., iPSC disease modeling for arthritic diseases has demonstrated its promising
potential for future studies.

6. Generating iPSCs from Patients with OA

The ability to generate iPSCs from the somatic cells of OA patients was confirmed by
multiple studies. In 2011, Kim et al. transduced the passage-4 synovial cells of two patients
with OA using retroviruses, wherein GP2-293 cells were transfected with pMXs-Oct-4,
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Sox2, Klf4, and c-Myc (1:1:1:1 ratio) [76]. Similarly, Lee et al. successfully generated iPSCs
from fibroblast-like synoviocytes of patients with OA [77]. Here, the synovial cells of
two patients with OA were transduced with the OSKM factors via lentivirus infection.
The OA iPSCs showed positive immunostaining for Nanog, Oct4, Sox2, Tra-1-80, Tra-1-60,
and SSEA-4, whereas an increase in mRNA markers for Nanog, Oct4, Sox2, Klf4, and Rex
were observed by RT-PCR. These two studies proved that iPSC colonies can be generated
from the somatic cells of patients with OA and successfully laid the foundation for further
research on disease modeling.

Furthermore, in 2020, Castro-Viñuelas et al. discovered that iPSC models are capable
of accounting for OA-related genetic variants [78]. His team generated iPSC lines from
the dermal fibroblasts of two patients with OA. At the 4th passage, the cells were repro-
grammed using non-integrative Sendai RNA viruses carrying OSKM factors at 0.2–0.95%
reprogramming efficiency. Notably, the presence of single nucleotide polymorphisms
(SNPs) in GDF5, SMAD3, ALDH1A2, and IL-1-R1 was consistent with that in the respective
parental dermal fibroblasts. Thus, the different alleles were retained after reprogramming
the sample from each patient, confirming patient-specific iPSC lines. This finding uncovers
the vast potential of iPSC reprogramming in OA disease modeling, specifically through its
ability to account for genetic variants and their respective effects on pathogenic processes.
Moreover, it opens new opportunities for constructing precise, patient-specific OA disease
models. In the next two Sections 6.1 and 6.2, the recent studies that have utilized iPSC to
model OA and early-onset OA will be discussed in detail and summarized in Table 1.

Table 1. Summary of disease modeling in OA and early-onset OA.

Year Reference OA Type
iPSC Source and
Reprogramming

Procedure

OA Disease Model
Generation Procedure Study Objective and Results

2014s Saitta et al. [79] Early-onset OA
(skeletal dysplasia)

Human neonatal skin
fibroblasts from a patient

with lethal metatropic
dysplasia were

nucleofected using
nucleofector II and

non-integrating episomal
plasmid expression

vectors with
OSKM factors.

Heterozygous mutation
of TRPV4 confirmed in

iPSC clones.

Objective: To assess the
characteristics of iPSC model

with a mutation in TRPV4
(causing skeletal dysplasia).
Results: The micromasses of

TRPV4-iPSCs grown in
chondrogenic differentiation

conditions had lower
expression of cartilage growth
plate markers (COL2A1 (IIA

and IIB), Sox9, Aggrecan,
COL10A1, and RUNX2), lower
GAG expression, and higher

expression of osteogenic
differentiation marker
COL1A1. This study

successfully recapitulated
skeletal dysplasia.

2014 Willard et al. [80] Primary OA

Tail fibroblasts from adult
C57BL/6 mice were

transduced using single
doxycycline-inducible

lentiviral vector
expressing mouse cDNA

for OSKM factors.

The iPSC-derived
cartilage model was

treated with IL-1α in a
serum-free chondrogenic

medium for 3 days.

Objective: To construct
iPSC-derived cartilage for an

in vitro OA model.
Results: IL-1α-treated

cartilage models showed OA
characteristics (increase in

inflammatory and catabolic
genes, decrease in tissue

elastic modulus, and loss of
GAG). The five therapeutic

agents (IL-4,
Metalloproteinase 3, NS398,

SC514, and GM6001)
improved OA conditions.
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Table 1. Cont.

Year Reference OA Type
iPSC Source and
Reprogramming

Procedure

OA Disease Model
Generation Procedure Study Objective and Results

2014 Yamashita et al.
[81]

Early-onset OA
(skeletal dysplasia)

Human dermal
fibroblasts from patients

with thanatophoric
dysplasia type I (TD1)

recapitulated the
disease phenotypes.

Inherited
heterozygous mutation
(R248C) in the FGFR3
gene was confirmed in

all samples.

Objective: To test the clinical
efficacy of statin treatment in

skeletal dysplasia patients.
Results: The TD1 iPSCs

formed abnormal
chondrocyte particles that
replicated TD1 phenotypes

(lower GAG, FGFR3, cartilage
matrix gene expressions).

While the FGFR3-neutralizing
antibody was induced partial

recovery of cartilage
formation, statin was able to
successfully induce cartilage

formation in
TD1-iPSC-derived cartilage.
This result was obtained by
controlling phosphorylated
MAPK production. Hence,
iPSC-derived models could
be used for drug screening

and closely
examine pathology.

2016 Xu et al. [82]
Early-onset OA
(osteochondritis

dissecans)

Human dermal
fibroblasts from patients

with familial
osteochondritis dissecans

were transfected using
retrovirus with
OSKM factors.

Inherited

Objective: To determine if
cartilage models derived from

BM-MSCs and iPSCs could
recapitulate the phenotypes
of familial osteochondritis

dissecans (FOCD).
Results: The

FOCD-iPSC-derived cartilage
displayed identical disease

phenotypes in the
chondrogenic cultures of

primary MSCs. Both showed
GAG abundance, aggrecan

shortage in ECM, and
aggrecan intracellular

localization in early/late
chondrocytes. The similarities

in the disease phenotypes,
such as abnormal aggrecan
processing, were evident.

2019 Lin et al. [83] Primary OA

Human bone
marrow-derived MSCs

from femoral heads were
transduced using

lentiviral vector with
OSKM factors.

IL-1β was added to the
chondrogenic medium
that was perfused into

the top of the iPSC
construct during the

fabrication of
osteochondral tissue

chips for 28 days.

Objective: To construct
iPSC-derived

microphysiological
osteochondral tissue chips
that can recapitulate OA

conditions.
Results: The IL-1β treatment
created an OA model with a

lower expression of COL2 and
ACAN, a decrease in the GAG,

and an increase in both
cartilage-degenerating

enzymes and
proinflammatory cytokines.

The therapeutic effect of
celecoxib in the OA chip

model demonstrated
decreased expression of

catabolic and inflammatory
factors in addition to its
osteoprotective effect.
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Table 1. Cont.

Year Reference OA Type
iPSC Source and
Reprogramming

Procedure

OA Disease Model
Generation Procedure Study Objective and Results

2021 Rim et al. [84] Early-Onset
Finger OA

Human dermal
fibroblasts from a patient

with radiographic
early-onset finger
OA-like condition

(efOA-like condition)
were transduced using

Sendai virus with
OSKM factors.

Inherited
reprogrammed iPSCs

contained a mutation in
exon 17 of the
aggrecan gene.

Objective: To construct an
iPSC model of early-onset

finger OA and characterize it.
Results: The chondrogenic

pellets from the patient with
efOA-like condition

displayed increase in size and
vacuole-like morphologies.
The abnormal size could be
due to the overexpression of

hypertrophic and
chondrogenic markers.

Hence, iPSC-derived disease
models could serve as an

effective tool to understand
OA pathology.

6.1. iPSC Disease Modeling in OA

In 2014, Willard et al. attempted to model OA in iPSC-derived murine cartilage to
screen therapeutic agents [80]. The fibroblasts from adult C58BL/6 mice tails were first
harvested and reprogrammed to iPSCs using a single doxycycline-inducible lentiviral
vector carrying the OSKM factors. The generated cells were then maintained in an iPSC
medium before being nucleofected with a type II collagen promoter carrying the GFP.
For chondrogenic differentiation, the iPSCs were placed in a serum-free chondrogenic
medium in a high-density micromass culture containing murine bone morphogenetic
protein 4 and dexamethasone. The GFP-positive cells were then separated by flow cytom-
etry and expanded in a chondrogenic medium containing fetal bovine serum and basic
fibroblast growth factor. After expansion for two passages, the cells were pelleted via
centrifugation and placed in a serum-free chondrogenic medium containing transforming
growth factor β3 and dexamethasone until cartilage formation. The constructed iPSC
cartilage, along with the native cartilage harvested from the femoral head, were treated
with interleukin-1α (IL-1α) (control, 10 pg/mL, 100 pg/mL, 1 ng/mL doses for iPSC carti-
lage) to recapitulate the degenerative OA environment. The OA models were then used to
screen five therapeutic agents (IL-4, tissue inhibitor of metalloproteinase 3, NS398, SC514,
and GM6001) by assessing their tissue formation capability. Through various routes, each
tested drug demonstrated its claimed effects on native tissue (i.e., matrix metalloproteinase
(MMP) inhibitor GM6001 halted MMP activity). In particular, the NF-κB inhibitor SC514
considerably prevented IL-1α–mediated glycosaminoglycan (GAG) loss, and thus, was
considered the most effective for tissue protection. Based on these results, this study suc-
cessfully demonstrated in vitro drug screening using iPSC-derived OA models. Moreover,
it demonstrated the benefits of iPSC disease modeling in terms of scalability, versatility,
and sensitivity.

Lin et al. in 2019 successfully constructed human iPSC-derived OA tissue chips,
further promoting the applicability of iPSC disease modeling in OA patients [83]. The
hBM-MSCs from OA patients were harvested and transduced with OSKM factors into
passage three via lentiviral vectors [83,85]. With the generated iPSCs, the formation of
iPSC-derived MSC-like progenitor cells (iMPCs) was induced by expanding the iPSCs
in mesenchymal induction medium and subsequently growing them in regular tissue
culture flasks with expansion medium until passage four for further use. For constructing
osteochondral tissue chips, the iMPCs were suspended in 15% mGL and placed inside
micro bioreactors. The bottom of the constructs was perfused with an osteogenic medium
with different combinations of VitD3, BMP7, and Dex, whereas the top of the constructs
was perfused with a chondrogenic medium (containing BMP6) for 28 days. Notably, the
perfusion of Dex was found to be most effective when used for the 0–14 days in a separate
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experiment. The chondral tissues (CHs) were created by repeating the same procedure, but
only the bottom of the constructs was perfused with the cell-free mGL. These osteochondral
and chondral constructs were then treated with IL-1β to recapitulate the OA conditions.
After the formation of an OA disease model, its drug-screening capabilities were examined
using celecoxib. Celecoxib treatment reduced the expression of catabolic factors (MMP1, 2,
9, and ADAMTS-4,5) and inflammatory factors (IL-1β, IL-6, and COX2) while increasing
the deposition of proteoglycan and calcium without any adverse effects. Furthermore,
celecoxib treatment was more effective upon administration in both the cartilage and bone
rather than an IA application only to the cartilage. This could be due to the osteoprotective
effects of celecoxib. In the bone tissue, celecoxib injection downregulated the expression of
IL-1β, IL-6, and OCN, further proving its therapeutic effect. Hence, this study demonstrated
the ability to construct an hiPSC OA disease model in addition to its application to study
drug effects.

6.2. iPSC Disease Modeling in Early-Onset OA

Skeletal dysplasia is an early onset of OA characterized by osteochondral abnormali-
ties and hindered development. In 2014, Saitta et al. recapitulated skeletal dysplasia and
closely examined the molecular mechanisms underlying the cartilage disorder [79]. The
fibroblasts of a patient with lethal metatropic dysplasia were used to generate iPSCs via
nucleofection with nucleofector II and episomal plasmid expression vectors pCXLE-hUL,
pCXLE-hSK, and pCXLE-hOCT3/4-shp53-F, and then cultured in mTeSR1 [79,86]. The
iPSCs were confirmed to contain a heterozygous TRPV4 mutation and then were differen-
tiated into chondrocytes [79]. The chondrogenic differentiation process was induced by
using various chondrogenic media (CM, CM with BMP2, CM with TGFβ1, iPSC media)
where the iPSCs were cultured to confluency [79,87]. Upon Alcian blue staining, the TRPV4-
iPSCs showed considerably fewer proteoglycans than the control, resembling the cartilage
sample obtained from the patient. Moreover, the expression of COL2A1 (forms IIA and
IIB), SOX9, aggrecan, and RUNX2 was generally downregulated in TRPV4-iPSCs with the
upregulation of COL1A1, despite variations in the respective media. Through constructing
an in vitro model of skeletal dysplasia, the differences in the molecular mechanisms of
various signaling pathways could be more closely studied. Hence, iPSC-derived disease
modeling has shown a positive outlook in understanding skeletal dysplasia and developing
more effective treatment plans with specific targets, preventing early OA progression.

Yamashita et al. in 2014 also constructed a disease model of skeletal dysplasia to
examine the clinical efficacy of statin treatment [81]. Dermal fibroblasts from patients with
thanatophoric dysplasia type I (TD1) with heterozygous mutations in FGFR3 were har-
vested. After iPSC reprogramming, the TD1-iPSCs were differentiated into chondrocytes in
a chondrogenic medium. The TD1-iPSC-derived chondrocytes exhibited the disease pheno-
types of skeletal dysplasia, such as the absence of GAG in Safranin O staining. Furthermore,
the chondrocytes exhibited under-expression of chondrocyte markers (Sox9, COL2A1, and
ACAN) and overexpression of COL1A1. Before performing further tests, the role of FGFR3
was confirmed. In TD1-iPSCs, when mutated FGFR3 was knocked out and transduced
with a functional FGFR3, they were able to recover and express chondrocyte marker genes.
Subsequently, different treatments were used to treat skeletal dysplasia in the disease
model. An FGFR3-neutralizing antibody induced partial recovery of cartilage formation,
as predicted from the mutated etiology. However, statins recovered cartilage formation
in the TD1 disease model by mitigating the amount of phosphorylated mitogen-activated
protein kinase (MAPK), which is downstream of the FGFR3 signaling pathway. Thus, this
study demonstrated the potential of using iPSC-derived disease models for drug screening
to prevent the early onset of OA.
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Xu et al. modeled the disease phenotypes of familial osteochondritis dissecans, a
skeletal defect that signifies the early onset of severe OA [82]. In this study, both the
chondrogenic differentiation and phenotypes of MSCs and iPSCs were examined. MSCs
were harvested from the patient’s bone marrow and subsequently underwent chondro-
genic differentiation via micropellet culture. MSC-derived chondrogenic cultures showed
degradative activity, such as the absence of aggrecans upon extracellular matrix (ECM)
staining and inhibition of GAG synthesis. On the other hand, iPSCs were first obtained
from the patients’ fibroblasts, transfected with a retrovirus carrying OSKM factors, and
finally used to generate cartilage tissues in teratomas [82,88]. Similarly, the iPSC-derived
disease model of osteochondritis dissecans also produced an aggrecan-depleted ECM with
densely packed cells, possibly resulting in decreased matrix production or delayed differ-
entiation. As these similarities between the MSC-derived chondrocytes and iPSC-derived
chondrocytes were confirmed, it was concluded that the iPSC-derived disease models were
able to preserve the key phenotypes and provide a more accessible pathological insight.

Rim et al. recently examined the genetic characteristics of iPSC-derived OA disease
models [84]. Dermal fibroblasts were harvested from a patient with radiographic early-
onset finger osteoarthritis (efOA)-like condition and her healthy siblings. For generating
iPSCs, OSKM factors were delivered to the fibroblasts via the Sendai virus [89]. These
iPSCs then underwent chondrogenic differentiation using pellet culture to develop into
osteochondral models. Hence, hiPSCs were first placed in a 1:1 mixture of E8 media and
Aggrewell media to form embryonic bodies (EBs). Subsequently, the outgrown cells (OGs)
were induced with the EBs in the OG induction media and then placed together in chon-
drogenic differentiation media to form chondrogenic pellets [84,89–93]. The two pellets
(from efOA-like condition patient and healthy siblings) were maintained for 21 days to
observe the osteochondral changes in the respective disease models. Compared with the
healthy chondrogenic pellet (CP), the efOA-CP size increased drastically while exhibiting
vacuole-like morphologies. The abnormal size increase could be explained by the increased
expression of the hypertrophic markers IL-6, MMP1, and MMP10. Furthermore, other chon-
drogenic and hypertrophic markers, ACAN, COL1A1, and RUNX2, were overexpressed in
efOA-CP. Interestingly, Rim et al. found evidence for establishing a relationship between
the confirmed target genes (IL-6, MMP1, and MMP10) and IL-1β, an inflammatory cytokine.
Thus, iPSC-derived disease models in OA could serve as a useful tool for understanding
the pathology and genetic factors.

7. iPSC-Derived 3D Model Construction

Disease modeling using iPSCs has been traditionally conducted on 2D cultures be-
cause it can be easily controlled and reproduced [94–96]. However, this method has several
limitations such as low fidelity, absence of tissue architecture, and unnatural cell morphol-
ogy [94–96]. More importantly, 2D cultures are often unable to generate mature cells that
can precisely recapitulate adult disease models [95,97]. Thus, 3D disease modeling is a
possible solution with its ability to display cell–cell interactions and provide a better insight
into disease mechanisms in a realistic 3D setting [98].

Broadly, there are three approaches to constructing 3D cultures: organ-on-a-chip,
bioengineered scaffolds, and organoids [95]. Organ-on-a-chip was developed in 2010
by Huh et al., wherein his team constructed a biomimetic microsystem that successfully
mimicked the critical functions of the alveolar–capillary interface of the human lung [99]. At
a much smaller and more accessible scale, these organ-on-a-chip models process microscale
fluids to mimic the human organs and tissues [100,101]. With more research performed
to reduce its cost and complexities, the organ-on-a-chip model is expected to be used in
large-scale preclinical trials, thereby replacing animal models [100–102].
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Bioengineered scaffolds are the most common and approachable models used for
disease modeling. Scaffolds can be constructed from a variety of materials, including
hydrogels, decellularized tissue extracts, and nanofibers [95,103,104]. These 3D scaffolds
closely recapitulate the ECM environment and promote tissue regeneration [105]. Notably,
the 3D scaffolds can closely replicate the complexity of the human anatomy while promot-
ing motility and intercellular communication [105]. Compared to 2D cultures, 3D scaffolds
can also promote higher pluripotency and reprogramming efficiency [106]. Hence, a wider
application of 3D scaffolds in disease modeling is expected.

Organoids were acknowledged for their ability to replicate the architecture, functions,
and genetic components of human organs [107]. Furthermore, research was performed
to encourage their large-scale use because they are constructed through self-organization
and can form complex structures without the need for a controlled environment [95,100].
The process of organoid construction begins with the activation/inhibition of the key
signaling pathways to promote self-assembly [100,108,109]. Next, the media components
appropriate for specific differentiation are provided. Finally, the cultures are expanded
three-dimensionally by aggregating them into 3D structures or embedding them into a 3D
matrix [109]. As organoids are relatively easy to construct and can recapitulate the organ
architecture, they are anticipated to be used largely for drug screening and personalized
medicine [100].

7.1. iPSC-Derived 3D Model Construction in Various Fields

The ability to generate 3D cultures from iPSCs has been used in the fields of neurology,
cardiology, and hepatology. Three-dimensional cultures have provided a deeper insight
into neurological disorders in understanding their pathophysiology and screening for
drug toxicity. Most notably, in 2016, Raja et al. constructed brain organoids using iPSCs
generated from neural tissues and were able to recapitulate the phenotypes of Alzheimer’s
disease (AD), including amyloid aggregation [110,111]. Furthermore, another recent study
concluded that the iPSC-derived 3D cultures can account for AD-specific genetic muta-
tions [112]. Echoing these promising aspects, several studies have demonstrated the ability
of iPSC-derived brain organoids to screen for modulators in addition to its application for
therapeutic drug screening [113–116].

As 3D cultures can precisely recapitulate the human genetic background and pheno-
types, various cardiac cell culture models were developed and studied [117,118]. Many
cardiac conditions, such as myocardial infarction and Short QT syndrome, have already
been modeled via iPSC-derived 3D cultures [119–122]. Furthermore, Takeda et al. have
coated the ECM components on iPSC-derived cardiomyocytes to more efficiently con-
struct 3D cardiac tissues [123]. Similar to iPSC-derived neural models, 3D cardiac tissues
have vast potential for clinical application as they allow the control of specific parame-
ters (i.e., oxygen content) and simulate various pathological conditions [124]. Notably,
iPSC-derived 3D cardiac disease models are expected to be adopted for drug toxicity
assessments [121,125,126].

Because of the limitations of 2D culture, iPSC-derived 3D cultures of hepatocytes were
considered promising from their proven capabilities in other fields [127–129]. However,
most hepatological drug screenings so far have only been performed using 2D cultures or
animal models, despite 3D cultures believed to further increase the precision [130–133]. In
contrast, there are abundant publications regarding the use of iPSC-derived hepatocytes
to model liver diseases [61]. For instance, two studies in 2019 successfully constructed
in vitro models of citrullinemia type I, steatosis, and Wolman’s disease via iPSC-derived
liver organoids [134–136]. Once liver organoids overcome the current restrictions such as
assembly requirements, they are expected to be actively used for numerous hepatological
assessments and testing [137].
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7.2. iPSC-Derived OA-Related 3D Model Construction

Since the early 2010s, attempts have been made to generate iPSCs from patients
with OA and construct iPSC-derived cartilage models [76,138–140]. In this section, we
will review recent studies that have constructed 3D chondral or osteochondral structures
using iPSCs, primarily focusing on their generation procedures. As there are only a
limited number of publications regarding this topic, both human and animal studies have
been discussed.

To further promote the use of iPSCs in 3D cartilage model construction, more effi-
cient protocols were developed. For instance, Yamashita et al. in 2015 generated hyaline
cartilaginous tissue from human iPSCs (hiPSCs) without scaffolds [141]. The hiPSC lines
were generated by transducing OSKM factors (with Lin28 and p53) into dermal fibroblasts,
dental pulp cells, and other tissues via episomal vectors [86,141]. The hiPSCs were first
nucleofected with the COL11A2-EGFP reporter vector. Subsequently, the cells underwent
chondrogenic differentiation in different cell media, first in the mesendodermal differ-
entiation medium and then in the basal medium with chondrogenic supplementation
(ascorbic acid, BMP2, TGFβ1, GDF5). The differentiation efficacy was confirmed by the
positive GFP expression by COL11A2-EGFP hiPSC-derived chondrocytes and the positive
staining of GAG and chondrocyte marker genes. These cartilaginous nodules were then
moved to a suspension culture (with chondrogenic medium and basic fibroblast growth
factor). Notably, the suspension culture contributed to eliminating non-chondrocyte cells
and purifying the chondrocyte model. Furthermore, as no tumors were formed after the
transplantation in the articular defects, the 3D cultures were concluded to have relatively
low tumorigenic risk. In a 2021 study performed by Hall et al., iPSC-derived cartilage
organoids generated from the same protocol were implanted into osteochondral defect
models [142]. Therefore, the hiPSC-derived scaffold-less cartilage model is expected to
increase the clinical application of 3D cultures in treating cartilage conditions.

To further investigate the flexibility of the iPSC generation protocol, Nam et al. used
cord blood cell-derived hiPSCs (CBMC-hiPSCs) for CP construction [92]. The cord blood
cells were initially reprogrammed with OSKM factors via the Sendai virus before their
expansion to EBs [92,143]. The outgrowth cells were then induced from the EBs in gelatin-
coated dishes. Subsequently, the cells were suspended in pellets with a chondrogenic
differentiation medium to generate chondrogenic pellets with a 3D spheroid configuration.
These pellets expressed major ECM component proteins ACAN, COL2A1, and COMP, and
the chondrogenic marker Sox9. The histological characterization confirmed the presence of
the ECM region with the characteristics of hyaline cartilage (decreased COL1A1 and COL10
expression and increased COL2A1 expression). Based on these results, chondrogenic pellets
can be generated from the CBMC-hiPSCs, which expands the iPSC sources for constructing
3D chondrogenic cultures. Furthermore, this protocol was used in a study by Rim et al.,
wherein the chondrogenic potential of hiPSCs from different harvest sites (skin tissue,
blood, synovium, cord blood) was compared. The authors concluded that CMBC-derived
chondrogenic pellets showed the maximum expression of early chondrogenic markers
(Sox9, Sox5, and Sox6) and cartilage matrix markers (ACAN and COL2A1) [89].

Several studies have aimed to test the clinical applicability of the 3D iPSC-derived
cultures constructed using these efficient protocols. Nguyen et al. investigated if dif-
ferent types of nanofibrillated cellulose (NFC) bioinks were appropriate for use in 3D
bioprinting of the iPSC-derived cartilage models [144]. In this study, the two types of
NFC bioinks, NFC with alginate (NFC/A) and NFC with hyaluronic acid (NFC/HA)
(60/40 and 80/20 dry weight % ratio), were examined in the presence of iPSCs. These
iPSCs were generated from chondrocytes via mRNA-based reprogramming and mixed
with irradiated chondrocytes (iChons). The bioink consisted of iPSCs and iChons and
underwent directed chondrogenic differentiation, in the order of pluripotent medium
and chondrogenic medium inside the 3D-printed constructs. In bright-field microscopy,
the NFC/HA bioink did not show an increase in the cell population. Both the ratios of
the NFC/A bioink showed cell growth and the formation of clusters. Specifically, the
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3D-bioprinted NFC/A (60/40) models showed the maximum increase in cell growth, cell
viability, and decrease in the expression of Oct4, which is possibly tumorigenic. Moreover,
the NFC/A (60/40) construct induced the formation of hyaline-like cartilaginous tissue
with collagen type II expression. On the basis of these results, Nguyen et al. confirmed
the applicability of NFC/A bioink in iPSC-derived cartilage construction using co-cultures
with irradiated chondrocytes.

In 2020, Limraksasin et al. experimented using different protocols for generating
osteochondral organoids from murine iPSCs [145]. The iPSCs were first differentiated by
transducing OSK factors (without c-Myc) to murine fibroblasts via retroviral introduction in
the growth medium. The 3D-iPSC spheres were formed in the ultra-low-attachment 24-well
micro-space cell culture plates. After the sphere was constructed, trans-retinoic acid was
added to promote mesenchymal precursor cells. The iPSC spheres were then maintained in
shaking culture with the addition of one of the two media: osteogenic induction medium or
osteogenic induction medium later replaced by chondrogenic induction medium. RT-PCR
analysis showed that osteogenically induced iPSCs (OI-iPSCs) showed higher expression
of osteogenic markers Osx and Col1a1, whereas osteochondrogenically induced iPSCs
(OIC-iPSCs) showed higher expression of the osteogenic marker Ocn and chondrogenic
markers Sox9, Col2a1, and Aggrecan. Furthermore, various staining methods showed
robust mineralization and the presence of some cartilage-like tissues in the OI-iPSCs.
On the other hand, OIC-iPSCs showed partial mineralization and the presence of a vast
area of cartilage tissue. Hence, these findings support the use of micro-space culture
and mechanical stimuli (shaking) for the formation of iPSC-derived osteochondral tissue.
Moreover, the relationship between the medium used in the induction protocol and the
bone/cartilage tissue ratio in these constructs can help in developing more precise control
of 3D osteochondral model construction in future studies.

Similarly, O’Connor et al. successfully constructed osteochondral organoids by grad-
ually exposing murine iPSCs to the chondrogenic and osteogenic growth factors [146].
A doxycycline-inducible lentiviral vector carrying the OSKM factors was used to gener-
ate iPSCs from mouse tail fibroblasts, which were then nucleofected with a linearized
pCOL2-EGFP-SV40-NEO reporter plasmid. The iPSCs were then expanded with G418,
where G418-resistant clones were subsequently differentiated in a micromass culture with
chondrogenic media (including dexamethasone and mBMP-4). After digestion and cen-
trifugation, the cells were separated by GFP expression (GFP+ or collagen II positive were
selected). The sorted cells were then expanded in chondrogenic differentiation media (with
TGF-β3) on gelatin-coated plates to induce pellet formation followed by osteochondral
organoid generation by culturing the pellets in osteogenic and chondrogenic media. The
pellets significantly overexpressed the chondrogenic genes Acan, Col2a1, Prg4, and Sox9 in
addition to osteogenic genes Alp1, Bglap, Col1a2, Ibsp, Runx2, and Sp7 compared with the
original iPSCs. Moreover, after staining, the presence of collagen type II, collagen type IV,
and sulfated-GAGs from the chondrogenic organoids was observed, indicating successful
cartilage model construction. The osteochondral organoids showed endochondral ossifi-
cation with cartilaginous tissue in the center and bony calcified tissue in the surrounding
area. Hence, this study used the chondrogenic and osteogenic growth factors to develop
an efficient and scaffold/bioreactor-free protocol for constructing osteochondral organoids
in vitro.

Section 6.1 includes the detailed procedures for generating OA-related 3D model
construction by Willard et al. and Lin et al. [80,83]. Thus, the summary of the two studies
regarding their construction protocols will only be summarized in Table 2 in addition to
the other studies discussed in Section 7.2.
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Table 2. Summary of iPSC-derived OA-related 3D model construction.

Year Reference iPSC Source and
Reprogramming Procedure

Cartilage Model Construction
Procedure Study Results

2014 Willard et al. [80]

Tail fibroblasts from adult
C57BL/6 mice were

transduced with single
doxycycline-inducible

lentiviral vector containing
OSKM factors.

The iPSCs were placed in a
high-density micromass culture with
a serum-free chondrogenic medium

(including BMP-4 and
dexamethasone). Upon micromass

digestion, the GFP+ cells were
separated and expanded in a

chondrogenic medium (with fetal
bovine serum and basic fibroblast

growth factor). These cells were then
centrifuged for pellet formation

before being cultured in a serum-free
chondrogenic medium with TGFβ3

and dexamethasone for cartilage
model generation.

The iPSC-derived cartilage
model was successfully

generated and was then treated
with IL-1α to recapitulate the

OA environment.
The OA model was used to test
the clinical efficacy of current

OA drugs.

2015 Yamashita et al. [141]

Human dermal fibroblasts and
dental pulp were transduced
using episomal factors with

OSKM factors.

High-density cell colonies were first
formed by culturing iPSCs in a

feeder-free medium. These colonies
were then cultured in a

mesendodermal differentiation
medium. Subsequently, the cells
were put in a basal medium with

various chondrogenic
supplementations (combinations of
ascorbic acid, BMP2, TGFβ1, GDF5)
that generated cartilaginous nodules.
Later, these models were placed in

suspension culture and
chondrogenic medium (for

proliferation) to further be examined.

It was concluded that BMP2,
TGFβ1, and GDF5 were needed

for GFP+ cells.
The suspension culture could

potentially be used to separate
any non-chondrocytic cells for

purification purposes.
This approach could be used for

iPSC differentiation into
scaffold-less hyaline cartilage.

2017 Nam et al. [92]

Human cord blood
mononuclear cells were

transduced using Sendai virus
with OSKM factors.

The iPSCs underwent expansion,
resuspension, and incubation to
form embryoid bodies (EB). The
outgrown cells from EBs were

subsequently suspended in a conical
tube containing a chondrogenic

differentiation medium for
pellet generation.

The chondrogenic pellets
expressed ECM component
proteins and chondrogenic

markers.
Moreover, the ECM region
showed characteristics of

hyaline cartilage.
Hence, CMBC-derived iPSCs can
be used to form cartilage models,
which could potentially translate

to therapeutic applications.

2017 Nguyen et al. [144]
Human chondrocytes

underwent mRNA-based
reprogramming.

The two types of bioink: NFC with
alginate and NFC with hyaluronic

acid were mixed with iPSCs and/or
irradiated chondrocytes. Various
combinations were then used for

cartilage printing. Once completed,
the constructs were cross-linked with
either water or CaCl2 before rinsing
and incubation. Subsequently, the

constructs were placed in a
pluripotent medium before

undergoing differentiation in a
chondrogenic medium.

The NFC/HA bioink did not
show the proliferation of cells.

Both ratios (80/20 and 60/40) of
NFC/A bioink showed cell

growth and cluster formations.
NFC/A (60/40) models

displayed the greatest cell
growth and viability in addition

to a decrease in tumorigenic
expression. Moreover, the model

showed the formation of
hyaline-like cartilaginous tissue.
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Table 2. Cont.

Year Reference iPSC Source and
Reprogramming Procedure

Cartilage Model Construction
Procedure Study Results

2019 Lin et al. [83]

Human bone marrow-derived
MSCs from femoral heads

were transduced using
lentiviral vectors with

OSKM factors.

The iPSCs were first differentiated
into iMPCs in a mesenchymal

induction medium. The iMPCs were
then suspended and placed inside

the microbioreactor where the
constructs were perfused with a

chondrogenic medium on its top side
and osteogenic medium on its

bottom to form osteochondral tissue
chips. The chondral tissue chips

were perfused with cell-free mGL
solution instead of

osteogenic medium.

The osteochondral and chondral
tissue chips were successfully

generated.
The tissue chips were treated
with IL-1β to recapitulate the
OA environment, model OA

pathology, and screen current
OA drugs.

2020 Limraksasin et al.
[145]

Mouse gingival fibroblasts
were transduced using

retrovirus with OSK factors
(without c-Myc).

After attaining confluence, the iPSCs
formed into 3D-iPSCs spheres in

U-bottom-shaped microwell spots
per well. The spheres were placed in

an ES medium to form
predominantly mesenchymal

precursor cells and were later placed
either in an osteogenic induction

medium (OI-iPSCs) or both an
osteogenic and chondrogenic

medium (OIC-iPSCs) with
physical shaking.

OI-iPSCs showed higher
expressions of osteogenic

markers: Osx and Col1a1 with
robust mineralization and some
presence of cartilage-like tissues.

OCI-iPSCs showed higher
expressions of osteogenic marker
Ocn and chondrogenic markers:

Sox9, COl2a1, Aggrecan, and
partial mineralization and strong

presence of cartilage tissue.
Mechanical stimuli and medium

type affect the osteochondral
model formation.

2020 O’Connor et al. [146]

Mouse tail fibroblasts were
transduced using single

doxycycline-induced lentiviral
vector with OSKM factors.

iPSCs were nucleofected with
linearized pCOL2-EGFP-SV40-NEO

reporter plasmid before being
expanded with G418. The

G418-resistant clones were then
selected to be differentiated in a

micromass culture with
chondrogenic media. Upon steps of

centrifugation, incubation, and
resuspension, GFP+ cells were
separated to be expanded in

chondrogenic differentiation media
with TGF-β3 for pellet generation.
The pellets were then cultured in

chondrogenic and osteogenic media
to form osteochondral organoids.

Chondrogenic pellet culture
expressed chondrogenic markers

and a robust cartilaginous
matrix. Osteochondral
organoids displayed

endochondral ossification.
Therefore, osteochondral
organoids were able to be

generated through a
scaffold/bioreactor-

free procedure.

8. Future Perspectives

The full potential of the clinical applications of iPSC-derived OA disease modeling and
3D cartilage model construction is yet to be discovered. Newer and more efficient protocols
are still being developed in these fields. Notably, Wu et al. has targeted genes WNT and
MITF to eliminate off-target differentiation and significantly increase the chondrogenic
differentiation yield [147]. In the published studies discussed above, OA pathological
conditions have only been recapitulated with IL-1α or IL-1β treatments; however, recapitu-
lation with fibronectin fragments and inflammatory cytokines treatments are also expected
to be used to mimic the OA environment [80,148–151]. Moreover, models that could repli-
cate beyond the osteochondral tissues, such as the synovial membrane, can account for the
broader effect of OA [83]. The advancements in both OA disease modeling and 3D cartilage
model construction will be synergistic. With further research, the iPSC-derived 3D joint
models could be systematically used to recapitulate OA conditions for more precise drug
screening, personalized medication, and other therapeutic applications in the future [80,83].
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9. Conclusions

In this paper, we reviewed the recent studies that reported on the use of iPSCs for OA
disease modeling and 3D cartilage model construction. The iPSC-derived disease models
for OA were largely successful in replicating OA phenotypes and clinical applications
such as drug screening. Various protocols were generated for OA-related iPSC-derived 3D
constructs. Furthermore, we examined the efficiency of different mediums, the flexibility
of iPSC sources, the efficacy of bioinks, etc. [92,144,146]. Further studies however are
required to be able to control the maturation of stem cell-derived chondrocytes without
going through hypertrophic differentiation that leads to endochondral differentiation. The
obtained results can be used as a reference for future studies to construct appropriate
iPSC-derived 3D cartilage models for OA.
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