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Circadian regulation of human cortical excitability
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Prolonged wakefulness alters cortical excitability, which is essential for proper brain function

and cognition. However, besides prior wakefulness, brain function and cognition are also

affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian

impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp

electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 partici-

pants during 29 h of wakefulness under constant conditions. Data reveal robust circadian

dynamics of cortical excitability that are strongest in those individuals with highest endocrine

markers of circadian amplitude. In addition, the time course of cortical excitability correlates

with changes in EEG synchronization and cognitive performance. These results demonstrate

that the crucial factor for cortical excitability, and basic brain function in general, is the

balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone.

These findings have implications for clinical applications such as non-invasive brain stimu-

lation in neurorehabilitation.
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W
akefulness is associated with molecular, cellular and
systemic changes in human brain function, which are
deemed to negatively impact on cognition1,2.

Deterioration of performance is, however, not a simple linear
function of prior wakefulness duration. During the first B16 h of
a normal waking day, human cognitive performance remains
stable despite the concurrent build-up of sleep homoeostatic
pressure. However, if wakefulness is extended into the biological
night, cognitive performance deteriorates abruptly3,4. This reflects
the influence of the circadian timing system, which counters the
detrimental effect of sustained wakefulness during the day, until
the end of the so-called evening ‘wake-maintenance zone’
(WMZ)5,6. Subsequently, at night, the circadian system switches
to a sleep promoting signal which favours sleep continuity, and
opposes the progressive tendency to wake-up due to sleep
pressure dissipation during sleep, up to the end of the early
morning ‘sleep-promoting zone’ (SPZ)5. Behavioural, neural and
molecular correlates of the impact of the circadian timing system
are being established7,8. However, its neuronal bases remain
elusive9.

Cortical excitability, here defined as the strength of the
response of cortical neurons to a given stimulation, reflects
neuron reactivity and response specificity and is therefore a
fundamental aspect of human brain function. It has been reported
to increase with time awake in humans10. This may underlie
performance decrements and greater seizure11 or hallucination12

propensity with sleep deprivation. Changes in human cortical
excitability have been related to rodent data showing a linear
increase with time awake in the firing rate and synchronization of
cortical neurons13 and in the amplitude and slope of the local
field potential evoked by electrical cortical stimulation14.

Synaptic function and structure have however also been
reported to undergo marked circadian dependency9,15–17.
Circadian variations in neuronal excitability have in fact been
clearly established in invertebrates18. In humans, TMS-inferred
corticospinal excitability (that is, TMS-evoked motor responses)
was reported to depend on chronotype19 and to undergo a time-
of-day influence, which appeared independent of sleep20. Sleep
deprivation has been reported to have no effect21 or to decrease22

human corticospinal excitability, while it increased somato-
sensory cortex excitability23. It is therefore controversial, or it has
at least not been conclusively established, whether, cortical
excitability, similar to other aspects of human brain function, is
modulated by both elapsed time awake and circadian phase.

Here we addressed this issue and investigated whether the
circadian timing system impacts on human cortical excitability.
We further investigated whether this potential circadian

modulations of cortical excitability would correlate with the
established circadian fluctuations in cortical synchrony
across neuronal populations14,24 and behaviour1. We used
transcranial magnetic stimulation coupled to high-density
electroencephalography (TMS/EEG), as a non-invasive tool to
gauge, in vivo, the time course of human cortical excitability
during prolonged wakefulness. We hypothesized a circadian
influence on cortical excitability to be most evident near the
WMZ and SPZ and that individual variability in circadian signal
strength as derived from endocrine markers (cortisol) to be
related to the dynamics of cortical excitability. We further
postulated cortical excitability to be associated with spontaneous
waking EEG measures and performance assessments. Results
confirm these hypotheses and reveal a robust circadian
modulation of cortical excitability which correlates with
changes in EEG synchronization and cognitive performance.
The findings demonstrate that the balance between circadian
rhythmicity and sleep need, rather than sleep homoeostasis alone,
is crucial for cortical excitability regulation, and basic brain
function in general.

Results
Following an 8-h nocturnal baseline sleep episode quantified by
polysomnography, 22 healthy young men (22 years old±2.61;
Supplementary Table 1 for participants characteristics), under-
went eight TMS/EEG recordings during B29-h of continuous
wakefulness. This sleep deprivation was conducted under strictly
controlled behavioural and environmental conditions (constant
routine protocol) to minimize external and internal factors
masking circadian rhythmicity25 (Fig. 1). The frontal cortex
supplementary motor area was chosen as stimulation target
because it is highly sensitive to sleep deprivation26, as previously
investigated using TMS/EEG10. TMS sessions were scheduled to
adequately detect any predicted changes near the putative WMZ
and SPZ. During TMS/EEG recordings, participants performed a
simple visual vigilance task to assess performance as well as to
exclude TMS/EEG segments during vigilance lapses from the
analyses10. For the analyses all data were aligned to circadian
phase as determined from individual melatonin profiles27.
Participants were not provided with any information about
time of day or the frequency and timing of assessments during the
entire protocol to prevent any bias related to expectations on
how one’s brain state should change in relation to these variables
(for example, it is 23:00, I must be sleepy).

Each TMS/EEG acquisition was preceded by a 2-min eyes open
spontaneous waking EEG recording to extract theta frequency
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Figure 1 | Experimental protocol. Participants underwent a 29 h sustained wakefulness protocol under constant routine conditions (no time-of-day

information, constant dim light (o5 lux), external temperature and semi-recumbent posture, regular liquid isocaloric intake, sound proofed rooms). TMS-

evoked EEG potential (TEP) were recorded eight times (4250 trials per session; violet triangles ) and test batteries including the psychomotor vigilance

task (PVT; turquoise circle ) were completed 12 times. TMS/EEG sessions were scheduled throughout the 29-h period with higher frequency around the

wake-maintenance (WMZ) and sleep-promoting zones (SPZ), the timing of which was predicted based on habitual sleep times (data realigned a

posteriori). During TMS/EEG sessions, participants performed a visual vigilance task consisting in maintaining a constantly moving cursor in the centre of a

computer screen to assess simultaneous performance and exclude vigilance lapses. Saliva samples were collected hourly for melatonin and cortisol assays,

together with subjective sleepiness and affect measures. Relative clock time displayed is for a participant with a 23:00–07:00 sleep–wake schedule. Prep: 5

preparatory hours, including test battery task practice (o5 lux). Baseline night: 8 h night of sleep in darkness at habitual sleep times and under EEG

recording.
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band power (4.5–7.5 Hz), an established marker of alertness and
sleep need24. In between TMS/EEG sessions, participants also
completed an auditory psychomotor vigilance task (PVT)28, used
to monitor sustained attention. Subjective sleepiness and affect
dimensions were assessed hourly. All these classical alertness-
related measures exhibited typical and statistically significant
variations during the protocol, with relatively stable values during
the normal waking day period, followed by decrements during the
biological night and subsequent partial recovery during the next
day3 (PROC MIXED; n¼ 22; Po0.002) (Supplementary Fig. 1).

Non-linear cortical excitability change with wakefulness.
Cortical excitability was inferred from the amplitude and slope of
the first component of the TMS-evoked EEG potential
(TEP; 0–30 ms post-TMS)10, measured at the electrode closest to
the maximally stimulated brain location (hotspot). Both TEP
amplitude and slope significantly changed with time awake
(PROC MIXED; n¼ 22; Po0.0001) (Fig. 2; see Supplementary

Fig. 2 for non-standardized values). Post hoc analysis showed that
cortical excitability increased globally from the first to the last
session of the protocol (n¼ 22; amplitude: Pcorr¼ 0.025; slope:
Pcorr¼ 0.064). [All post hoc analyses for PROC MIXED were
performed with Kenward-Roger’s multiple comparison
correction]. However, the dynamics of this increase was not
linear. A marked significant local decrease was observed from the
afternoon session (S2) to the evening session (S3), close to the
onset of melatonin secretion, in the WMZ (amplitude:
Pcorr¼ 0.037; slope: Pcorr¼ 0.058). Both amplitude and slope
then significantly increased up to the seventh session (S7) around
the maximum of cortisol secretion (Fig. 3d), at the end of the
putative early morning SPZ (n¼ 22; Pcorro0.0001). This sharp
increase appeared to subsequently cease 3 h later, in the last
session (S8) of the protocol, which was no longer significantly
different from the previous one (n¼ 22; Pcorr40.8).

Importantly, changes in estimated cortical excitability followed
a similar pattern when inferring amplitude and slope of the TEP
first component from a dipole computed at the hotspot, following
EEG source reconstruction, that is, based on separate analyzes
using signals from all available EEG electrodes (Supplementary
Fig. 3).

These results confirm that human cortical excitability varies
with extended wakefulness10, but reveal local non-linear
variations compatible with a strong influence of the circadian
timing system, in addition to a linear trend likely related to sleep
homoeostasis.

Cortical excitability correlates with circadian/sleep need markers.
To further investigate this dual influence, we compared the
predictive value of two different models to explain the observed
time course of cortical excitability. The first fit consisted of a
linear function representing the progressive build-up of sleep
pressure29. The second fit comprised a 24 h period sine-wave
function, centred on individual melatonin secretion onset, aimed
at modelling the circadian signal30 (Fig. 3a). Both fits turned out
to be good predictors of observed data, as indexed by low error
indices.

In a next step, we related cortical excitability to independent
individual standard measures of sleep homoeostasis and circadian
rhythmicity. We first associated cortical excitability to a
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Figure 2 | Non-linear changes in cortical excitability with wakefulness

extension. (a) TMS-evoked potentials (TEP; 0–30 ms post TMS) measured

at the electrode closest to the hotspot, averaged in each of the eight

TMS/EEG sessions, in a representative participant (habitual sleep time:

23:00–07:00). Hotspot location was provided by the neuronavigation

system. Time course of TEP amplitude (b) and slope (c) with respect to the

circadian cycle. Data were averaged (mean±s.d.) after standardization

(z-score) and realignment to individual circadian phase (n¼ 22; melatonin

secretion onset¼0�). Mean z-scored melatonin profile is displayed in grey

with respect to circadian phase (bottom X axis). The top x axis indicates

relative clock time for a participant with a 23:00–07:00 sleep–wake

schedule. Both TEP amplitude and slope significantly changed across the

29 h of sustained wakefulness (PROC MIXED; n¼ 22; main effect of

circadian phase: amplitude F(7,128)¼8.17, Po0.0001; slope: F(7,/129)¼ 5.91,

Po0.0001). Post hoc analysis revealed (1) a significant increase from the

first to the last session (n¼ 22; S1 versus S8: amplitude: Pcorr¼0.0025;

slope: Pcorr ¼0.0635], (2) a local decrease from the second afternoon

session (S2) to the third evening session (S3) in the hypothetical WMZ

(n¼ 22; S2 versus S3: amplitude: Pcorr¼0.037; slope: Pcorr¼0.058), (3) a

sharp increase during the biological night (n¼ 22; S3 versus S7: amplitude

and slope: Pcorro0.0001], (4) ceasing after the seventh session, at the end

of the theoretical SPZ (n¼ 22; S7 versus S8: amplitude and slope:

Pcorr40.8).
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well-established marker of sleep pressure: NREM sleep slow wave
activity (SWA)2. Individual dissipation rate of SWA reflects
individual sleep homoeostasis efficacy in eliminating sleep
pressure31. In our protocol, The first and last session were
recorded 24 h apart at the same circadian phase (11:00 for an
individual waking up at 07:00), such that their comparison should
exclusively reflect the impact of time awake, that is, the build-up
of sleep pressure. Regression analysis showed that SWA
dissipation rate during the baseline night before sleep
deprivation was positively associated with the build-up in
cortical excitability in this interval (PROC REG; n¼ 18;
r240.22; Po0.037) (Fig. 3b,c).

Cortisol rhythm is characterized by declining values during the
biological day, with a nadir near the WMZ, and rising values
during the biological night with a peak at habitual wake time32.
This is in contrast to the melatonin rhythm which is characterized
by an on–off time course with very low levels during the day and
high values during the night. We therefore evaluated a possible
link between cortisol and cortical excitability dynamics. We found
that cortisol levels covaried positively with increased TEP
amplitude and slope over the entire protocol (Fig. 3d; analysis
of covariance (ANCOVA); n ¼ 22; r240.24, Po0.0001). As it
has been hypothesized that the amplitude of the cortisol rhythm
may reflect the strength of a circadian signal27, we then
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Figure 3 | The circadian system modulates cortical excitability. (a) Individual cortical excitability measured by TEP amplitude (dashed line represents

average z-scored TEP amplitude) was fitted with linear (red) and 24 h period sine-wave (blue) functions to mimic sleep pressure build-up and the circadian

signal respectively. Error sum of squares (ESS) was o10 for both indices (amplitude: ESS linear fit¼4.9, Po0.0001; ESS sine fit¼ 4.1, Po0.0001; slope:

ESS linear fit¼ 5.19, Po0.0001; ESS sine fit¼4.24, Po0.0001). (b) Slow wave activity across the first four cycles of sleep baseline night was fitted to

compute individual dissipation rate (schematically shown by red arrow). Each dot represents SWA of an individual sleep cycle (four identical symbols per

participant). (c) Regression analysis showed that individual dissipation rate was positively correlated with the increase in cortical excitability from first to

last session, recorded 24 h apart, at the same circadian phase, following a normal night of sleep and after sleep deprivation (n¼ 18; amplitude: P¼0.044;

r2¼ .23; slope: P¼0.036, r2¼0.25). (d) Cortisol (yellow) and subjective stress (red) levels. Salivary cortisol concentration was not significantly different

between the first and the last protocol samples, collected 24 h apart, at the same circadian phase, following a normal night of sleep and after sleep

deprivation (n¼ 22; F(28,482)¼ 13.44; Po0.0001). Dashed line: shape of TEP z-scored amplitude dynamics. (e) Regression analysis revealed that individual

fitted amplitude of cortisol secretion over the protocol was positively associated with the decrease in cortical excitability measured around the wake-

maintenance zone (n¼ 20; amplitude: P¼0.017; r2¼0.24; slope: P¼0.023, r2¼0.21).
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investigated whether the amplitude of the cortisol rhythm is
related to the non-linear change in cortical excitability.
Regression analysis revealed a significant positive association
between individual estimates of cortisol amplitude during the
protocol and the decrease in cortical excitability from the
afternoon session to the evening WMZ session (PROC REG;
n¼ 20; r240.21; Po0.023) (Fig. 3e).

Collectively, these findings speak to a critical role for sleep
homeostasis on the dynamics of cortical excitability but they also
indicate a relationship with the variation of a classical ‘hand-of-
the clock’ endocrine marker which putatively reflects individual
circadian strength.

Cortical excitability correlates with theta power and behaviour.
Finally, we investigated whether the dynamics in cortical excit-
ability, which arguably reflect a circadian influence, could con-
stitute the neuronal bases for variations in individual brain
system-level and behavioural measures, for which a circadian
influence is widely accepted1,3. We found that TEP amplitude and
slope significantly covaried with theta power over the frontal
region across the 29 h of sustained wakefulness, with high cortical
excitability associated with high theta power (ANCOVA; n¼ 22;
amplitude: r2¼ 0.69, Po0.0001; slope: r2¼ 0.69, Po0.0001)
(Fig. 4a–c). This association was specific to theta power and
was not observed for delta (0.75–4 Hz; ANCOVA; n¼ 22;
r2r0.05; PZ0.95), alpha (8–12 Hz; ANCOVA; n¼ 22;
r2r0.07; PZ0.77), sigma (12.5–18 Hz; ANCOVA; n¼ 22;
r2r0.13; PZ0.13) and beta powers (18.5–30 Hz; ANCOVA;
n¼ 22; r2¼ 0.08; PZ0.66) (Supplementary Fig. 4).

We then focused on the vigilance task which was performed
simultaneously with the TMS/EEG recordings. Task performance
showed non-linear changes across the protocol (PROC MIXED;
n¼ 22; main effect of circadian phase: F(7,122)¼ 13.78; Po0.0001)
and was significantly linked to cortical excitability dynamics such
that higher indices of cortical excitability associated with worst
performance (ANCOVA; n¼ 22; r2¼ 0.23, Po0.03) (Fig. 4d,e).
Dynamics of cortical excitability also appeared to translate to the
dynamics of subjective feelings. A last set of analyses showed that
increases in subjective sleepiness (Fig. 4a,b) and negative affect
(anxiety, stress and fatigue) and reductions in positive affect
(mood, motivation and sociability) were related to increases in
TEP amplitude and slope (ANCOVA; n¼ 22; r240.4,
Po0.0001). Altogether, these findings point towards a direct
relationship between cortical excitability profiles and brain
system-level or behavioural measure dynamics.

Discussion
Our study confirms that cortical excitability, defined as the
electrical reactivity of cortical neurons to a direct perturbation
(TMS in the present case), is affected by the duration of
wakefulness2,9,10, but it also demonstrates that cortical excitability
is significantly modulated by circadian phase. An exclusive
dependency on wakefulness duration would have led to a
monotonic increase in cortical excitability with time awake. Our
data show, however, that the initial increase in cortical excitability
during a normal waking day returns to baseline value around the
evening WMZ. In the context of our protocol, this evening
excitability reduction can only be explained through an
endogenous circadian influence independent of sleep, because
the participants did not nap, had no direct knowledge of clock
time and all environmental and behavioural conditions were kept
constant. Reduction of cortical excitability would therefore
represent a previously unappreciated marker of the circadian
mechanisms by which performance is maintained at the end of a
normal waking day, when sleep pressure is high.

Our results provide indeed a strong link between cortical
reactivity, system-level measures of brain function (spontaneous
waking EEG theta power) and behaviour (vigilance task,
subjective feelings). Hence, the well-recognized non-linear
variation in cognitive performance and subjective feeling during
extended wakefulness3 appears to be related to basic aspect of
neuronal function, that is, cortical excitability. During the
biological night, cortical excitability exhibited a marked increase
which coincided with decrements in performance, subjective
feelings and objective EEG measure of alertness. Our data also
suggest that the typical recovery observed in the morning of the
second day of sustained wakefulness, as indexed by spontaneous
waking EEG and behavioural measures, is mirrored by a decrease
or at least a stabilization of cortical excitability. Further support
for this statement would, however, require the demonstration of a
significant reduction in cortical excitability following more
extreme sleep deprivation.

Altogether, these findings strongly suggest that sleep is not the
only process that regulates and restores neuronal function, as
previously pointed out9. It has been suggested that mammals with
weak circadian rhythms (for example, endotherm versus
ectotherm) do not show evident circadian variations in synaptic
function over the sleep–wake cycle18. This could explain in part
why most previous studies have associated synaptic changes
mostly with the sleep–wake rather than the circadian cycle18.
Here we show that when vigilance state is kept constant, that is,
participants remain awake in a constant routine protocol,
circadian variations in neuronal and synaptic function become
evident also in humans. The full separation and quantification of
sleep homoeostasis and circadian influence is not possible using a
constant routine protocol, during which wakefulness extension is
always accompanied by concomitant changes in sleep pressure
and circadian phase, and would require a forced desynchrony
paradigm5. Our data show nevertheless that variations in cortical
excitability are most obvious in individuals with strongest
variations in spontaneous EEG activity, performance and
subjective feeling as well as in those that have the largest
amplitude in cortisol secretion, hypothesized to relate to the
strength of the circadian wake promoting signal27. Cortical
excitability also covaried with cortisol level which has been
reported to rapidly affect synaptic function33,34. As a strongly
circadian-driven signal, cortisol secretion could therefore mediate
in part circadian variations in cortical excitability18,35. Cortisol
co-variation with excitability could also reflect that they are both
strongly influenced by the circadian system without a direct
causal effect of cortisol. Core body temperature variation, also
under circadian control, could equally contribute to the effect we
report, as previously suggested9,18. However, the frequency
specific effects of the circadian modulation of the wake EEG as
assessed in a forced desynchrony protocol make it unlikely that all
of the circadian effects can be attributed to temperature24.

In addition to its tonic circadian secretion, cortisol level also
varies phasically with stress exposure. This phasic secretion has
been suggested to mediate in part the effect of sleep deprivation in
rodents36. We consider however that stress and stress-induced
cortisol secretion are unlikely to have contributed significantly to
cortical excitability dynamics in our protocol. First, subjective
stress levels were relatively low in our sample, even though they
did show previously reported significant circadian-related
variations37 (Po0.0001) (Fig. 3d). Second, salivary cortisol
levels of our participants did not exceed laboratory norms38.
And finally, cortisol followed its typical circadian secretion
profile32 in our sample, and cortisol levels at the end of the
protocol were not significantly different from the beginning of the
protocol, that is, at same circadian phase but 24 h apart (cf. Fig. 3;
Pcorr¼ 1).
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Importantly, our results do not preclude a previously reported
influence of sleep and sleep homoeostasis on synaptic func-
tion10. In our data, the overall build-up in cortical excitability,
from the morning after a normal night of sleep to 24 h later
following continuous wakefulness, is related to the individual
differences in the dissipation of slow wave activity during sleep.
This dissipation is mainly related to sleep homoeostasis,
although for this variable, circadian influences are becoming
evident5,39. Our findings supports a link between cortical
excitability build-up during wakefulness and sleep-induced
excitability reduction, at least when considering time points
B24 h apart during extended wakefulness, that is, in the absence
of a circadian confound.

Methodological differences are likely to explain the absence
of circadian modulation of cortical excitability in previous

studies21–23, including a study of ours10. In those studies time
resolution was poorer (less assessments included over 24 h) and
constant routine conditions were not implemented such that food
intake, light exposure and physical activity for instance may have
masked circadian rhythmicity25. In addition, in previous studies,
the knowledge of time of day and of the number of assessments
may have induced phasic motivation or engagement during
experimental recordings40. Constant routine conditions,
although strictly controlled should, however, not be considered
as impoverished. Demanding test batteries are regularly
performed, social interactions with researchers occur and
participants engage in quiet activities between tests (reading,
watching video, drawing, and so on—low light and acoustic
levels). Therefore, we do not consider constant routine to have
had a major impact on wake and use-dependent aspects of sleep
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Figure 4 | Cortical excitability dynamics is associated with changes in system-level brain function measures and in behaviour. (a) Time course of

relative theta (4.5–7.5 Hz) power (%) in spontaneous waking EEG (blue) and subjective sleepiness (black) (mean±s.d.). Both variables showed significant

variation over the sleep deprivation protocol (PROC MIXED; n¼ 22; main effect of circadian phase: Po0.001; Supplementary Fig. 1 for details). Dashed line:

shape of TEP z-scored amplitude dynamics. (b,c) ANCOVAs showed that relative theta power (b) (n¼ 22; amplitude: r2¼0.19, P¼0.004) and

subjective sleepiness (c) (n¼ 22; amplitude: r2¼0.69, Po0.0001) were significantly and positively associated with both indices of cortical excitability.

Amplitude� circadian phase interactions was not significant (P40.28). (d) Time course of performance to the vigilance task performed simultaneously to

TMS/EEG recordings (mean±s.d.). The task consisted of maintaining a constantly moving cursor in the centre of a computer screen. Small inset depicts a

representative well-rested and sleep-deprived (SD) session. Task performance (average distance kept from the screen center) significantly changed with

time awake (PROC MIXED; n¼ 22; main effect of circadian phase: F(7,122)¼ 13.78; Po0.0001). (e) An ANCOVA revealed that vigilance task performance

impairment was associated to TEP amplitude/slope increase (n¼ 22; amplitude: r2¼0.44, Po0.0001; slope: r2¼0.43, Po0.0001). Amplitude/

slope� circadian phase interaction was not significant (P40.69).
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homoeostasis, as participants’ activities were intellectually
demanding, resembled daily activity and included learning of
novel information2. Finally, in prior studies, prior sleep–wake
history was also not as carefully controlled as in the present study
and data were not realigned to the onset of melatonin secretion,
as a marker of circadian phase. This implies that in previous
studies prior chronic sleep restriction may have not been fully
dissipated before the experiment and that a 21:00 assessment in a
given study10 could in fact represent a very different combination
of sleep pressure and circadian phase than an assessment at 14 h
of wakefulness in the present experiment, which also occurred at
around 21:00 (for a participant waking up at 07:00).

The amplitude and particularly the slope of an EEG signal are
considered to reflect neuronal synchrony and synaptic strength at
the cortical level14. The variations in TMS-evoked EEG responses
and their sharp overnight increase could therefore reflect a loss of
discrimination or specificity of individual neurons and the
impoverishment of firing repertoires of neuronal populations,
which would jeopardize performance. Furthermore, global and
local dynamics in neuronal synchrony have been demonstrated
both during wakefulness and sleep41,42. As we stimulated a single
brain area, we can only speculate about this global/local aspect.
We delivered TMS over the frontal cortex because this region
shows the most pronounced impact of sleep–wake history based
on lower EEG frequency power variations3,39. The increase in
these lower frequencies associated with wakefulness extension is
global but also follows a fronto-occipital gradient3. This pleads for
similar variations in cortical excitability over the entire brain that
would be attenuated towards the occiput. Cortical excitability
shows, however, region specific characteristics in the main
frequency of a TMS-evoked EEG response in human43. Both
gradual and maybe quite focal brain variations in the dynamics of
cortical excitability are therefore likely and their extent deserves
further investigation.

Modifications in cortical excitability imply changes in excita-
tion/inhibition balance across subpopulations of neurons. This
balance would therefore be under strong circadian influence,
possibly through circadian changes in synaptic structure which is
evident in many species other than humans9,18, through change
in the extracellular milieu44, via a glial contribution, or through
changes in the influence of brainstem and mesencephalic
structure of the ascending arousal system45.

Cortical excitability increases have been associated with
chronic insomnia46 and epilepsy47 and reductions have been
observed in stroke48 and disorders of consciousness49.
Combinations of increases and decreases have been reported in
neurodegeneration50,51, depression52,53, possibly depending of
the type and the stage of the disorder, as well as on time of day.
Whether these abnormalities are sustained over the entire 24 h
sleep–wake cycle or are only transient is unclear. Likewise,
whether the dynamics of cortical excitability over the circadian
cycle is altered in those pathological conditions is also not known.

Circadian disruption is, for instance, very common in
Alzheimer disease and is deemed to contribute to cognitive
impairment in those patients54. A time-of-day variation in the
occurrence of seizures is also well established in certain forms of
epilepsy55. Our data also imply that there may be optimal times of
day for neurorehabilitation approaches which attempt to restore
normal cortical activity in neurological conditions, either
through cognitive intervention programs56 or non-invasive
neurostimulation57. A circadian influence on cortical excitability
may explain for instance why neurostimulation using TMS or
transcranial electric stimulation (TES) fails to induce consistent
improvement across clinical studies in Alzheimer’s disease
or stroke patients57,58. A full characterization of the temporal
profile of cortical excitability in clinical populations may

contribute to the development of TMS or TES neuro-
rehabilitation strategies.

As a whole, our study, based on a relatively large sample and
on repeated assessments over the 24 h day–night cycle, provides
novel insights in the regulation of neuronal and synaptic function
in healthy individuals and demonstrates that cortical excitability
dynamics is strongly influenced by circadian rhythmicity. Its full
characterization holds promise for cognitive enhancement in
healthy and clinical brains58,59.

Methods
Participants. The study was approved by the Ethics Committee of the Medicine
Faculty of the University of Liège. Participants gave their written informed consent
after the nature and possible consequences of the studies were explained and
received a financial compensation. Twenty-four healthy Caucasian men (18–30
years) were enroled. Women were excluded from the study as changes in ovarian
hormones may influence cortical excitability in humans60. Other exclusion criteria
included: (1) BMI r18 and Z25; (2) psychiatric history, severe trauma, sleep
disorders; (3) addiction, chronic medication; (4) smokers, excessive alcohol
(414 doses per week) or caffeine (43 cups per day) consumption; (5) night shift
workers during the last year; (6) transmeridian travel during the past 2 months;
(7) anxiety or depression; (8) poor-sleep quality; (9) excessive self-reported daytime
sleepiness. One participant was excluded due to a melatonin phase-delay 46 h
compared with the remainder of the sample, and one due to low EEG recording
quality. Thus, data presented here include 22 participants. Supplementary Table 1
summarizes the demographic characteristics of the final study sample. Participants
were recruited based on a polymorphism in PERIOD3 (PER3 variable number of
tandem repeat, with 4 or 5 repeats)61, but genotype was ignored in the analysis
given the limited sample size of PER35/5 genotype (7 PER35/5for 15 PER34/4).

Experimental protocol. Participants first completed a ‘pretest’ TMS/EEG session
to determine the optimal TMS parameters providing artefact-free EEG recordings.
The left or right supplementary motor area (SMA) was set as stimulation target for
right or left handed, respectively. This brain area was identical to10 and was chosen
for the following reasons: (1) similar to the entire frontal lobe, the SMA is
exquisitely sensitive to sleep pressure, including at the neuronal level, as indicated
in a previous EEG-TMS experiment10; (2) it plays a key role in cognitive
performance, and is heavily connected to the prefrontal cortex62; (3) its stimulation
does not trigger muscle activation, sources of EEG signal contamination.

The second step consisted of a laboratory polysomnographically monitored
habituation night to exclude potential sleep disorders. During the 7 days preceding
the study, participants kept a regular sleep–wake schedule of 8 h sleep duration
(±15 min). Compliance was verified using wrist actigraphy (Actiwatch, Cambridge
Neurotechnology, UK) and sleep diaries (Supplementary Table 1). Participants
were requested to abstain from all caffeine- and alcohol-containing beverages and
from intense physical activity for 3 days preceding the study.

For the experiment per se, participants arrived at the laboratory B6 h before
their habitual sleep time. They were maintained in dim-light from there on
(5olux, except for sleep episode in complete darkness) and trained twice on the
behavioural test battery. They then slept for an 8 h sleep baseline episode starting at
their habitual bedtimes (Supplementary Table 2). The TMS-compatible electrode
cap was placed upon awaking before the 29 h of sustained wakefulness period
(sleep deprivation) under constant routine conditions (that is, light ca. 5 lux,
temperature ca. 19 �C, regular isocaloric liquid meals and water, semi-recumbent
position and no time-of-day information, sound proofed rooms) during which they
did not interact with other participants but could engage conversation with
research staff (outside test periods). These conditions aim to minimize external and
internal factors masking circadian rhythmicity25.

Spontaneous quiet waking EEG and TMS-evoked EEG potentials (TEP) were
recorded eight times during sleep deprivation to cover the entire near-24 h
circadian cycle, with higher session frequency around the circadian WMZ and
SPZ5 (11:00, 17:00, 21:00, 23:00, 02:00, 06:00, 08:00, 11:00, for a subject sleeping
from 23:00 to 07:00; Fig. 1). Behavioural test batteries were carried out 12 times
during the sleep deprivation period in between EEG sessions (12:00, 14:00, 16:00,
18:, 20:00, 22:00, 00:00, 03:00, 05:00, 07:00, 09:00, 00:00). Subjective sleepiness and
affect dimensions were assessed hourly by the Karolinska Sleepiness Scale (KSS)
and a Visual Analogical Scale (VAS), respectively. Saliva samples for melatonin and
cortisol assays were also collected hourly.

TMS-evoked EEG responses acquisition. TMS pulses were generated by a Focal
Bipulse 8-Coil (Eximia; Nexstim, Helsinki, Finland). Stimulation target (SMA) was
located on individual structural MRI by means of a neuronavigation system
(Navigated Brain Stimulation; Nexstim). This device allows for reproducible
evoked EEG responses63 and precise target location (FDA approval for presurgery).
Each session included between 250 and 300 trials. Interstimulus interval was
randomly jittered between 1,900 and 2,200 ms. Coil recharge was set at 900 ms
post-TMS. Total number of stimulations of the eight EEG/TMS sessions was well
below safety recommendations64.
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TMS responses were recorded with a 60-channel TMS-compatible EEG
amplifier (Eximia; Nexstim), equipped with a proprietary sample-and-hold
circuit equipment guaranteeing TMS artifact-free data 8 ms post TMS65.
Electrooculogram was recorded with two additional bipolar electrodes. Participants
wore the EEG cap during the entire constant routine protocol and electrodes
impedance was kept below 5 kO. Signal was band-pass-filtered between 0.1 and
500 Hz and sampled at 1,450 Hz. Each EEG/TMS session ended with a
neuronavigated digitization of the location of each electrode.

Auditory EEG potentials (AEP) evoked by the TMS and bone conductance were
minimized by diffusing a continuous loud white masking noise through earplugs
and applying a thin foam layer between the EEG cap and the TMS coil,
respectively63. Each session was followed by a ‘sham’ session consisting in 30–40
TMS pulses delivered parallel to the scalp while white noise was diffused with the
same level. Absence of AEP was checked online on Cz between 0 and 300 ms
post TMS.

Spontaneous waking and sleep EEG acquisition. Spontaneous quiet waking EEG
was recorded prior to each TMS session using the same 60-channel TMS-
compatible EEG (þ 2 EOG) amplifier (Eximia; Nexstim). Participants were
instructed to fix a black dot during 2 min while relaxing and suppressing blinking.

Sleep EEG data were recorded using a V-Amp 16 amplifier (Brain Products
GmbH, Gilching, Germany) according to 10/20 system). The habituation night
montage consisted of a full PSG with five EEG channels (Fz, Cz, Pz, Oz, C3)
referenced to left mastoid (A1), two bipolar electrooculogram (EOG), two bipolar
electrocardiogram channels, two bipolar electrodes placed on a leg to check for
periodic movements and an oximeter for sleep related breathing disorder detection.
Baseline night montage consisted of 11 EEG channels (F3, Fz, F4, C3, Cz, C4, P3,
Pz, P4, O1 and O2) referenced to left and right mastoids (A1 and A2), two bipolar
EOG and two bipolar electromyogram (EMG) channels. EEG data were digitized at
a sampling rate of 500 Hz.

TMS vigilance task. While recording TMS-evoked EEG responses, participants
performed a visual task (CTT) to monitor their vigilance level10. The task consisted
of keeping a constantly randomly moving cursor on a target located in the centre of
a computer screen, using a trackball device. Performance to the task was computed
as the average distance, in pixels, between the cursor and the target during EEG/
TMS recording (normalized according to the duration of the session). Transitory
lapses of vigilance resulted in temporary increases of the target—cursor distance
which could be automatically detected offline. A lapse was defined as a time when
the cursor was located outside of a central 200 by 200 pixel box surrounding target
following 4500 ms from the last trackball movement. The lapse period included
the period between the last trackball movement and the lapse detection. TMS-
evoked responses occurring during and o1 s from a lapse were discarded from the
analyses.

Psychomotor vigilance task. Participants were required to press a computer
space bar as soon as an auditory signal, presented at a random interval of 3–7 s,
occurred. The PVT lasted 5 min. Session performance was inferred from the
median reaction time following removal of lapses (4500 ms), anticipation
(o100 ms) and error (43,000 ms)28.

Saliva collection for melatonin and cortisol assays. Saliva samples were first
placed at 4 �C, prior centrifugation and congelation at � 20 �C within 12 h. Salivary
melatonin and cortisol were measured by radioimmunoassay (Stockgrand Ltd,
Guildford, UK), as previously described66. Of a total of 624 samples, 546 were
analysed in duplicate for melatonin concentration. The limit of detection of the
assay for melatonin was 0.8±0.2 pg ml� 1 using 500 ml volumes. Of a total of 631
samples, 631 were analysed in duplicate for cortisol concentration. The limit of
detection of the assay for cortisol was 0.37±0.05 nmol l� 1 using 500ml volumes67.

TMS/EEG data analysis. TMS/EEG data pre-processing was computed using
Statistical Parametric Mapping 12 (SMP12, http://www.fil.ion.ucl.ac.uk/spm/)
implemented in Matlab 2011a (The Mathworks Inc, Natick, MA). Continuous EEG
recordings were successively re-referenced to the average of all good channels, low-
pass filtered at 80 Hz, downsampled from 1,450 to 1,000 Hz, and high-pass filtered
at 1 Hz, split into epochs between –101 and 300 ms around TMS pulses, and
baseline corrected -101 to � 1.5 ms pre-TMS periods. Robust averaging was
applied to compute the mean evoked response of each session68.

Cortical excitability was inferred from the amplitude and slope of the first EEG
component (0–30 ms) of the TEP measured at the artifact-free electrode closest
from the hotspot (that is, brain location with highest TMS-induced electrical field
estimated by the neuronavigation system). The latter electrode was always located
in the stimulated brain hemisphere. It could vary across participants but remained
constant at the individual level. TEP amplitude and slope were also extracted from
a reconstructed signal at the hotspot using localization of equivalent current dipole.

Spontaneous waking and sleep EEG analyses. Waking EEG data were analysed
with MATLAB (2011a, The Mathworks Inc, Natick, MA). Data pre-processing was
performed using Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.
ucl.ac.uk/spm). Artefacted channels were rejected after visual inspection.

Continuous EEG recordings were downsampled from 1,450 to 500 Hz. Data were
then manually and visually scored offline for artefacts (eye blinks, body move-
ments, and slow eye movements). Power spectral densities were computed using a
fast Fourier transform on artifact-free 4-s, overlapping by 2 s, using the Welch’s
method (pwelch function in MATLAB 7.5.0). EEG activity was computed over
frontal region (FP1, FPz, FP2, AF1, AFz, AF2, F7, F3, F1, Fz, F2, F4 and F8) for
delta (0.75–4 Hz), theta (4.5–7.5 Hz), alpha (8–12 Hz), sigma (12.5–18 Hz) and beta
(18.5–30 Hz) frequency bands over the entire 2-min recording.

Sleep EEG recordings were re-referenced to the average of both mastoids and
band-pass filtered between 0.5 and 25 Hz. Data were visually inspected for artefact
and manually scored for sleep stages on a 30-s epoch basis using FASST (an SPM
compatible toolbox69), according to AASM criteria65. One baseline night was
excluded from analyses because of poor quality of the recording (n¼ 21). NREM-
REM sleep cycles were determined according to Feinberg and Floyd. Power spectra
were computed using a fast Fourier transform on successive 4-s epochs,
overlapping by 2 s and weighted by a Hanning window.

Statistics. All statistical analyses were performed with SAS version 9.3 (SAS
Institute, Cary, NC, USA). For TEP amplitude and slope, cortisol level, KSS and
PVT measures, standardization was provided by a z-score at individual level. TMS
vigilance task was normalized by dividing performance to the duration of task and
then z-scored. Frontal waking theta activity was normalized by dividing theta
power by the sum of frequencies within 0.75 and 20 Hz over the same region. The
time course of cortical excitability (that is, TEP amplitude and slope) was examined
with mixed-model analyses of variance for repeated measures (PROC MIXED),
with within-subject factor ‘circadian phase’. Contrasts were assessed with Differ-
ence of Least Square Means statement. TEP amplitude and slope were realigned, at
the individual level, to dim-light melatonin onset (DLMO).

Estimation of circadian phase (where 0�¼ individual DLMO) was determined
based on raw values. The four first samples were disregarded and maximum
secretion level was set as the median of the three highest concentrations during the
constant routine. Baseline level was set to be the median of the values collected
from wake-up timeþ 5 h to wake-up timeþ 10 h. DLMOn was computed as time
at which melatonin level reach 20% of the baseline to maximum difference
(following linear interpolation).

ANCOVA were performed to estimate how TEP amplitude and slope were
associated to theta EEG activity, subjective sleepiness and effects, cortisol level, and
TMS vigilance task behavioural responses. To investigate the influence of sleep
homoeostasis and circadian rhythmicity on cortical excitability, TEP amplitude and
slope were fitted with, respectively, linear and sine-wave functions:

Linear function: Var¼ (Cþ L� time), where C corresponds to initial constant
and L is the linear increment across time27.

Sine-wave function: Var¼MesorþAmplitude� sin ((sample� ti-time)/24.2),
where mesor, amplitude, and time are free parameters, ti represents clock time i at
which a sample is collected25.

Estimated fitted cortisol secretion profile was obtained using this same sine-
wave function. The amplitude of cortisol estimated secretion, as a proxy of the
circadian signal strength, was derived from the difference between the maximal and
minimal cortisol predicted values.

An exponential decay function (PROC NLIN, SAS 9.3) was fitted to sleep delta
data power (0.75–4 Hz) of the first four sleep cycles70 and derived from the frontal
derivations, known to be more sensitive to sleep deprivation: SWA(t)
¼ SWA0� exp(� r� epi)3,70. The amount of initial slow wave activity (SWA0)
and its dissipation rate (r) were derived.

Regression (PROC REG) were also performed between individual estimated
cortisol amplitude and the TEP amplitude and slope decrease from session 2 to
session 3 (two participants were excluded from this latter analysis because one
showed a cortisol amplitude more than four standard deviations below the sample
mean and another because the TMS responses of session 2 were of poor quality); 2)
between individual estimated slow wave activity dissipation rate (r) and the TEP
amplitude and slope increase from the first to the last session (four participants
were excluded from this latter analysis because two showed dissipation more than
three standard deviations above the sample mean and two had a TMS response
during first or last session of poor quality).

Data availability. The authors declare that the data that support the findings of
this study are available from the corresponding author upon request.
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