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Reprogramming of metabolic priorities promotes tumor progression. Our understanding
of the Warburg effect, based on studies of cultured cancer cells, has evolved to a more
complex understanding of tumor metabolism within an ecosystem that provides and
catabolizes diverse nutrients provided by the local tumor microenvironment. Recent
studies have illustrated that heterogeneous metabolic changes occur at the level of
tumor type, tumor subtype, within the tumor itself, and within the tumor
microenvironment. Thus, altered metabolism occurs in cancer cells and in the tumor
microenvironment (fibroblasts, immune cells and fat cells). Herein we describe how these
growth advantages are obtained through either “convergent” genetic changes, in which
commonmetabolic properties are induced as a final common pathway induced by diverse
oncogene factors, or “divergent” genetic changes, in which distinct factors lead to
subtype-selective phenotypes and thereby tumor heterogeneity. Metabolic
heterogeneity allows subtyping of cancers and further metabolic heterogeneity occurs
within the same tumor mass thought of as “microenvironmental metabolic nesting”.
Furthermore, recent findings show that mutations of metabolic genes arise in the majority
of tumors providing an opportunity for the development of more robust metabolic models
of an individual patient’s tumor. The focus of this review is on the mechanisms governing
this metabolic heterogeneity in breast cancer.

Keywords: breast cancer, metabolism, Warburg effect, aerobic glycolysis, reverse Warburg effect, epigenetics,
PPAR-g, Cyclin D1
INTRODUCTION

Breast Cancer. Breast cancer is the most common non-dermatological malignancy in women
representing approximately one third of all malignancies diagnosed in US women (1, 2). In
approximately 10% of cases breast cancers are associated with gene mutations inherited from one
relative. Almost 50% of breast cancer cases occur in less developed countries with incidence rates
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ranging from 19 per 100,000 women in Eastern Africa to 90 per
100,000 women in Western Europe. Efforts to provide more
precise therapies to patients with breast cancer has led to
subclassification using the coding genome, the non-coding
genome or more recently, metabolic subtypes.

Precision medicine approaches have identified genetic
subtypes of BCa based initially on the coding genome (3). At
least five distinct coding genome molecular subtypes are
recognized including luminal A, luminal B, human epidermal
growth factor receptor 2 (HER2)-enriched, basal-like, and
claudin-low and normal-like (4, 5). Triple negative breast
cancer (TNBC), which lacks estrogen receptor-a (ERa),
progesterone receptor (PR) and HER2, characteristically
includes mutations of DNA damage repair (6), altered PD-L1
expression (7) and increased expression of the G protein coupled
receptor CCR5 (8, 9). Breast cancer has also been characterized
based on the non-coding genome (10, 11). Altered expression of
miRNA was observed in breast cancer (12). In subsequent
studies hierarchical clustering of human breast cancers defined
four distinct miRNA clusters (G1-G4) associated with
distinguishable relapse-free survival by Kaplan-Meier analysis
(10). These studies defined a cyclin D1-regulated miRNA
signature which included several oncomirs, that was conserved
in multiple breast cancer cell lines, and was associated with the
G2 tumor miRNA cluster, ERa+ status, better outcome and
activation of the Wnt pathway (10). Of interest these studies
showed that the coding and non-coding genome for any
given tumor were discordant within breast cancer subtypes.
In recent studies metabolic subtyping of breast cancer
has revealed distinguishable characteristics. Triple negative
breast cancer (TNBC), for example, expresses low levels
of glutamine synthetase (GLUL, glutamate-ammonia ligase).
Withdrawing glutamine suppresses growth of the basal
and claudin low triple negative tumors BCa tumor subtype
(13). In contrast, luminal tumor cells express GLUL and are
resistant to glutamine deprivation (14). The glutaminase isozyme
GLS2, is upregulated and essential in luminal-subtype breast
tumors (15).

Currently, therapies for breast cancer rely on surgical,
radiotherapeutic, chemotherapeutic and biological therapeutic
approaches (16). Despite these advances in medicine, 30% of
patients relapse and develop a metastatic cancer (17). Patients
with triple negative breast cancer (ERa Negative, HER2
Negative, PR Negative) have a poor outcome and require
additional therapy. Historically targeting of the coding genome
has improved mortality rates in breast cancer patients, and in
vitro pre-clinical studies have shown promise in targeting the
non-coding genome (18–20). The identification of metabolic
dependencies specific to the cancer vs. normal cells therefore
represents an important new opportunity for therapeutic
intervention. In this regard the xCT antiporter, which is
expressed on 1/3 of triple negative tumors in vivo, is essential
to support environmental cystine acquisition (13). Inhibition of
the xCT antiporter with the anti-inflammatory Sulfasalazine
decreased tumor growth (13). Targeting GLS1/GLS2 with the
small-molecule inhibitor 968 reduced tumor growth in luminal
breast cancer (15).
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Tumor metabolism. The abnormalities associated with tumor
metabolism have been recently reviewed (21–23). In contrast to
normal differentiated cells, which rely primarily on
mitochondrial oxidative phosphorylation to generate the
energy needed for cellular processes, most cancer cells instead
rely substantially on cytosolic aerobic glycolysis, a phenomenon
termed “the Warburg effect” (Figure 1) (24, 25). In Warburg’s
view, so central were metabolic changes to the cancer phenotype
that he opined, “From this point of view, mutation and
carcinogenic agent are not alternatives, but empty words, unless
metabolically specified” (24).

As the analytical tools used to interrogate the characteristics
of tumor metabolism have evolved, it has become increasingly
clear that metabolic adaptations of tumors are highly
heterogeneous (26–30). Historically the understanding of
FIGURE 1 | Heterogeneous cellular energy metabolism within breast cancer
cells. Highly proliferating breast cancer cells rely on glycolysis to provide
cellular energy. Quiescent breast cancer stem cells use more oxidative
phosphorylation (OxPhos) instead of glycolysis to generate ATP. Proliferating
cancer stem cells rely on both glycolysis and Oxphos. Both quiescent and
proliferating cancer stem cells can use catabolites from cancer-associated
stromal cells through the Reverse Warburg effect.
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cancer metabolism was drawn from principles of “convergent”
metabolic phenotypes, properties that are governed by diverse
factors shared among diverse tumor types. As the resolution of
investigative tools has evolved, evidence for “divergent”
metabolic pathways has provided compelling evidence for
breast cancer metabolic heterogeneity.

Convergent properties include the principal that cancer cells
have evolved multiple distinct mechanisms in order to provide
metabolic substrates for proliferation within the tumor
microenvironment (25). Like all living cells cancer cells need
ATP, together with carbon intermediates for the synthesis of
DNA, proteins and lipids. Cancer cells augment the procurement
of nutrients, scavenge nutrients from alternative sources
(alternative substrates), reprogram metabolic process needed
for growth, and upregulate the apparatus for processing the
nutrients into energy and structural intermediates for
replication, growth, and invasion. Cancer-associated metabolic
changes have been usefully categorized as: (i) deregulated uptake
of glucose and amino acids, (ii) opportunistic nutrient
acquisition from both intracellular and environmental sources,
(iii) use of glycolysis/TCA cycle intermediates for biosynthesis
and NADPH production, (iv) increased demand for nitrogen
and means to satisfy it, (v) alterations in metabolite-driven gene
regulation, and (vi) metabolic interactions with the tumor
microenvironment. Tumors vary in the degree to which they
deploy these individual changes (31). Thus, in addition to
changes in glucose uptake, increased levels of methionine,
glutamine, cystine, tryptophan, tyrosine, and other amino acids
have been noted in breast cancer (32–36). Cancer cells with
upregulation of amino acid metabolism stimulate increased
transport of amino acids into the cell. The increased
consumption of amino acids and overexpression of amino acid
transporters (L-type amino acid transporter 1) during breast
cancer progression, has led to an interest in radiolabeled amino
acids imaging agents (37).

“Divergent” properties derive from distinct genetic or
epigenetic alterations with a tumor which govern distinct
molecular subsets of genes that in turn alter cellular
metabolism thereby contributing to metabolic heterogeneity.
Distinct oncogenotypes have been characterized in a variety of
cancers. IDH1 and IDH2 mutations give rise to accumulation of
(R)-2HG (38, 39). In lung cancer distinct somatic mutations
(TP53, KRAS, BRAF, NF1, EGFR, KEAP1) appear to be each
sufficient to regulate tumor metabolism (26–28). Although less
well characterized in breast cancer, genetic alterations that occur
in breast cancer (cyclin D1 overexpression (40, 41) and
epigenetic changes [FBP1 (42), the Jumonji-domain histone
demethylase (JHDM)3C (43)], are sufficient to induces
metabolic changes reflected by the Warburg effect.
“CONVERGENT” GENETIC PROPERTIES
DRIVING THE WARBURG EFFECT

Warburg observed that cancer cells primarily supply energy from
glucose through avid glycolysis, even in aerobic conditions where
Frontiers in Oncology | www.frontiersin.org 3
more efficient mitochondrial oxidative phosphorylation
(OXPHOS) was potentially available. Per molecule of glucose,
glycolysis followed by OXPHOS generates up to 18 times more
adenosine 5´-triphosphate (ATP) than glycolysis alone (44). The
Warburg effect is pervasive among cancer cells of many but not
all cancer types, For example the Warburg effect is not
prominent in early prostate cancer (45, 46) and is found in
only one of the metabolic subtypes of glioblastoma multiforme
(21). Furthermore, the Warburg effects occurs in a
heterogeneous manner within tumors, generating an
intratumoral “nesting phenomenon”. Aerobic cells proliferate
best when they are clustered with some glycolytic cells (44,
47, 48).

Several convergent genetic processes further drive the
Warburg effect in tumors. Oncogenic mutations, tumor
suppressor deletions and overexpression of collaborative
oncogenes contributes to the tumor metabolic shift as these
genes govern expression of glycolytic enzymes. In this regard c-
myc, k-Ras, mutant p53, cyclin D1 and the b-catenin/TCF
signaling pathway augment the Warburg effect (41, 49–52).
Hypoxia-inducible factor-1a (HIF1a), which normally
contributes to regulation of glycolysis in hypoxia, is also more
protected from degradation in some cancer types.

A transition towards aerobic glycolysis is available to normal
cells during proliferation (53). In tumor cells that activate the
Warburg effect, several metabolic consequences occur. Cancer
cells accelerate aerobic glycolysis partly through regulatory
processes that are general to proliferating cells (54). Normally,
glycolysis proceeds at a rate that reflects negative feedback
control of intracellular ATP and NAD+/NADH homeostasis.
There may be an advantage for an energetically active cancer cell
in the speed of ATP production in glycolysis. ATP can be rapidly
synthesized by glycolysis, up to 100 times faster than OXPHOs
(55). Cancer cells, with diminished OXPHOS-generated ATP
and efficient export of NADH reducing equivalents as lactate,
maintain a permissive intracellular environment for dysregulated
glycolysis. The diversion of pyruvate away from acetyl CoA
production to lactate, simultaneously regenerates NAD+ and
deprives the mitochondrial electron transport chain of NADH
for ATP synthesis.

Aerobic glycolysis also confers an advantage to cancer cells by
generation of macromolecules to increase the cellular biomass
(53). Rapid proliferation of cancer cells needs to be sustained by
increased macromolecular biosynthesis. As well as its role in
providing substrates for mitochondrial OXPHOS, glycolysis
intermediates supply the pentose phosphate pathway, support
NADPH generation, contribute one-carbon species into the one-
carbon cycle and make acetyl CoA available for lipid synthesis
(53). Glucose-6-phosphate dehydrogenase action on the first
product of glycolysis, glucose-6-phosphate, initiates the pentose
phosphate pathway. Products of the pentose phosphate pathway
include ribose-5-phosphate for nucleotide synthesis and
NADPH. NADPH, an essential intracellular reductant that is
consumed in numerous lipid, amino acid and nucleotide
anabolic pathways, is created in both the pentose phosphate
pathway and in one-carbon cycle reactions (56).
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Later steps in glycolysis yield fructose-6-phosphate, which
may proceed to hexosamine synthesis and dihydroacetone
phosphate, which is a substrate for glycerol-3-phosphate,
and thence lipid, synthesis. Enhanced expression of 3-
phosphoglycerate dehydrogenase has been described in breast
cancer cells (57). In glycolysis, 3-phosphoglycerate is diverted
out of the pathway under the action of 3-phosphoglycerate
dehydrogenase. This is a quantitatively important source of
substrates for the one-carbon cycle, enabling production of
glycine, serine and thence S-adenosylmethionine and one-
carbon derivatives of tetrahydrofolic acid (58). These are
essential for the synthesis of purine and pyrimidine bases for
nucleotides and many other biosynthetic processes. The
glycolysis product, pyruvate, is available for acetyl CoA
generation and thereby lipogenesis (53, 59).

Increased lactate production from aerobic glycolysis leading
to cellular acidification and results in lactate efflux from cells to
maintain cellular pH. Lactate efflux results in an acidic
extracellular tumor microenvironment, which promotes
angiogenesis (60) increasing HIF1a stabilization, promoting
VEGF production from cancer associated macrophages (61),
enhancing hyaluronic acid production from fibroblasts (62),
inducing extracellular matrix degrading cathepsins and matrix
metaloproteases (63, 64), and augmenting endothelial cell PI3K
and NFkb signaling (65) thereby promoting vasculogenesis.
EPIGENETIC CHANGES IN TUMORS
THAT PROMOTE THE WARBURG EFFECT

Epigenetic modifications in breast cancer cells can alter
metabolism in a particular tumor, thereby contributing to
divergent heterogeneous metabolic changes. Epigenetic
changes, which are inheritable, reversible changes in selective
gene expression that occur without any alterations to the DNA
sequence itself, include DNAmethylation, histone modifications,
and RNA-mediated gene silencing by non-coding RNAs such as
miRNA. DNA methylation has been described of specific key
components in glycolytic pathways, glycolysis bypass pathways
(i.e. gluconeogenesis and pentose phosphate pathway), as well as
mitochondrial and oxygen sensing pathways (66). Furthermore
many of the intermediates of cellular metabolic pathways
participate in the chemical modifications that epigenetically
modify DNA and histones (67). A synopsis of these epigenetic
changes that have been described in tumors, shown in Figure 2,
underscore the growing evidence for heterogeneous drivers of
altered tumor metabolism. In addition to epigenetic changes
within the tumors, epigenetic changes also occur in the tumor
stroma. Distinct epigenetic alterations occur in epithelial and
myoepithelial cells, and stromal fibroblasts occur in a tumor
stage- and cell type-specific manner (68). Based on unsupervised
analysis three methylation patterns of breast cancer (luminal A,
luminal B and basal-like molecular subtypes) were identified,
whereas HER2-enriched and normal-like subtypes were
distributed among the three groups (69). The luminal B were
most methylated and basal-like tumors least frequently
Frontiers in Oncology | www.frontiersin.org 4
methylated. BRCA2-mutated tumors were highly methylated. A
large fraction of genes reported as having subtype-specific
expression patterns might be regulated through methylation (69).

Epigenetic Modification of the Tumor
Within the tumor, DNA methylation affects key glycolytic
components, including glucose transporters (GLUT1, GLUT3),
lactate dehydrogenase genes (LDH-A, LDH-B), the hexokinase 2
isoform (HK2), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and the pyruvate kinase (PK) isoform M2 (PKM2),
each of which contribute to the Warburg effect (66).
DNA hypermethylation-mediated inactivation of the Derlin-3
gene, which normally contributes to GLUT1 degradation,
leads to increased GLUT1 expression (70). Increased GLUT3
expression is regulated by methylation (71). DNA hyper
methylation of the LDH-B gene in breast cancer (which
interconverts lactate and pyruvate), increases the LDH-A to
LDH-B ratio (72). Increased LDH-A mediated conversion of
pyruvate into lactate promotes aerobic glycolysis (73). LDH-A
activity is crucial to the Warburg effect since it oxidizes NADH
and regenerates NAD+, without which aerobic glycolysis could
not continue (74). Aerobic glycolysis is induced by upregulation
of the hexokinase isoform HK2 via hypomethylation of its
promoter (75) and hypomethylation within intron 1 of the
pyruvate kinase (PK gene) (76). GAPDH upregulation, via
coactivator-associated arginine methyltransferase 1 (CARM1)-
mediated methylation also enhances aerobic glycolysis (77). The
pyruvate kinase (PK) isoform M2 undergoes DNA methylation
at exon 10 of the PK gene, correlating with increased PKM2
expression in breast cancer cells (78–80). Binding of Brother of
Regulator of Imprinted Sites (BORIS) to the alternative exon 10
is thereby enhanced. Inhibiting DNA methylation, depleting
BORIS or eliminating the BORIS binding site, switched
splicing toward generating the normal PKM1 isoform. Loss of
BORIS also suppresses the Warburg effect and growth of breast
cancer cells (79).

DNA methylation of mitochondrial components, such as
mitochondrial DNA (mtDNA), the mitochondrial quality control
protein Mieap, and pyruvate dehydrogenase (PDH) kinase 4
(PDK4), causes mitochondrial dysfunction in cancer cells,
triggering the Warburg effect (81). Methylation of mtDNA
specifically causes dysfunction of oxidative phosphorylation,
which promotes aerobic glycolysis as the primary method for
rapid ATP synthesis in cancer cells (82). Mieap normally
functions to induce intramitochondrial recruitment of lysosome-
like organelles in order to eliminate oxidized mitochondrial proteins
while maintaining mitochondrial structural integrity. Methylation
of the Mieap promoter reduces Mieap abundance, leading to ROS
accumulation and mitochondrial destruction (83–85).

DNA methylation changes affect activity of nuclear factor
erythroid 2-related factor 2 (NRF2), which in turn regulates
expression of transketolase (TKT) like-1 gene (TKT L1), and the
fructose-1,6-bisphosphate isoform 1 (FBP1) (66). Methylation in
the KEAP1 promoter reduces KEAP1 expression, and thereby
abrogates NRF2 degradation (86–88). NRF2 is a transcriptional
activator of genes in the pentose phosphate pathway [G6PDH, 6-
September 2021 | Volume 11 | Article 700629
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phosphogluconate dehydrogenase (6PGD), transketolase (TKT),
transaldolase and IDH (89)].

In basal-like breast cancer (42) and other cancer types (66),
reduced Fructose-1,6-bisphosphatase (FBP1) expression, is due
to FBP1 promoter methylation (42). Reduced FBP activity
increases glycolysis, enhancing glucose uptake and reducing
OXPHOS. The FBP1’s substrate, fructose-1,6-bisphosphate, is
an allosteric activator of PKM2, providing a link between
reduced FBP1 activity and the Warburg effect (90).

DNA methylation regulates HIF1 abundance and key
components in the oxygen sensing pathway (91), including
the tumor suppressor proteins WW-domain containing
oxidoreductase (Wwox), carboxy-terminal domain 4 (CITED4),
the LIM domain containing protein (LIMD1), and von
Hippel-Lindau (VHL) (66). In breast cancer GLUT1 expression
inversely correlated with Wwox (92). DNA methylation
regulates Wwox expression, which modulates glucose
Frontiers in Oncology | www.frontiersin.org 5
metabolism (93). Under aerobic conditions, loss of Wwox
reduces mitochondrial respiration and activates glycolytic gene
expression, thereby inducing the Warburg effect (94). This is
linked to accumulation of Wwox associates with HIF1-a,
facilitating hydroxylation by prolyl hydroxylase 2 (PHD2) (92).
CITED4 inhibits the HIF complex. Hypermethylation of the
CITED4 promoter, reduces CITED4 expression in breast
cancer, thereby increasing the expression of HIF and its target
genes (95).

In melanoma cells and head and neck cancer cells, DNA
hypomethylation of the TKT L1 gene promoter increases TKT L1
expression and activity, promoting HIF1-a accumulation and
stability (96) and inducing the Warburg effect (96, 97). LIMD1
acts as a scaffold protein to bind PHD2 and VHL, which degrade
HIF by ubiquitination (98) and increased methylation of LIMD1
and VHL are associated with upregulation of HIF1-a in cervical
cancer (99).
FIGURE 2 | Schematic representation of metabolic nodes governed by epigenetic modification. Metabolic enzymes and nutrient transporters are governed by
modification by DNA methylation and histone modifications. Bidirectional feedback occurs as the metabolic substrates generated in turn regulate epigenetic
modifications. a-ketoglutarate is a co-substrate for JHDM (The Jumonji-domain histone demethylase) histone demethylase and the TET family methylcytosine
dioxygenases, thereby governing demethylation of histone and other proteins, and DNA. Fumarate, succinate and 2-HG compete with a ketoglutarate. HIF1a
(hypoxia inducible factor 1a), KEAP1 (Kelch-like ECH-associated protein 1), NRF2 (nuclear factor erythroid 2-related factor 2), FBP1 (fructose-1,6-bisphosphate
isoform 1), TKTL1 (transketolase (TKT) like-1 gene), SAM (S-adenosyl methionine), TCA (tricarboxylic acid), The abundance of GLUT3 and GLUT1 are regulated by
CAV-1 and Derlin3 respectively.
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Epigenetic Modification of the Tumor
Microenvironment
Epigenetic modification of the tumor microenvironment also
contributes to tumor metabolic heterogeneity. Epigenetic
reprogramming in CAFs are biomarkers for cancer progression
and promote cancer epithelial progression via paracrine
signaling (100). Multiple epigenetic mechanisms, including
DNA methylation, histone modification, and chromatin
remodeling, together shape and reprogram the phenotypes of
CAFs during tumorigenesis (101). Altered DNA methylation
status of genes occurs in CAFs isolated from breast cancer tissues
(68) and the prostate (102). CAF-secreted factors and stromal
content of breast tumors regulated specific genes characterized
by a DNA methylation pattern: hypermethylation at
transcription start site and shore regions (103). CAFs from
localized prostate cancer display distinct genome-wide changes
in DNA methylation, significantly at enhancers and promoters,
compared to nonmalignant prostate fibroblasts (NPFs) (104). In
pancreatic cancer CAFs adopt unique DNA methylation and
expression patterns upon interaction with PDA tumor cells
(105). Fibroblasts can be reprogrammed to adopt a pro-
invasive phenotype by leukemia inducible factor (LIF), which
induced methylation through DNMT3B of the promoter region
in the protein phosphatase regulator Src homology 2 domain-
containing protein tyrosine phosphatase 1 (Shp-1) gene (106).

Immune cells, including tumor-associated macrophages
(TAMs), participate in breast cancer onset and progression and
contribute to the TME metabolic ecosystem to enhance tumor
growth. TAMs generally show increased aerobic glycolysis but
may use OXPHOS to generate energy. Bidirectional metabolic
feedback occurs between macrophages and breast cancer cells
in which M2 like macrophages induce sodium/glucose
cotransporter 1 (SGLT1) in breast cancer cells and SGLT1
enhances lactic acid secretion to promote M2 macrophage
polarization (107) CCL5 activates the CCR5 receptor, which
participates in metastasis of breast (9, 108) and other cancers
(109–111). Lactate induces the TAM phenotype, inducing CCL5
expression which promotes breast cancer cellular EMT
and aerobic glycolysis via AMPK (112). Human mesenchymal
stem cells (MSCs) induce the DNA methylation of
the IL1A and IL1B genes when co-cultured with pancreatic
ductal adenocarcinoma cells (PDAC) (113). The process of T-
cell exhaustion is also controlled by epigenetic regulation and
enrichment of T lymphocytes within the TME is a prerequisite
for successful cancer immunotherapy (101).

Metabolic substrates from the tumor microenvironment in
turn regulate methylation of stromal CAFs (114). The loss of
cytosine methylation in de-novo generated CAFs is associated
with the induction of inflammatory transcripts. Lactate produced
by tumor cells leads to increased production of alpha-
ketoglutarate (aKG) within mesenchymal stem cells (MSCs).
In turn, aKG mediates activation of the demethylase TET
enzyme leading to decreased cytosine methylation and
increased hydroxymethylation during de novo differentiation of
MSCs to CAF. Thus, in PDAC, a tumor-mediated lactate flux is
Frontiers in Oncology | www.frontiersin.org 6
associated with widespread epigenomic reprogramming that is
seen during CAF formation.
THE DEMAND FOR GLUTAMINE

Glutamine is generally required for proliferation of normal and
cancer cells (115), however cancer cells have an increased
demand for glutamine as a source of nitrogen. Glutamine is
used for the synthesis of amino acids and nucleotides (31)
(Figure 3). In early studies, the optimal growth of cultured
HeLa cells was shown to require a 10- to a 100-fold molar
excess of glutamine in culture medium compared to other amino
acids (116). Furthermore, glutamine is the most rapidly used
amino acid (116). The increased use of glutamine has been
established in the tumor microenvironment in vivo (117–120)
and tumors demonstrate increased uptake of 18F-labeled
glutamine using positron emission tomography (121). Breast
cancer and other cell lines may develop resistance to this
metabolic dependency (122). Glutamine is required for a
variety of different cellular functions in proliferating cells,
providing a source of nitrogen for the synthesis of purine and
pyrimidine nucleotides and for the synthesis of other amino
acids (123). Glutamine is deaminated by glutaminase to generate
glutamate, which is converted to a-ketoglutarate. Within the
mitochondria, a-ketoglutarate is converted to oxaloacetate,
citrate and malate which in turn contribute to other anabolic
pathways (31) (Figure 2). Uptake of cellular amino acids is also
affected by glutamine as intracellular glutamine exchanges with
extracellular leucine via LAT, a plasma membrane-localized
antiporter for neutral amino acids (124). The cystine/glutamate
antiporter, which imports cystine to provide cysteine for protein
and glutathione synthesis is also regulated by glutamate which
serves as the intracellular substrate for the plasma membrane
antiporter (125).

Glutamine metabolism is under physiological control by the
serine-threonine kinase, mammalian target of rapamycin
(mTOR) pathway. mTOR governs several important cellular
functions including cellular growth, survival, protein
translation and autophagy. mTOR upregulates glutaminase
(GLS) thereby increasing the conversion of glutamine to
glutamate. The consequent increased production of a-
ketoglutarate is then used within the TCA cycle (126).
Restraint of mTOR activity also increases the ability of a cell to
obtain extracellular proteins as a source of amino acids (127).
Induction of mTOR correlates with increased HIF and VEGF
which contribute to angiogenesis. Increased mTOR activity
therefore collectively stimulates glutamine uptake, glutaminolysis,
glycolysis, and angiogenesis in cancer cells.

c-myc governs glutamine homeostasis, with direct effects and
indirect actions on cellular uptake via transporters ASCT2
(SLC1AS) (Figure 2) and SN2 (SLC38A5) (128). This
enhanced uptake is associated with increased conversion to a-
ketoglutarate (129) and incorporation into nucleic acid synthesis
(130). The dependence of cancer cells survival on glutamine has
September 2021 | Volume 11 | Article 700629
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led to testing of transport inhibitors targeting ASCT2 and the
glutaminase (GLS) (Figure 2) inhibitors, CB-839 and BPTES,
for anticancer therapies (131–133).
HETEROGENEOUS OXIDATIVE
METABOLISM IN THE BREAST TUMOR
AND THE TUMOR MICROENVIRONMENT
PROVIDES DIVERSE NUTRIENTS FOR
TUMOR GROWTH

Continued tumor growth requires the development of
mechanisms to enhance access to diverse intracellular and
extracellular nutrients (134, 135). Tumor cells retain a high
level of metabolic plasticity, allowing them to both establish
and subsequently adapt to the extracellular environment
of a developing tumor. Heterogeneous tumor nutrients can be
derived from tumor cells with different metabolic characteristics,
in part driven by heterogeneous oxygenation within the
tumor. In oxygenated tumor cells MCT1, which is expressed
in breast cancers, serves as the prominent pathway for lactate
uptake, which in turn serves as a substrate for tumor metabolism
(47) Thus, there is a symbiosis by which glycolytic and
oxidative tumor cells mutually regulate their access to energy
Frontiers in Oncology | www.frontiersin.org 7
metabolites based on heterogeneous oxygenation within the
tumor (136).

Autophagy
Autophagy provides intracellular nutrients and is upregulated
in dormant breast cancer cells promoting cancer cell survival
under metabolic stress (137–139). Autophagy includes,
macroautophagy, microautophagy and chaperone-mediated
autophagy. During macroautophagy intracellular components
are enveloped in double-membraned vesicles. Lysosomes fuse
with autophagososomes resulting in degradation and recycling of
these substrates in the cytosol (140). The autophagic process may
either enhance or retrain tumor progression depending upon
the stage of tumorigenesis. In a genome-wide screen, genes
that negatively regulated autophagy were also involved in
cellular growth and proliferation (141). Strong evidence for
an association between mitogenic signaling in the restraint
of autophagy led to studies wherein the pro-mitogenic,
collaborative oncogene cyclin D1, was shown to restrain
autophagy in breast cancer cells by modulating the activation
of AMPK (142). AMPK enhanced autophagy and in human
breast cancer cells cyclin D1 restrained AMPK activity (142).
Cyclin D1 reduced activation of AMPK (pT172), via cyclin D1-
Cdk4/Cdk6 phosphorylation of LKB1, thereby inhibiting
mitochondrial function and promoting glycolysis (40, 41).
FIGURE 3 | The tumor microenvironment (TME) contributes to metabolic tumor heterogeneity. In addition to CAFs (Figure 2), the local TME, including immune cells
and adipocytes, provide nutrients for tumor metabolism. The relative importance of the different TME cellular subtypes varies between patients thereby contributing to
additional levels of tumor heterogeneity. PEP (the glycolytic metabolite phosphoenolpyruvate).
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Tumor Microenvironment and
Alternative Nutrients
Alternatively, the tumor microenvironment (TME) provides a
rich source of distinct nutrients. Distinct cell types within the
TME (cancer associated fibroblasts (CAFs), adipocytes, immune
cells, tissue plasma/interstitial fluid) provide distinct nutrients to
fuel tumor metabolism (Figure 3). Cancer-associated fibroblasts
(CAFs) and adipocytes (143) can support malignant cells by
providing nutrients such as alanine and lipids (143).
Macrophages participate in TME metabolism (144) and MCT4
is expressed in macrophages (145). Understanding the source of
nutrients for a particular tumor may provide an alternative
therapeutic opportunity. Alternative substrates fueling tumor
growth, include branched chain amino acids for de novo
nucleotide and non-essential amino acid (NEAA) biosynthesis
(146), acetate for acetyl-CoA and fatty acid synthesis (147),
scavenging of extracellular lysophospholipids to bypass de novo
lipogenesis (148), and macropinocytotic uptake and degradation
of extracellular protein to maintain amino acid supply and
bioenergetics (149, 150). Macropinocytotic uptake is induced
by Ras (149, 151) and other oncogenic stimuli [reviewed in (152)].
Although the relative importance of scavenging pathways in
breast cancer remains to be more fully understood, necrosis
is a common feature of invasive breast cancer and breast
tumor growth often outstrips the vasculature leaving tumor
cells in nutrient-limited environment (153). Desmoplasia, a
form of excessive fibrosis that limits perfusion, may favor the
Frontiers in Oncology | www.frontiersin.org 8
outgrowth of breast cancer cells that are capable of nutrient
scavenging (154).

Cancer Associated Fibroblasts
The concept of scavenging alternative substrates to fuel tumor
growth is illustrated by the “Reverse Warburg Effect” that was
initially characterized in breast cancer cells (44, 47, 48). In the
“Reverse Warburg” effect, anabolic cancer cells import lactate,
ketones and fatty acids released by either adjacent cancer
associated fibroblasts (CAF), other stromal cell types or
catabolic cancer cells, in response to oxidative stress (21, 155).
The “Autophagic Tumor Stroma Model of Cancer” proposes
aerobic glycolysis in cancer associated fibroblasts (CAFs)
generates energy-rich metabolites (such as lactate, ketone
bodies and pyruvate) that are transferred to adjacent cancer
cells, where they then enter the TCA cycle, promoting oxidative
phosphorylation and increased ATP production (156–165)
(Figure 4). In this model, hypoxia, nutrient deprivation and
oxidative stress are thought to stabilize HIF1, which in turn
causes catabolic autophagy, mitophagy and glycolysis, together
with expression of the monocarboxylate transporter (MCT) 4
that exports lactate (21).

The molecular drivers governing the CAF metabolic phenotype
may involve downregulation of caveolin-1 (Cav-1) (157). Low
expression of stromal Cav-1 correlates with a high rate of tumor
recurrence, metastasis, tamoxifen resistance, and poor clinical
outcome in breast carcinoma (166, 167). Oxidative stress in the
FIGURE 4 | The Reverse Warburg effect. In the “Reverse Warburg Effect”, which was initially characterized in breast cancer cells, anabolic cancer cells import
lactate, ketones and fatty acids released by either adjacent cancer associated fibroblasts (CAF), other stromal cell types or catabolic cancer cells, in response to
oxidative stress. In CAFs, hypoxia, nutrient deprivation and oxidative stress stabilize HIF1a, which in turn causes catabolic autophagy, mitophagy and glycolysis,
together with expression of the monocarboxylate transporter (MCT) 4 that exports lactate. Aerobic glycolysis in cancer associated fibroblasts (CAFs) generates
energy-rich metabolites (such as lactate, ketone bodies and pyruvate) that are transferred to adjacent cancer cells, where they then enter the TCA cycle, promoting
oxidative phosphorylation and increased ATP production.
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tumor micro-environment then activates an autophagic program,
governed in part by the tumor vasculature, leading to the
production of recycled nutrients that can then be used as “fuel” to
promote the anabolic growth and aggressive progression of tumor
epithelial cells (Figure 3). Autophagy in cancer-associated
fibroblasts protects tumor cells against apoptotic cell death, in
part through the provision of recycled nutrients. Oxidative stress
in the tumor microenvironment also has mutagenic consequences
(157). ROS production in cancer-associated fibroblasts, induces
DNA damage and aneuploidy in adjacent epithelial cancer cells
serving as a catalyst for the random mutagenesis of tumor cells and
for tumor-stroma co-evolution. Bidirectional metabolic interactions
are also observed with glutamine metabolism. Co-targeting
glutamine synthetase in stroma and glutaminase in cancer cells
reduces tumor weight, nodules, and metastasis (168).

Additional substrates participating in tumor stroma
metabolic cross talk have been described in pancreatic cancer
for the use of branched-chain amino acids (BCAA) (169).
Pancreatic ductal cancer (PDAC)-induces branch chain amino
acid transaminase 1 (BCAT1) in CAFs which govern
internalization of the extracellular matrix from the tumor
microenvironment to supply amino-acid precursors for
branched-chain a-ketoacid (BCKA). BCKA secretion by CAF
are utilized by PDCA for protein synthesis and oxidative
phosphorylation (169).

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) and cancer cells co-
exist in the context of a complex, bidirectional metabolic
relationship. M1-like macrophages displaying enhanced
glycolysis and reduced oxidative phosphorylation in contrast
with more oxidative M2-like macrophages (170). TAMs exposed
to hypoxia or lactate secrete multiple cytokines with metabolic
functions, including IL6, TNF, C-C motif chemokine ligand 5
(CCL5) (112), and CCL18 (171). CCL5, and CCL18 boost the
synthesis of multiple pro-glycolytic factors including HXK2,
PGK1, lactate dehydrogenase A (LDHA), glucose-6-phosphate
dehydrogenase (G6PD), pyruvate kinase M1/2 (PKM), pyruvate
dehydrogenase kinase 1 (PDK1), pyruvate dehydrogenase
(PDH), solute carrier family 2 member 1 (SLC2A1, best known
as GLUT1), and vascular cell adhesion molecule 1 (VCAM1) and
display lower glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and succinate dehydrogenase (SDH) activity than
normal macrophages. There are important consequences of
tumor metabolites on immune function as Lactate secreted by
glycolytic cancer cells, favors the polarization of immune cells to
an immunosuppressive phenotype. Inhibiting glutamine
synthetase activity in M2 macrophages skews their polarization
toward an HIF1a-mediated M1 state, which impairs cytotoxic T
cell recruitment and angiogenesis (172).

Stromal Adipose Cells, Extracellular
Fluids and Exosomes
Stromal adipose cells contribute to the breast tumor metabolic
microenvironment. In silico deconvolution estimates of cell type
composition and molecular profiles of constituent cell types in the
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context of breast tumors applied to the TCGA data revealed
metabolic coupling occurs between the epithelial and stroma cell
types (173). A less adipose dense stroma displayed lower levels of
mitochondrial activity and were associated with tumor cells with
higher levels of oxidative metabolism. An adipokine. omental cell-
derived circulating ITLN1 (intelectin-1, or omentin), induced a
metabolic shift in metastatic ovarian cancer cell and decrease in
tumor growth rates (174). Reduced glycolysis was observed in the
cancer cells in vivo in mice given intraperitoneally injections of
ITLN1, while increased glycolysis was observed in the adjacent
cancer-associated adipocytes (174).

Tissue plasma and interstitial fluid contains soluble proteins
that are normally not utilized as sources of amino acids. Tumor
cells may activate processes to utilize these nutrients including
entosis (175), [the engulfment and degradation of entire live
cells), macropinocytosis, (the bulk uptake of extracellular fluid
into large vesicles (176, 177)], and micropinocytosis (178).
Micropinocytosis is augmented in cancer cells, through
mutations including K-Ras, and c-Src, and activation of the
phosphoinositide 3-kinase (PI3 kinase) (149, 179, 180) or Hippo
pathway effectors Yap and Taz (181). Pancreatic and prostate
cancers bearing oncogenic mutations in KRAS or PTEN,
respectively, use amino acids derived from engulfed
extracellular proteins to proliferate in nutrient-limiting
environment (127, 182–184).

An additional mechanism providing tumor nutrients involves
CAF-derived exosomes which contain intact metabolites,
including amino acids, lipids, and TCA-cycle intermediates
that are avidly utilized by cancer cells for central carbon
metabolism. These metabolites promote tumor growth under
nutrient deprivation or nutrient stressed conditions and inhibit
mitochondrial oxidative phosphorylation increasing glycolysis
and glutamine-dependent reductive carboxylation in cancer
cells (185).
ALTERED LIPID METABOLISM WITHIN
THE BREAST TUMOR EPITHELIUM AND
TUMOR MICROENVIRONMENT

Lipid synthesis increases in cancer cells, corresponding to an
increased requirement for membrane synthesis during
proliferation and cell division, cellular signaling and synthesis
of hormones. Acetyl CoA carboxylase (ACC) activity is essential
for breast cancer cell survival (186). Acetyl CoA carboxylase
(ACC) and fatty acid synthase complex (FASN) are commonly
upregulated in cancer cells (187, 188). ACC converts acetyl CoA
(Figure 3) to malonyl CoA, rather than citrate, which in turn is
converted by FAS to saturated fatty acids (SFA). Chemical
inhibitors of ACC or genetic ablation of FASN by RNAi have
shown some efficacy in cancer treatment (189). Lipid precursors
are made available through glycolysis and through mitochondrial
metabolism of glutamine through aketoglutarate to citrate
(Figure 3). Increased glycolysis in cancer cells ensures the
availability of dihydroxyacetone phosphate (DHAP) for
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conversion by glycerol-3-phosphate dehydrogenase 1 (GPD1) to
glycerol-3-phosphate and thence phospholipids for cell
membrane synthesis (190).

Expression of peroxisome proliferator-activated receptor
gamma (PPARg), a key regulator of lipogenesis, is altered in
breast cancer. PPARg expression is a positive prognostic factor in
luminal and ductal breast cancer (191). PPARg levels are
inversely correlated with tumor size, grade and TNM staging
(192, 193). PPARg agonists trigger apoptosis, inhibit cell growth,
decrease breast cancer cell motility and inhibit invasion of breast
cancer cells (194). Ligands of PPARg inhibit the expression of
several cell cycle regulators thereby reducing cancer cell
proliferation (195). The synthetic PPARg ligands, rosiglitazone
and troglitazone and endogenous 15dPGJ2 inhibit cyclin D1
gene expression via repression of cyclin D1 transcription, leading
to cell cycle arrest (196). Although the role of PPARg in tumor
progression and metastasis remains controversial, in part
because of the potential off target effects of PPARg ligands
(197), consistent with the important role of lipogenesis in
breast cancer progression, recent studies showed that genetic
deletion of Pparg1 delayed the onset of tumorigenesis by
mammary epithelial cell targeted ErbB2 (198).

Recent studies have identified ferroptosis-related gene
expression pathways that predict outcome in breast cancer
(199). Ferroptosis is a form of regulated necrosis driven by
iron-dependent peroxidation of phospholipids, plays an
important role in tumor suppression (200–202). Lipid
metabolism can govern ferroptosis via sterol regulatory
element-binding protein 1 (SREBP1), a central transcription
factor regulating lipid metabolism. SREBP1m targets include
gene governing lipogenesis (such as ACLY, ACC, FASN and
stearoyl CoA desaturase 1), gluconeogenesis and the pentose
phosphate pathway (Figure 2) including pyruvate kinase R
isoform (PKLR), phosphoenolpyruvate carboxykinase 1
(PCK1), glucose 6-phosphatase (G6PC), and glucose 6-
phosphate dehydrogenase (G6PDH). Sustained activation of
mechanistic target of rapamycin complex 1 (mTORC1)
through oncogenic activation of the PI3K-AKT pathway
induces SREBP1 and provides resistance to ferroptosis in
breast tumors in mice (203).
CELL CYCLE REGULATORS GOVERN
TUMOR METABOLISM

The cell-cycle governs cellular metabolism and, reciprocally,
glycolytic enzyme activity can affect cellular proliferation and
tumor aggressiveness, including through actions that are
additional to their functions within glycolysis (204). Enhanced
activity of the glycolytic enzymes, phosphoglycerate mutase
(PGM) or glucose phosphate isomerase (GPI) induces
proliferation of mouse embryonic fibroblasts and inhibition of
these glycolytic enzymes promotes senescence (205). GPI
converts glucose 6 phosphate to fructose 6 phosphate (Figure 2)

Regulators of cell cycle progression can also directly affect
cellular metabolism. p53 for example downregulates PGM (204).
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Cyclin D1 overexpression restrains adipogenesis (206),
suppresses mitochondrial function and biogenesis, and
augments cytosolic glycolysis. The cyclin D1 gene is
overexpressed in human breast cancer and is required for
oncogene-induced tumorigenesis therefore the mechanism by
which cyclin D1 governs tumor metabolism is of broad interest.
Cyclin D1 encodes the regulatory subunit of the holoenzyme
that phosphorylates and inactivates the RB protein. Early
observations in cyclin D1 anti-sense transgenic mice targeting
the mammary gland showed induction of mitochondrial and
lipogenic regulatory gene clusters in vivo (41). The induction of
cyclin D1 antisense in the mammary epithelial cell of transgenic
mice induced acetyl-CoA carboxylase, fatty acid synthase,
hexokinase II, and pyruvate kinase (Figure 2). A detailed gene
expression analysis evidenced the impact of increased cyclin D1
to enhance the Warburg effect (207).

Several additional mechanisms have been described by which
cyclin D1 regulates cytosolic glycolysis and induces the Warburg
effect. Firstly, the cyclin D1/cdk4 complex phosphorylates NRF1
at a canonical cyclin D1/CDK4 phosphorylation site. NRF1 is a
key nuclear transcription factor governing mitochondrial
function with targets that include mitochondrial transcription
factor A (mTFA). Consequences included reduced D loop
transcriptional activity in mitochondrial DNA. Deletion of the
cyclin D1 gene increased mitochondrial mass and mitochondrial
activity function (40, 208). Secondly, in hepatocytes, cyclin D1–
cyclin dependent kinase-4 (Cdk4) phosphorylates and activates
the histone acetyltransferase, general control non-repressed
protein 5 (GCN5), which then acetylates and inhibits
peroxisome-proliferator-activated receptor-g coactivator-1a
(PGC-1a) activity at gluconeogenic genes (209). Thirdly, cyclin
D1 increased phosphorylation of AKTSer 473 in breast cancer cells
and animal models, augmented AKT1 activity (210), which in
turn simulates the Warburg effect (211). Collectively these
studies illustrate cyclin D1 promotes the Warburg effect in
tissue culture and in vivo.
MUTATIONS OF METABOLIC GENES
IN CANCER

As noted above, a number of genes and proteins that have direct
roles in metabolism are regulated by oncogenes (c-Myc, cyclin
D1, Ras, AKT/PI3K/mTOR), or tumor suppressors (p53) (212).
Additionally, germ line and somatic mutations have been
described in genes encoding enzymes that have direct roles in
metabolism. Familial germline mutations in succinate
dehydrogenase (213–215), and somatic mutations in isocitrate
dehydrogenase 1 and 2 (IDH1 and IDH2), fumarate hydrase
(FH) and isoforms of succinate dehydrogenase (SDH) are found
in a variety of human cancers (216). IDH1 and IDH2 catalyze the
decarboxylation of isocitrate to a-ketoglutarate (Figure 2).
Fumarate hydratase catalyzes the reversible hydration of
fumarate to malate. The multi-component SDH complex
catalyzes the oxidation of succinate to fumarate, in concert
with reducing ubiquinone in the electron transport chain.
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Succinate in turn may induce DNA hypermethylation
(Figure 2). Tumors that accumulate succinate, show inhibition
of 2-oxoglutarate-dependent histone and DNA demethylase
enzymes, resulting in epigenetic silencing (217).

The metabolite profile itself drives oncogenesis. In the case of the
IDH1 and IDH2 mutations, there is reduced production of aKG
from isocitrate. aKG is a rate-limiting substrate for a-ketoglutarate-
dependent dioxygenases that catalyze demethylation of DNA,
histones and mRNA, and regulate HIF1a (212) (Figure 2). IDH1
mutations in some gliomas, and IDH1 and IDH2mutations in some
acute myeloblastic leukemias, convert aKG to R-2-hydroxyglutarate
(2HG). 2HG can then suppress activity in a-ketoglutarate-
dependent dioxygenases through competition with aKG.
Inhibition of some dioxygenases by succinate or fumarate has also
been rationalized as an effector pathway for loss of function of
mutations in fumarate hydratase (FH), succinate dehydrogenase
(31). Fumarate derivatization of cysteine residues within the Kelch-
like ECH-associated protein 1 (KEAP1) may also occur, freeing
NRF2 from KEAP1-mediated degradation (218).

Recent studies of over 900 cell lines revealed diverse metabolic
changes with associated potential therapeutic potential.
Hypermethylation of the gene encoding asparagine synthetase
showed sensitivity to L-asparaginase (219). A comprehensive
proteomic analysis combined with metabalomic and gene
methylation analysis revealed the metabolic heterogeneity of
the cancer cell lines (220). Analysis of 225 metabolites in 928
cell lines from 20 cancer types revealed several broad principles
firstly, previously described mutations (IDH1, KEAP1) revealed
the predicted change in metabolites. Secondly, that common
oncogenic events (EGFR, KRAS, NRAS, TP53, PTEN, TSC1,
TSC2) had weak to non-significant associations with profiled
metabolites. Thirdly, that DNA hypermethylation influence
metabolite production via suppressing degradation pathways.
For example, methylation of SLC25A20 (carnitine/acylcarnitine
translocase) in breast cancer cell lines led to accumulation of long
chain acylcarnitine species. Fourthly, DNA hypermethylation
regulates metabolite levels by limiting components of
biosynthetic pathways. For example, hypermethylation of the
PYCR gene, an enzyme that converts pyrroline-5-carboxylate to
proline, was associated with reduced proline levels.
EPIGENETIC REGULATION OF EMT
GOVERNS BREAST CANCER
METABOLISM

Carcinoma cells undergo an epithelial-to-mesenchymal
transition (EMT) although the transition is considered a
spectrum of changes, rather than a binary event (221). EMT-
inducing transcription factor (EMT-TF) regulate the induction
of EMT by repressing the transcription of epithelial genes
while activating mesenchymal genes. EMT-TFs are regulated
at a transcriptional level by DNA methylation, histone
modifications, and RNA-mediated epigenetic regulation (222).
Genetic regulators of EMT also directly regulate BCa cellular
metabolism (223). Many pathways link EMT-TFs expression
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with glycolysis, mitochondrial metabolism, glutaminolysis and
lipid metabolism (224), providing the rational basis for metabolic
targeting of BCa cancer EMT (223). MDA-MB-231 is a
mesenchymal basal-like breast cell line with decreased
mitochondrial respiration compared to the epithelial luminal-
like breast cell line, MCF-7. The decrease in oxidative
phosphorylation correlated with the down regulation of
succinate dehydrogenase B (SDHB, complex II), the core
catalytic subunit of SDH in MDA-MB-231 cells (225).
Decreased SDHB expression leads to metabolic reprogramming
and migration and invasion of tumor cells by promoting EMT
(226–228).

Most BCa cells express both epithelial and mesenchymal
traits. When epithelial cancer cells lose their epithelial features
and acquire a mesenchymal phenotype this promotes motility
and invasion through loss of cell polarity, disruption E-cadherin/
b-catenin leading to loss of cell-cell adhesion involved in cancer
invasion and metastasis (225). This E/M hybrid state is facilitated
by the differential expression of Snail (Snai1 and Snai2), bHLH
(Twist1 and Twist2), and zinc finger and E-box binding (Zeb1
and Zeb2), collectively termed EMT-inducing transcription
factors (EMT-TFs). The mesenchymal-like phenotype is
accompanied by the expression of adult stem cell programs,
notably, active canonical Wnt signaling.

The EMT transition in BCa is regulated by altered expression
of the transcription factors SNAIL/SLUG (229), TGF-b (230),
Twist, and Goosecoid and the cell-cycle control proteins [p21CIP1

(231), cyclin D1 (232)]. These EMT inducing agents in turn have
been shown to regulate cellular metabolism (reviewed in (233).
For example, the EMT TFs Slug/Twist suppresses succinate
dehydrogenase (SDH), thereby repressing mitochondrial
respiration, leading to the accumulation of succinate, which
suppresses TET2, causes causing DNA hypermethylation,
further promoting EMT in paraganglioma (234). Recent
studies identified a novel role for the cell fate determination
pathway in restraining EMT. Loss of DACH1 expression, a helix-
turn helix protein of the Forkhead family that is a key
determinant of the cell fate determination pathway, is a
predictor of metastasis and poor survival in BCa (235). The
DACH1 gene is silenced by methylation (236), and DACH1 in
turns restrains the EMT program (237).
EMERGING QUESTIONS IN METABOLIC
HETEROGENEITY

The increased resolution of investigative technology has provided
evidence for distinct sources of metabolic heterogeneity in BCa.
Metabolic heterogeneity has been identified between genetic
subtypes of breast cancer and within the components of the
tumor microenvironment for an individual patient’s tumor.
Several key questions have emerged as a consequence of the
emerging understanding that tumors are highly heterogeneous
(238). How can we best harness the knowledge that genetic
mutations can alter a particular patent’s tumor metabolic in order
to identify therapeutic vulnerabilities?
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Analysis of large compendiums of tumor cell lines has
identified correlates between altered genetic changes and
metabolite production (220). However, evidence suggests that
most human tumors acquire hundreds of somatic mutations in
coding regions (239). Taking a broader definition of a metabolic
genes to include the known upstream regulators of the enzymes
that actually carry out the metabolic transformation, though,
reveals the extent to which mutation or altered copy number
pervades human cancers (240). Metabolic gene alterations are
frequent and determine tumor aggressiveness and therapy
responses (219, 240). High metabolic gene abnormality
frequency correlated with worse prognosis (240). The most
frequent metabolic gene abnormalities in breast cancer involve
lipid metabolism (240). Bystander gene deletion may also
contribute to tumor metabolic heterogeneity as metabolic genes
may reside in proximity to known tumor suppressor genes that
are deleted in cancer. The MTAP (methylthioadenosine
phosphorylase gene for example may be co-deleted with
CDKN2A, resulting in elevated methyl thioadenosine which
sensitizes cells to PRMT5 inhibitors (241). How then to discern
the functional significance of such ubiquitous mutational loads of
metabolic genes in a tumor?

Intratumoral heterogeneity subclonal driver mutations that
govern tumor metabolism have been identified in breast cancer
(TP53, SMAD4) (238), consistent with studies of subclonal
diversification of primary breast cancer revealed by multi
region sequencing of the coding region (238), the non-coding
region (242) and evidence for further genetic evolution upon
relapse (SWI-SNF and JAK2-STAT3) (243). What metabolic
vulnerabilities emerge in tumors with metabolically diverse
subclonal populations?
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Mathematical modeling approaches have been developed to
understand the metabolic impact of altered gene expression on
tumor metabolism. Modeling analysis of epithelial-to-mesenchymal
transition has been conducted, in which metabolic pathway
signatures have been used to quantify the activities of glycolysis,
and the citric acid cycle with corresponding analysis of enzymes
governing the metabolic processes in tumor samples (233, 244).
Because tumors exhibit a spectrum of EMT and a spectrum of
metabolic changes which may be topologically distinct, for example
in the leading vs. the trailing edge of an invasive tumors, more
accurate mathematical predictive models are required to provide
precise metabolic therapeutics.

Linking the complex patterns of metabolic genetic alterations
that occurs within a tumor to therapeutic co-extinction
paradigms for individualized patient treatment remains a key
challenge for future research.
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