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Abstract

Studies indicate that erythropoietin (EPO) has effect on lipid and energy metabolism; 
however, the impact of EPO on lipid oxidation in vivo has not been well documented. Here, 
we evaluate whether long-term erythropoiesis-stimulating agent (ESA) treatment affects 
the oxidation of plasma very low-density lipoprotein triglycerides (VLDL-TG) fatty acids (FA), 
plasma free fatty acids (FFA) and non-plasma (residual) FA in healthy, young, sedentary 
men. Infusion of [1-14C]VLDL-TG and [9,10-3H]palmitate was used in combination with 
indirect calorimetry to assess resting lipid fuel utilization and kinetics, and resting energy 
expenditure (REE) before and after 10 weeks of ESA exposure compared with placebo. 
REE increased significantly during ESA compared with placebo (P = 0.023, RM-ANOVA). 
Oxidation rates of VLDL-TG FA, FFA, and residual FA remained unchanged during ESA 
compared with placebo. The relative contribution of the lipid stores was greatest for FFA 
(47.1%) and the total lipid oxidation rate and was not significantly different between  
ESA and placebo-treated subjects. We conclude that long-term ESA treatment of healthy  
young men increases REE but does not alter the oxidation rates of plasma and  
non-plasma FA sources. 

Introduction

Human recombinant erythropoietin (rHuEpo) was 
introduced in 1989 for human use in patients with chronic 
renal failure, anemia and cancer, to increase hemoglobin 
mass and red blood cell volume, and to promote aerobic 
exercise capacity (1, 2). Since then, studies have shown 
that erythropoietin (EPO) has other protective functions, 
such as inhibition of inflammation and apoptosis, anti-
oxidant effects, protection against ischemia-induced 
damage, ischemia-reperfusion, trauma, and stimulation 
of angiogenesis (3, 4). Some reports have also documented 
that EPO improves metabolic parameters in patients with 
diabetes, including fasting glucose levels, diet-induced 
weight gain, and insulin sensitivity (2, 5, 6, 7, 8, 9). Other 
studies indicate that EPO has effects on lipid and energy 
metabolism. However, the mechanisms behind these 
effects remain unclear (10, 11, 12, 13). 

Treatment with rHuEpo has been reported to 
improve insulin sensitivity and dyslipidemia n patients 
with end-stage renal disease, independent of correction 
of anemia (14, 15, 16, 17, 18, 19, 20, 21). Moreover, a 
study from our group reported that acute erythropoiesis-
stimulating agent (ESA) treatment increases resting 
energy expenditure (REE) (22) and plasma free fatty 
acids (FFA) concentrations albeit with non-significant 
changes in lipolysis (palmitate turnover) in healthy men 
(22). In addition, Caillaud et  al. (4) found no effect on 
resting lipid oxidation, measured by indirect calorimetry, 
but improved lipid oxidation, during exercise (75% of 
VO2max) as well as improved VO2max following 4 weeks 
of EPO treatment in trained, lean men. However, the 
improvements in lipid oxidation and in VO2max were 
not significantly associated, which could suggest an 
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independent role for EPO. Furthermore, studies from 
our group have consistently shown that plasma very 
low-density lipoprotein triglycerides (VLDL-TG) fatty 
acids (FA) are important substrates for lipid oxidation, 
contributing with 10%-20% of REE (23) and that the 
oxidation of all plasma (VLDL-TG FA and FFA) and non-
plasma (residual) FA sources increase quantitatively 
during acute exercise in healthy men (12). Although EPO 
has shown stimulating effects on energy expenditure, 
studies regarding oxidation of lipid sources during 
prolonged EPO treatment are lacking.

To our knowledge, no studies have investigated 
the independent pharmacological impact of long-
term EPO treatment on integrated lipid oxidation. We 
hypothesized, that, long-term EPO treatment increases 
the oxidation of VLDL-TG FA, plasma FFA and residual 
FA. We also hypothesized that the increased lipid 
oxidation is proportional to alterations in REE. To this 
end, we investigated the effects of 10 weeks of ESA 
exposure in healthy young sedentary subjects. Infusion 
of [1-14C]VLDL-TG and [9,10-3H]palmitate was used in 
combination with indirect calorimetry to assess resting 
lipid fuel utilization and kinetics.

Methods

Subjects

Seventeen healthy untrained men (age 18–36 years, 
BMI < 30 kg/m2) were recruited from an ongoing clinical 
study investigating the effects of physical training and ESA 
treatment (Darbepoetin alfa) alone and in combination. 
The data from the main study (11), as well as the effects 
on VLDL-TG kinetics in the training and control groups 
(12) have been published previously. All volunteers were 
normotensive, nonsmokers, used no medication, and had 
a normal blood and chemistry panel, lipid profile, fasting 
plasma glucose, HbA1c, as well as a hematocrit < 45%, a 
normal ECG and a VO2max < 50 mL/kg/min documented 
before participation. They were instructed to avoid 
strenuous physical activity, alcohol intake, or changes in 
the dietary intake 3 days before the study day. Written 
informed consent was obtained from all participants, the 
Central Jutland Regional Committee on Health Research 
Ethics in Denmark has approved the study (M-20110035) 
and the study was registered at www.clinicaltrials.gov 
(clinical trial number NCT01320449).

Protocol

A detailed description of the original study design has 
been published previously (11). In brief, in the present 
sub-study, volunteers were allocated in a single-blinded, 
randomized, parallel design to either a sedentary and 
placebo treatment control (C) group (n = 9) or a sedentary 
and ESA (Darbepoietin–α, Aranesp; Amgen, Thousand 
Oaks, CA) treatment group (n = 8) for 10 weeks. Once a 
week, ESA was administered subcutaneously at a dose of 
40 µg for the first 3 weeks and 20 µg for the remaining 7 
weeks. Hematocrit was measured weekly throughout the 
study. The first three subjects, however, received treatment 
twice a week for the first 3 weeks, which led to a greater 
increase in the hematocrit than expected (50–54%). 
Hence, the number of injections was reduced to once a 
week. As per protocol, some subjects were intermittently 
switched to placebo in order to keep the hematocrit value 
below 55%. From 1 week before the treatment until the 
end of the study the subjects were supplemented with 
100 mg iron orally/day (Ferrosulfat, Ferro Duretter; 
GlaxoSmithKline, Brentford, UK). 

Metabolic study day

The participants arrived by taxi to the Clinical Research 
Unit (CRU) after an overnight fast (only mineral water 
was allowed) and were placed in bed under thermoneutral 
conditions for the rest of the study day. Catheters for 
infusion were placed in an antecubital vein and in 
a contralateral heated hand vein in order to obtain 
arterialized blood. Each study day consisted of a 4-h 
basal period (T = 0–240 min) and a 2-h hyperinsulinemic-
euglycemic period (240–360 min). A primed–constant 
infusion of [1-14C]triolein labeled VLDL-TG (20% bolus, 
80% constant) was administered during the whole study 
period to measure VLDL-TG kinetics. Blood samples for 
measurements of plasma VLDL-TG concentration and 
specific activity (SA) were collected together with 14CO2 in 
breath samples during the last 30 min of the basal period 
(T = 210, 225, and 240 min). A 2-h constant infusion of 
[9,10-3H]palmitate was given from T = 120–240 min to 
measure palmitate turnover and oxidation. Blood samples 
for measurements of plasma palmitate concentration and 
SA as well as plasma 3H2O concentration (dpm/mL) were 
collected at T = 120, 150, 160, 170, 180, 195, 210, 225, 
and 240 min. Indirect calorimetry was performed from  
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T = 60–90 min. After completion of the study all catheters 
were removed, the volunteers had lunch, and when  
blood glucose had stabilized, they were dismissed. 

VLDL-TG tracer preparation

The participants attended the CRU after a 12-h overnight 
fast 1 week before the metabolic study day. An 80 mL 
blood sample was obtained under sterile conditions from 
each volunteer to isolate VLDL-TG for ex vivo labeling as 
described earlier (24) with minor modifications. Plasma 
was immediately separated and then sonicated with  
15 µCi of [1-14C]triolein (PerkinElmer) at 5°C for 2 h. The 
[1-14C]triolein–labeled plasma was transferred to sterile 
tubes and covered with a saline solution of d = 1.006 g/cm3  
and ultracentrifuged (50.3 Ti rotor (37,000 g) or 5.4 
Ti rotor (37,000 g), Beckman Instruments, Inc. (Palo 
Alto, CA, USA)) for 18 h and at 10°C. The supernatant 
containing the labeled VLDL fraction was removed with a 
Pasteur pipette, and the solution was then passed through 
a Millipore filter with a pore size of 0.20 µm and stored 
under sterile conditions at 5°C. A representative sample 
of the labeled [1-14C]VLDL-TG from all participants was 
cultured to ensure sterility before autologous infusion.

Plasma VLDL-TG concentration and SA

On the metabolic study day, VLDL-TG was isolated from 
approximately 3 mL plasma by ultracentrifugation. 
VLDL on the top layer was obtained by slicing the tube 
approximately 1 cm from the top with a tube slicer 
(Beckman Instruments, Inc.), and the exact volume was 
noted. TG content was analyzed on a 300 µL aliquot 
solution (Glycerol blanked assay; COBAS c111, Roche) and 
the VLDL-TG plasma concentration was calculated. The 
remaining VLDL-TG was transferred to a scintillation glass 
and [3H] and [14C] activity was measured by dual channel 
liquid scintillation counting to < 2% counting error.

Breath 14CO2 SA

The activity of 14CO2 in expired air (IRIS-breath-bags; 
Wagner Analysen Technik, Bremen, Germany) was used 
to calculate [1-14C] VLDL-TG FA oxidation. The air was 
passed through a solution containing 0.5 mL hyamine 
hydroxide in 1 M methanol, 2 mL 96% ethanol, and one 
to two drops of phenolphthalein. A color change (pink to 
clear) occurred when exactly 0.5 mmol CO2 was trapped 
in the solution, where after [14C] activity was measured by 
liquid scintillation counting to <2% counting error.

Palmitate turnover and oxidation

A 2-h constant infusion of [9,10-3H] palmitate  
(0.3 µCi/min; Department of Clinical Physiology and 
Nuclear Medicine, Aarhus University Hospital, Denmark) 
was employed to measure systemic palmitate turnover 
and oxidation. Plasma palmitate concentration and SA 
were measured by HPLC using [2H31] palmitate as an 
internal standard. Steady-state SA was verified for each 
individual. Palmitate turnover (µmol/min) was calculated 
as [9,10-3H] palmitate infusion rate (dpm/min) divided 
by the steady-state palmitate SA (dpm/µmol). The slope 
of the increase in 3H2O in total body water vs time to 
calculate 3H2O production rate (T = 120–240 min) was 
used to measure oxidation of plasma palmitate. The rate 
of 3H2O production (dpm/mL/min) was divided by the 
average plasma [3H]palmitate SA during the same period 
to calculate plasma palmitate oxidation rates. The plasma 
3H2O concentration and body water were determined as 
described previously (12, 25, 26). 

Body composition

At the end of both metabolic study days, Dual-energy 
X-ray absorptiometry (QDR-2000, Hologic Marlborough, 
MA, USA) was performed to measure total body fat mass 
(FM), fat percentage, and lean body mass (LBM).

Indirect calorimetry

Indirect calorimetry (Deltatrac monitor, Datex 
Instrumentarium, Helsinki, Finland) was used to measure 
REE and respiratory exchange ratio (RER). Net lipid and 
glucose oxidation were calculated after correction for 
protein oxidation (27). Urine was collected during the 
basal period and used to calculate protein oxidation from 
urea excretion.

Calculations

VLDL-TG secretion rate (µmol/min) = VLDL-TG infusion 
rate/VLDL-TG SA

VLDL-TG clearance rate (mL/min) = VLDL-TG 
secretion rate/(CVLDL-TG)

Fractional VLDL-TG oxidation (% of the infused 
tracer) = (14CO2SA × VCO2)/(k × Ar × F), where k is the 
volume of CO2 at 20°C and 1 atm. pressure (22.4 L/mol), 
Ar is the fractional acetate carbon recovery factor in breath 
CO2 (0.56 at rest) (28), and F is the tracer infusion rate.
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VLDL-TG oxidation rate (µmol/min) = Fractional 
VLDL-TG oxidation × VLDL-TG secretion rate 

VLDL-TG FA energy production (kcal/day) = VLDL-TG 
oxidation rate × 3 (3 FA’s per TG molecule) × 282 g/mol × 9.1 
kcal/g × 1440 min/day, where 282 g/mol is the molecular 
weight of oleic acid, 9.1 kcal/g is the caloric density.

Plasma FFA oxidation rate (kcal/day) = (palmitate 
oxidation (µmol/min) × 1440 min × 256.42 g/mol × 9.1 
kcal/g)/ (0.29 × 1,000,000), where 0.29 is the average ratio 
of palmitate in TG long chain FA and 256.42 g/mol is the 
molecular weight of palmitate.

Residual FA oxidation rate was calculated as: Total 
lipid oxidation rate – (VLDL-TG oxidation rate + plasma 
FFA oxidation rate). The relative contributions of plasma 
FFA, VLDL-TG FA and Residual FA oxidation rates were 
calculated as the percentage of the total lipid oxidation. 

Statistical analyses

Data were analyzed with SPSS 13.0 and Sigmaplot. 
Data following a normal distribution are presented as 
mean ± s.e.m. Data not following a normal distribution 
are presented as median (range). Data were tested for 
normality by QQ-plots, plots of residuals, and equal 
variance test. Student’s t-test or Mann–Whitney’s two 
sample test for parametric and non-parametric data 
were used to examine differences at baseline. Difference 
between the effects of ESA and placebo group regarding 
kinetic parameters were examined using a linear mixed 
model analysis with total FFA oxidation, VLDL-TG 
oxidation and residual lipid oxidation as the dependent 
variables, treatment and time as factors, and LBM as 
a covariate. Differences between substrates and body 
composition were examined using two-way ANOVA for 
repeated measurements (RM-ANOVA); if the RM-ANOVA 
was significant post hoc analysis was performed using 
Bonferroni’s test. Correlation analysis were performed 
using Pearson’s r.

Results

Patient characteristics are shown in Table 1 LBM was 
not significantly different between the two groups, but 
decreased significantly during the intervention (ANOVA, 
time effect P = 0.04).

Post hoc testing could not identify a significant decrease 
in any of the two groups, but no significant interaction of 
the intervention was found. As reported previously (11), 
hemoglobin, hematocrit, plasma FFA concentrations, 
and REE increased significantly in the ESA treated group 
compared with placebo, whereas BMI, plasma insulin and 
lipids, insulin sensitivity (M-value), palmitate turnover, 
total fat mass, and % body fat remained unchanged in the 
two groups.

VLDL-TG kinetics

VLDL-TG oxidation and secretion rates did not change 
significantly during the intervention (Figs 1A and 2). 
Similar results were obtained when the analyses were 
performed without using LBM as covariate in the statistical 
testing. Fractional VLDL-TG oxidation (%) (i.e. the 
percent of circulating VLDL-TG FAs that are oxidized) was 
greater in the ESA compared with the placebo group, but 
no significant interaction between groups was observed 
(C-before: 47.9 ± 1.8; C-after: 53.5 ± 4.4; ESA-before: 
44.6 ± 1.6; ESA-after: 53.5 ± 4.1 (RM-ANOVA, P = 0.024 
for group difference). VLDL-TG clearance rate remained 
unaltered (data not shown).

Plasma FFA oxidation rate

Plasma FFA oxidation rate was not significantly different 
between the groups during the intervention (Fig. 1B). 
Similarly, no significant difference was observed when the 
analyses were performed without using LBM as covariate 
in the statistical testing. 

Table 1 Subject characteristics.

C – before (n = 9) C – after ESA – before (n = 8) ESA – after Interaction P value

Age  26.1 ± 1.6  23 ± 1
BMI (kg/m2)  24.0 ± 1.0  24.0 ± 1.0  23.4 ± 0.6  23.5 ± 0.6 0.931
LBM (kg)   61 ± 2.4  59.9 ± 2.1  65.4 ± 2.7  64.6 ± 2.7  0.897a

Fat mass (kg)  18.2 ± 1.9  19.2 ± 1.6  16.9 ± 2.3  17.9 ± 2.5 0.953
Fat %  21.3 ± 1.5  21.9 ± 1.4  18.0 ± 1.7  18.6 ± 2.0 0.715
REE (kcal/24 h) 1705 ± 48 1698 ± 48 1757 ± 50 1893 ± 50  0.023a,b 

Student’s t-test was used for age (NS). For all other parameters RM ANOVA was used. Data are mean ± s.e.m.
aP < 0.05 (time effect, RM-ANOVA); bP = 0.010 (C vs ESA after treatment, RM-ANOVA).
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Residual FA oxidation rate

No significant difference was found in residual FA 
oxidation rate between the groups during the intervention 
(Fig. 1C).

REE and substrate oxidation rates

The contribution of the different FA sources to total lipid 
oxidation is shown in Table 2. Total lipid oxidation and 
residual FA was significantly greater in the ESA group 
compared with the placebo group, but no significant 
interaction with treatment was observed. In relative 
terms (% of total lipid oxidation), residual FA oxidation 

was significantly greater and FFA oxidation significantly 
lower in the ESA group compared with the placebo group, 
but, again, no significant interaction with treatment  
was found. 

As aforementioned, REE increased significantly 
during ESA compared with placebo (Table 1). When LBM 
was entered as a covariate in the analyses the increase in 
REE was no longer significant (P = 0.09). There were no 
significant correlations between changes in REE and the 
individual lipid oxidation rates.

Glucose, protein and lipid oxidation rates as measured 
by indirect calorimetry were not significantly different 
between the two groups and did not change significantly 
during the intervention.

Discussion

The present study is the first to assess the pharmacological 
effect of long-term erythropoiesis stimulation on plasma 
and non-plasma FA oxidation rates. We found no 
significant effects of 10 weeks ESA vs placebo exposure on 
VLDL-TG FA oxidation or secretion rates or in plasma FFA 
oxidation rates. Consequently, as total lipid oxidation was 

Figure 1
(A) VLDL oxidation/LBM, (B) total FFA oxidation/LBM, and (C) residual lipid 
oxidation/LBM before and after 10 weeks intervention for C and ESA 
groups, respectively. Gray bars: before treatment, black bars: after 
treatment. Values are mean ± s.e.m.; All comparisons NS, RM-ANOVA.

Figure 2
VLDL-TG secretion rate before and after 10 weeks intervention for C and 
ESA groups, respectively. Gray bars: before treatment, black bars: after 
treatment. Values are mean ± s.e.m.; All comparisons NS, RM-ANOVA.

Table 2 Distribution of total lipid oxidation between plasma FFA, VLDL-TG FA, the residual lipid oxidation.

C-before (n = 9) C-after ESA-before (n = 8) ESA-after Interaction P value

TL ox/LBM (kcal/24 h kg) 10.0 ± 1.3 9.7 ± 1.3 10.3 ± 1.3 11.6 ± 1.3 0.426a

VLDL-TG ox/LBM (kcal/24 h kg) 1.3 ± 0.2 1.6 ± 0.2 1.4 ± 0.2 1.6 ± 0.2 0.710
Total FFA ox/LBM (kcal/24 h kg) 5.3 ± 0.6 5.6 ± 0.6 4.3 ± 0.7 5.5 ± 0.7 0.443
Residual lipid ox/LBM (kcal/24 h kg) 3.4 ± 1.1 2.6 ± 1.1 4.6 ± 1.2 4.5 ± 1.2 0.717a

VLDL-TG ox (% of TLO) 16.4 ± 3.9 20.4 ± 3.9 15.3 ± 4.1 14.5 ± 4.1 0.519
FFA ox (% of TLO) 59.2 ± 7.7 65.6 ± 7.7 44.0 ± 8.2 47.1 ± 8.2 0.815a

Residual FA ox (% of TLO) 24.3 ± 10.4 14.0 ± 10.4 40.6 ± 11.0 38.5 ± 11.0 0.696a

Linear mixed model.
aP <0.05 (group effect). Data are mean ± s.e.m. (RM ANOVA).
Ox, oxidation; TLO, total lipid.
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not altered, the residual FA oxidation was also unaffected 
by ESA treatment.

This present study is unique in that it investigates 
the combined effects on VLDL-TG FA and FFA oxidation, 
as well as whole-body substrate oxidation rates using 
validated methods (11, 12, 27). Even though ESA 
treatment was associated with an increase in REE we did 
not observe any significant changes in the oxidation 
rates of plasma and non-plasma FA sources. Moreover, we 
found no significant correlations between changes in REE 
and FA oxidation rates. We, therefore, conclude that ESA 
treatment of healthy, sedentary men has no major impact 
on oxidation of individual lipid fuel sources. Previous 
studies have reported greater (22) or unchanged (29) REE 
following ESA treatment of healthy individuals. In the 
present study we were unable to demonstrate significant 
changes in the overall oxidation of glucose, lipids or 
proteins despite the significant increase in REE during ESA 
treatment. Since body weight and body composition were 
not altered during the treatment period, we, therefore, 
cannot rule out that our ESA treated participants increased 
their food intake during the treatment period compared 
with those in the placebo group, thereby remaining 
weight stable. The mechanism whereby ESA facilitates a 
potential increase in REE is so far not understood in detail. 
We previously reported uncoupling protein 2 (UCP2) 
mRNA to be significantly greater during long-term ESA 
compared with placebo, which could account for some 
of the calorigenic effect of ESA (11). Still, increased UCP2 
activity relies on preceding substrate oxidation. Hence, 
our inability to demonstrate significant differences 
in individual substrate oxidation rates precludes any 
speculation regarding which mechanisms might be 
involved in a potential ESA driven change in REE. 

Few studies, including the present one (22), have 
examined the influence of rHuEpo treatment on the 
circulating lipid profile and the results are controversial (5, 
30, 31, 32, 33). Bucciante et al. demonstrated that rHuEpo 
in some patients increased cholesterol and triglyceride 
and reduced HDL cholesterol, and suggested that these 
results might be attributed to increase in food intake (5). 
In comparison, administration of rHuEpo in hemodialysis 
patients has been reported to have no effect on lipid 
and lipoprotein patterns neither acutely (5) nor at doses 
varying from 1.5 to 500 units per kilogram of body weight 
for a period of 14–29 weeks (34). Importantly, other effects 
of ESA may secondarily affect lipid metabolism. One trial 
(35) described normalization of several hypothalamic–
pituitary hormonal systems after the use of rHuEpo, 
which in turn may improve the lipid profile. 

There are limitations to the study. First, the limited 
number of participants recruited, although the statistical 
power was high enough to show significant results for the 
dependent variables. Second, the results might have been 
different, if the population investigated were either females, 
obese, had increased basal VLDL-TG secretion, augmented 
intrahepatic content or were insulin resistant. Other 
studies have described sex-difference in lipid metabolism 
including both FFA and VLDL (36, 37). Third, consumption 
of food was not recorded in the current study. Fourth, 
palmitate was chosen as a representative FA (38). However, 
previous studies have pointed toward different uptake of 
individual FFA’s in different tissue beds (38). Therefore, 
small differences between palmitate and total FFA turnover 
and oxidation cannot be completely ruled out.

In conclusion, ESA treatment of healthy young men 
does not alters neither total nor proportional lipid fuel 
oxidation or metabolism despite a concomitant increase 
in REE. The mechanisms behind this paradox is unknown, 
but could be a complex interplay between unaccounted 
for changes in energy expenditure and/or physical fitness 
in combination with increased food intake. Further 
studies are needed in order to investigate the mechanistic 
effects of EPO in healthy subjects.
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