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A B S T R A C T

Semantic memory comprises our knowledge of the meanings of words and objects but only some of this
knowledge is relevant at any given time. Thus, semantic control processes are needed to focus retrieval on
relevant information. Research on the neural basis of semantic control has strongly implicated left inferior
frontal gyrus (LIFG) but recent work suggests that a wider network supports semantic control, including left
posterior middle temporal gyrus (pMTG), right inferior frontal gyrus (RIFG) and pre-supplementary motor area
(pre-SMA). In the current study, we used repetitive transcranial magnetic stimulation (1 Hz offline TMS) over
LIFG, immediately followed by fMRI, to examine modulation of the semantic network. We compared the effect
of stimulation on judgements about strongly-associated words (dog-bone) and weaker associations (dog-beach),
since previous studies have found that dominant links can be recovered largely automatically with little
engagement of LIFG, while more distant connections require greater control. Even though behavioural
performance was maintained in response to TMS, LIFG stimulation increased the effect of semantic control
demands in pMTG and pre-SMA, relative to stimulation of a control site (occipital pole). These changes were
accompanied by reduced recruitment of both the stimulated region (LIFG) and its right hemisphere homologue
(RIFG), particularly for strong associations with low control requirements. Thus repetitive TMS to LIFG
modulated the contribution of distributed regions to semantic judgements in two distinct ways.

1. Introduction

Semantic cognition is central to our mental lives, allowing us to
understand the meaning of words, objects, pictures and faces, and to use
this knowledge to drive context- and time-appropriate behaviour
(Corbett et al., 2009; Lambon Ralph and Patterson, 2008). As our
concepts are embedded in a rich web of associations, only some of which
will be relevant in a given task or context, semantic cognition involves at
least two interacting components – a store of conceptual knowledge,
plus control mechanisms that shape semantic processing to suit the
context or task. For example, if we see a banana skin on the floor, we
need to retrieve knowledge that this object is slippery and disregard
irrelevant information about its sweet flavour (Jefferies, 2013; Jefferies
and Lambon Ralph, 2006). Executive control over knowledge activation
is vital for successful semantic cognition, yet the neural basis of this
function is not well understood. In particular, functional neuroimaging
studies have focused almost exclusively on the contribution of left
inferior frontal gyrus (LIFG; Thompson-Schill et al., 1997; Badre and
Wagner, 2007), while neuropsychological investigations (Jefferies and
Lambon Ralph, 2006; Noonan et al., 2010; Corbett et al., 2009),

neuroimaging meta-analyses (Noonan et al., 2013), and studies using
inhibitory transcranial magnetic stimulation (TMS, Whitney et al., 2011,
2012 and Davey et al., 2015), point to the possibility of a large-scale
distributed network underpinning semantic control.

Comparisons of patients with multi-modal semantic deficits in the
context of semantic dementia (SD) and semantic aphasia following
stroke (SA) show that semantic representations and control processes
can be selectively impaired. Central semantic representations are thought
to be degraded in SD, producing loss of conceptual knowledge across the
full range of modalities, e.g., vision, hearing, touch, and action (Patterson
et al., 2007; Bozeat et al., 2000; Hodges et al., 2000). In contrast, SA is
associated with deficient semantic control, resulting in poor comprehen-
sion across modalities despite a broadly intact knowledge base (Corbett
et al., 2009; Jefferies and Lambon Ralph, 2006; Noonan et al., 2010;
Novick et al., 2009; Thompson-Schill et al., 1998). SA patients with
multimodal semantic deficits have large and variable lesions, typically
affecting left prefrontal cortex (particularly ventral left inferior frontal
gyrus; LIFG) and/or left temporoparietal regions, particularly posterior
middle temporal gyrus (pMTG). Moreover, SA patients with prefrontal
and temporoparietal infarcts show largely parallel deficits on tasks
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requiring high degrees of semantic control: they have difficulty establish-
ing semantic relationships between weakly associated words, avoiding
strong distracters, understanding the non-dominant meanings of ambig-
uous words (Noonan et al., 2010) and identifying non-canonical uses of
objects (e.g., understanding that a newspaper can be used to swat a fly;
Corbett et al., 2009).

These findings are consistent with the view that semantic control is
underpinned by a large-scale distributed cortical network including
both left ventral prefrontal and posterior regions although SA patients
typically have large lesions making it difficult to precisely localise the
critical regions for this deficit. Converging evidence is provided by
fMRI studies of healthy participants, which often reveal activation
within similar distributed brain regions when semantic control de-
mands are manipulated (Badre et al., 2005; Noonan et al., 2013;
Thompson-Schill et al., 1997; Wagner et al., 2001). For example, a
recent meta-analysis based on activation likelihood estimation (ALE)
revealed that brain activity in left and right IFG, left pMTG, pre-SMA
and dorsal angular gyrus (dAG) bordering the intraparietal sulcus (IPS)
was reliably associated with high control demands across a range of
different semantic tasks (Noonan et al., 2013). This network is distinct
from, yet partially overlapping with, the multiple-demand network
which underpins executive control (Duncan, 2010): ventral LIFG and
pMTG appear to have a relatively selective semantic focus, while dorsal
PFC and IPS contribute to domain-general executive control (Whitney
et al., 2012; Noonan et al., 2013; Krieger-Redwood and Jefferies, 2014;
Davey et al., in press). Regions implicated in semantic but not domain-
general control may play a particularly crucial role in controlled
memory retrieval: i.e., situations in which there is no explicit goal
specifying which aspects of meaning must be selected, yet automatic
spreading activation between related concepts is insufficient for
efficient task performance. Under these circumstances, it is the
activation of conceptual representations that gives rise to the control
demands (Jefferies, 2013; Davey et al., in press). An example might be
retrieving weak associations: the dominant aspects of meaning are
likely to be irrelevant for identifying the context that links weakly-
related words together and so control must be employed to focus
retrieval on information relevant to this linking context. Research
suggests that these controlled retrieval mechanisms also support the
retrieval of weak episodic memories (Barredo et al., 2015).

Studies examining the effect of inhibitory TMS to LIFG and pMTG
in healthy participants provide causal evidence for a role of these
regions in controlled semantic retrieval (Hoffman et al., 2010; Davey
et al., 2015; Whitney et al., 2011, 2012). When TMS pulses are applied
repeatedly at a low frequency, the effects last beyond the end of the
stimulation period: in this ‘offline’ method, effects of TMS are assessed
following rather than during stimulation, suggesting that behavioural
disruption reflects changes to cortical recruitment as opposed to
distraction caused by scalp sensations, eye-blinks and jaw contractions.
We previously found that offline TMS to LIFG and pMTG produced
comparable disruption of tasks tapping semantic control (Whitney
et al., 2011). There were no TMS effects on judgements about strong
associations (with low control demands) at either of these sites.

While there is increasingly strong evidence that semantic control is
supported by a distributed network that includes regions beyond LIFG,
such as pMTG and pre-SMA, little is currently known about the way in
which damage or disruption to one brain region (e.g., LIFG) modulates
the contribution of another site to semantic control (e.g., pMTG; pre-
SMA). TMS, when combined with neuroimaging techniques, can be
used to investigate effective connectivity and modulation within large-
scale neural networks (Paus, 2005; Ruff et al., 2009; Zanto et al., 2011;
Bestmann et al., 2004; Sack et al., 2007). This type of modulation effect
could be critical to understanding both TMS effects in healthy
participants and the effects of brain lesions in neuropsychological
cases. Stimulation of LIFG might reduce activity within connected
brain regions; alternatively, if pMTG and LIFG form a single flexible
functional network, there might be increases in pMTG which could

help task performance to be maintained at a good level despite
stimulation of LIFG.

In the present study, we used a combination of TMS and fMRI to
establish how a distributed network of brain regions is recruited in a
flexible manner to support semantic control. Offline TMS was applied
to ventral LIFG (or, in a separate testing session, a control site at the
occipital pole) and fMRI was used to measure the subsequent effect of
this stimulation on brain activity in regions implicated in semantic
control by a recent meta-analysis (Noonan et al., 2013). This was done
both for weak associations requiring controlled retrieval (which might
reveal increases in recruitment across a distributed network following
the application of TMS to LIFG) and strong associations with lower
controlled-retrieval demands (which should be possible without an
efficient contribution of LIFG). By comparing cortical activity and
functional connectivity following perturbation of the LIFG with a
perturbation of a control site, for both strong and weak associations,
we examined modulation of the network that underpins semantic
control (cf. Paus, 2005; Ruff et al., 2009).

2. Materials and methods

2.1. Participants

Imaging and behavioural data from 18 right-handed, native English
speakers was examined (13 female; M age=22.5 years, SD=3.2). All
participants were students from the University of York and passed TMS
and MRI safety screening (Wassermann, 1998). Written informed
consent was obtained from each subject before testing and a reimbur-
sement of £30 was paid. The study was approved by the local ethics
committee.

2.2. Experimental procedure and task

Participants were scanned three times, with the sessions separated
by at least one week. In the first session, the anatomical scan was
acquired plus functional images from the relatedness judgement task
(baseline scan). In the second and third sessions, participants per-
formed the same tasks again during fMRI but received 15 min of TMS
to either LIFG or occipital pole (OP; control site) before undergoing
scanning. The LIFG stimulation site was defined for each participant by
identifying a local peak response in this region in the baseline scan,
while the OP stimulation site was defined using structural landmarks
(see below for details). The order of stimulation sites was counter-
balanced across subjects.

Two semantic judgement tasks with different levels of semantic
control demand were employed: weak associations with high controlled
retrieval demands, and strong associations with low controlled retrieval
demands (Fig. 1) (cf. Badre et al., 2005; Wagner et al., 2001). In each
task, a cue word appeared above a row of three potential target words.
Participants were asked to decide which target was related to the cue by
pressing one of three buttons with their left hand, corresponding to the
position of the response item (left, middle, right). When the target was
strongly related to the cue (e.g. SALT – PEPPER, MACHINE, LAND), automatic
spreading activation between the probe and target is thought to
support the matching process. In contrast, when cue-target associa-
tions were weaker (e.g. SALT – GRAIN, RADIO, ADULT), retrieval may need to
be controlled in order to focus on those aspects of the cue and probe
words that are relevant to the link between them. In these trials, it was
more difficult to select the target and reject the distracters..

2.3. Stimuli

A within-subject factorial design was used, with FMRI SESSION
(baseline, OP and IFG scan) and SEMANTIC CONTROL (strong and
weak associations) as within-subject factors. Stimuli were selected for
each of the two relatedness tasks from a previous investigation
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(Whitney et al., 2011) and split into sets of 50 items per condition. The
strong and weak association trials were constructed such that the same
cue word was matched with a closely or more distantly related semantic
associate, using several sets of association norms (Moss and Older,
1996; Postman and Keppel, 1970). Association strength was defined as
the proportion of subjects that named the target in response to the cue
in free association. Each cue word was also paired with two unrelated
distracter items, for which no entry in the association norms was found
(e.g., low control: SALT – PEPPER, MACHINE, LAND; high control: SALT –
GRAIN, RADIO, ADULT). The mean association strength for high and low
control cue-target pairs differed significantly (paired t-test: low=.24,
SD=.19; high=.03, SD=.04; t(149)=13.34; p < .001), whereas cue,
target and distracter items were matched for word length in letters

and frequency (Kucera and Francis, 1967) across conditions (paired t-
tests, t < 1.34). The same cue was never repeated within a set/session
and the assignment of stimulus set was counterbalanced across
sessions.

2.4. fMRI procedure

In each of the three fMRI sessions, strong and weak associations
were presented in mini-blocks, alternating with 7 s of rest (i.e.,
fixation). We constructed 10 blocks for each experimental condition,
containing 5 trials each, and 21 blocks of rest. Each experimental block
started with an alertness cue (‘!’) shown for 1 s, which was replaced by
a fixation cross shown for 500 ms in the centre of the screen, which was

Fig. 1. Brain activation for high controlled retrieval > low controlled retrieval during the baseline scan and after TMS was applied to OP (control site) and LIFG (experimental site),
shown on a glass brain and also a rendered view (right-hand panel; colour bar represents t-values). Activation is corrected for multiple comparisons at p < .05, with a voxel type I error of
p < .005. Blue dots represent the site for LIFG stimulation for each subject (group mean in black), which were based on individual brain activation during the high control condition in
the baseline scan. Increased activity after TMS to LIFG in left posterior middle temporal gyrus (pMTG) is circled. Images were constructed using Data Viewer 3D (Gouws et al., 2009),
and MRICroGL.
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followed by the first trial displaying the cue and its three response
options. As soon as the participant pressed a button to denote which
target was related to the cue (relatedness judgement task), the fixation
cross reappeared for 500 ms indicating the next trial. If no response
was detected within 5 s, the fixation cross appeared automatically. The
task was self-paced and participants took on average 6:38 min
(SD=29 s), 6:24 min (SD=24 s) and 6:30 min (SD=29 s) to complete
the tasks during the baseline, the OP and the IFG scan, respectively.

Presentation of stimuli was controlled by a computer using the
Presentation 10.1 software package (Neurobehavioral Systems, http://
www.neurobs.com/). Stimuli were back-projected onto a screen located
inside the magnetic bore, viewable through a mirror mounted above
the head coil. Responses were recorded using an MRI-compatible
button-box.

2.5. Data acquisition

For each subject, T2*-weighted axial EPI scans, parallel to the AC/
PC line, were acquired with a GE 3 T HD Excite MRI scanner using a
Magnex gradient insert head coil together with a birdcage, radio-
frequency coil. 160 functional volumes were recorded in each session
(number of slices=39; slice thickness=3.5 mm; matrix size=128×128;
field of view=288×288 mm; TE=32.5 ms; TR=3 s). In addition, a T1-
weighted anatomical image (1 mm×1 mm×1 mm) was acquired for
each subject, which was used to guide coil positioning during TMS (see
below).

2.6. fMRI data analysis

Pre-processing and statistical analyses were performed using
Statistical Parametric Mapping software (SPM8) implemented in
MATLAB (Mathworks Inc., Sherborn, MA). After discarding the initial
two volumes, images were realigned to the first image and unwarped to
correct for the interaction of movement and susceptibility artifacts
during image acquisition. Each slice was then shifted relative to the
acquisition time of the middle slice using a sinc-interpolation. Volumes
were normalised into standard stereotaxic anatomical MNI-space by
using the transformation matrix calculated from the first EPI-scan of
each subject and the EPI-template. Afterwards, the normalised data
with a resliced voxel size of 4×4×4 mm were smoothed with an 8 mm
FWHM isotropic Gaussian kernel to accommodate intersubject varia-
tion in brain anatomy. The time series data was high-pass filtered with
a high-pass cut-off of 1/128 Hz. The autocorrelation of the data was
estimated and corrected for.

For each subject, the pre-processed images from all three sessions
(the baseline, OP and IFG scan) were entered as separate sessions into
the same design matrix. For each session, the strong and weak
association conditions were modelled as box-car functions with vari-
able duration, starting from the presentation of the first trial in each
sequence to the beginning of the resting block. Each of these functions
was then convolved with the expected hemodynamic response, defined
as the canonical hemodynamic response function (HRF) (Friston et al.,
1998) and its temporal derivative, to create covariates in a general
linear model. Parameter estimates of the HRF regressors for each of the
six different conditions were calculated from the least mean squares fit
of the model to the time series.

A random-effects analysis was performed on the group data by
entering the six 1st level contrasts for each subject into a factorial
analysis of variance (ANOVA) with factors FMRI SESSION (baseline,
OP and IFG scan) and SEMANTIC CONTROL (strong and weak
associations). We were interested in how activation might change after
TMS to LIFG within the distributed neural network supporting
semantic control; hence between-session contrasts were computed on
the task with high semantic control demands involving weakly-
associated words (i.e., IFG scan vs. Baseline scan, IFG scan vs. OP
scan). To ensure that any observed effects could be attributed to

regions involved in semantic control processes, we computed the same
contrasts for the judgements about strongly-associated words with low
control demands (i.e., IFG scan vs. Baseline scan, IFG scan vs. OP
scan). Results for the whole brain analysis are presented at a threshold
of p < .05 FWE corrected.

We also conducted a further analysis in which we added a
parametric regressor (Büchel et al., 1998) to model the effects of time
since TMS stimulation. Each task block at the individual level was given
a demeaned parametric regressor (number of seconds since stimula-
tion). The resulting images were then analysed in a 2×2 model looking
at the IFG and OP scans only (since time since stimulation only applied
to these sessions). This analysis allowed us to look at which brain areas
changed in activation as a function of time since stimulation, over and
above any existing task effect.

Since we had clear predictions about which cortical areas beyond
LIFG contribute to semantic control from the meta-analysis of Noonan
et al. (2013), we supplemented our whole-brain analysis with a regions-
of-interest (ROI) analysis. We examined neural responses to high and
low-control judgements in the five sites that were the most likely to be
recruited across a wide variety of semantic control manipulations in
this meta-analysis: these sites were left IFG, left pMTG, pre-SMA,
dorsal AG bordering IPS and right IFG, listed in order of activation
likelihood according to Noonan et al. (2013). We selected ROIs
individually for each participant within these pre-defined anatomical
areas using the contrast of high > low control in the baseline scan (in
the absence of TMS). We placed 10 mm spheres around peak activa-
tions for individual participants, ensuring that these peaks were within
the anatomical region of interest as defined by the automatic anato-
mical labelling (AAL) templates. We then examined the response of
these sites in the LIFG and OP scans (therefore the data used to define
the ROI and the percent signal change values extracted from the ROI
were independent). ROIs were successfully created for individual
participants using this method in left pMTG, left and right IFG, and
pre-SMA. However, it did not prove possible to reliably identify
activation for high > low-control judgements within the dorsal portion
of AG bordering IPS for individual participants: there was typically
little signal or deactivation to this contrast. Although dAG/IPS was
implicated in semantic control by the Noonan et al. (2013) meta-
analysis, it has been suggested that its contribution is more restricted
to tasks involving selection or requiring the application of a top-down
goal to retrieval and that it does not strongly respond to manipulations
of associative strength (Badre et al., 2005). Therefore this region was
not included in the ROI analysis below. For the other four sites, data
were extracted using the MarsBar toolbox in SPM8 (Brett et al., 2002)
and effects of stimulation site (LIFG vs. OP stimulation) and semantic
control (high vs. low-control judgements) were examined using within-
subjects ANOVA.

2.6.1. Connectivity analysis
In order to further investigate the effects of stimulation on the

large-scale networks supporting semantic control, we conducted a
psychophysical interaction (PPI) analysis (O’Reilly et al., 2012), in
which we investigated differences in connectivity between the stimula-
tion sessions (following TMS to LIFG and the control site), and
conditions (strong vs. weak associations). We extracted the time-course
(for each participant and each session) from 5 mm spheres centred on
the LIFG stimulation site (individually defined for each participant).
We compared the functional connectivity of LIFG with a control site in
medial prefrontal cortex (mPFC), in order to test whether the effects of
task and/or stimulation on connectivity were relatively specific to
LIFG, or whether they would generalise to other nearby regions outside
the semantic control network. This specific control site was chosen
since it fell within prefrontal cortex yet shows anti-correlation with
LIFG in functional connectivity analyses (see Supplementary Fig. 1).
The mPFC coordinates were taken from Andrews-Hanna et al. (2010),
who identified this region as corresponding to a peak within the default
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mode network. Consequently, mPFC represents a region that is not
functionally coupled to LIFG, falls outside the network identified as
important for semantic control by the neuroimaging meta-analysis of
Noonan et al. (2013), and might be expected to show a higher response
to easy as opposed to hard semantic judgements (Davey et al., in press).
In the supplementary materials, we also present parallel PPI analyses
employing the occipital pole as a control site (see Supplementary
Fig. 2).

In both of these models, eigenvariates for these sites were included
in a GLMmodel as explanatory variables at the single-subject level, and
brain regions whose activity was associated with the time-course for
these spheres were identified. These were combined at the second-level
across participants in the same fashion as the whole-brain analysis of
the BOLD response to the task. Results were thresholded at p < .05
FWE corrected.

2.7. TMS protocol

In the second and third fMRI sessions, TMS was applied over either
OP or LIFG before participants underwent scanning. We employed an
offline ‘virtual lesion’ rTMS protocol, which was compatible with
established TMS safety guidelines (Rossi et al., 2009; Wassermann,
1998). Repetitive trains of TMS (rTMS) were delivered at 1 Hz to the
target brain area for 15 min. This type of repetitive stimulation is
reported to produce a temporary disruption of neural processing in the
underlying tissue, lasting for around the same length of time as the
stimulation – i.e., 15 min (Lambon Ralph et al., 2009; Pascual-Leone
et al., 1998; Pobric et al., 2007; Whitney et al., 2011). Stimulation
intensity was determined before each rTMS administration as 100% of
active motor threshold (MT). MT was identified as the lowest intensity
that produced a visible muscle twitch in the tense right hand when
intensity was gradually decreased during single-pulse stimulation of
left motor cortex. Intensity threshold was set to a maximum of 60% of
stimulator output (mean intensity OP scan =55%, SD =6.30; mean
intensity IFG scan =55%, SD =5.78). We previously employed more
intense stimulation (delivered at 120% not 100% of active MT) for a
shorter duration (10 not 15 min) to disrupt behavioural performance

employing the same tasks (Whitney et al., 2011). However, our current
stimulation parameters were optimised for detecting modulation of the
neural response in fMRI (as opposed to behavioural disruption) since
we needed to ensure that the effects of stimulation would be present
throughout the functional scan: for this reason we opted to stimulate
for a longer period, at a reduced intensity to maintain the comfort and
safety of participants.

A 50 mm figure-of-eight coil, attached to a Magstim Rapid2
stimulator, was used for the repetitive delivery of magnetic pulses.
The centre of the coil was aligned to the point that marked the
stimulation site on a tight-fitting elastic cap worn by the participant.
The coil was supported by a portable coil stand and held firmly against
the scalp throughout stimulation. TMS was administered in the MRI
control room to minimise the time delay between stimulation offset
and acquisition of the first functional image (mean time delay OP scan:
3:21 min; SD =24 s; range: 2:48–4:20 min; mean time delay IFG scan:
3:28 min; SD =21 s; range: 2:49–4:00 min). Therefore, the period of
functional data acquisition (which corresponded approximately to the
period 3–11 min after TMS stimulation ended) was expected to fall
within the period of TMS-induced cortical modulation (Table 1).

2.8. Localization of stimulation sites

The stimulation site for OP was defined using structural landmarks,
as lying 2 cm above the inion. The stimulation site for LIFG was
determined for each participant individually based on their brain
activation during the baseline scan and their structural image. For
each subject, MNI-coordinates for LIFG were extracted from the 1st
level contrast high control > rest, as this condition placed the highest
demands on the semantic control network. Activation peaks were
chosen such that they lay within BA 45 of the pars triangularis
(according to the Anatomy toolbox labelling) or, if no peak emerged
in this area, more ventrally within the pars orbitalis. The peak with the
highest Z-value was chosen. The mean coordinates correspond to x
=−49, x =30, z =9 (SD: x =4.3 mm, y =6.76 mm, z =10.34 mm) and
were located in left BA 45 of the pars triangularis (see Fig. 1). A
‘Brainsight’ frameless stereotaxy system was used to co-register the

Table 1
Median RTs and standard deviations for the behavioural task.

Median RT (ms) SD

Baseline Whole scan
High control 1603 288
Low control 1373 208

1st half of scan
High control 1577 302
Low control 1371 163

2nd half of scan
High control 1650 294
Low control 1386 289

OP Whole scan
High control 1530 250
Low control 1316 162

1st half of scan
High control 1561 258
Low control 1302 146

2nd half of scan
High control 1540 277
Low control 1314 213

IFG Whole scan
High control 1562 283
Low control 1355 222

1st half of scan
High control 1558 289
Low control 1406 226

2nd half of scan
High control 1576 303
Low control 1308 218
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identified site within LIFG to the participant's head. Each individual
anatomical image was overlaid on the MNI template and the subject-
specific stimulation site was marked. In a second step, the participant's
head was co-registered with the anatomical image using a Polaris infra-
red tracking device and five standard landmarks (i.e., nasion, tip and
bridge of the nose, left and right ear). The target areas were marked on
a tight-fitting elastic cap worn by the participant throughout stimula-
tion.

3. Results

3.1. fMRI analysis: whole-brain analysis

Judgements of strong and weak associations at baseline, after OP
stimulation, and after stimulation of LIFG, resulted in brain activations
in highly similar, distributed, bilateral regions (see Table 2). Compared
to rest, brain activity was consistently seen across all six conditions
(i.e., strong and weak associations, within baseline, LIFG and OP TMS
scans) in visual cortex, adjacent occipito-temporal cortex, left fusiform
gyrus and left pMTG. Activity spread along the superior parietal lobe to
sensory-motor areas and into LIFG. Right frontal responses occurred
consistently in the insula, the middle frontal gyrus and, corresponding
to left-hand button-presses, in large portions of right motor cortex and
surrounding areas.

Contrasts of weak > strong associations were used to identify
regions that respond to controlled semantic retrieval. During the
baseline scan, differential activation occurred in areas previously
associated with semantic control, including LIFG, left pMTG, left and
right supplementary motor area, ventral right inferior frontal gyrus
(RIFG) and the right cerebellum (see Table 3, Fig. 1). After OP
stimulation – which should not have altered activation in the semantic
control network – activation was seen in the same set of areas apart
from the right supplementary motor area. After TMS to LIFG,
responses to the high > low control contrast increased in the same
set of areas (although to different degrees and in several different ways,
revealed by the ROI analysis below). Additional activation was
observed in left fusiform gyrus, bilateral inferior occipital gyrus and
midbrain structures in the LIFG TMS scan. However, in the whole
brain analysis, the interaction between session and control demands
did not reveal any significant clusters.

An additional analysis that included a parametric regressor of time
since stimulation (comparing LIFG and OP sessions, and excluding the
baseline scan when no stimulation was applied) confirmed these
findings. There was still no interaction between session and controlled
retrieval demands, and no effect of time since stimulation for either
site.

3.2. ROI analysis

Signal change for the high and low control conditions during the
IFG and OP scans was extracted for each participant within a sphere
centred on the contrast high > low control in the baseline scan. This
data was analysed using 2×2 ANOVA, examining within-subjects
factors of semantic control demands and scan session. These data are
shown in Fig. 2, along with a summary of the results of Bonferroni-
corrected pair-wise comparisons computed between the four condi-
tions at each site..

3.2.1. Left inferior frontal ROI
LIFG (mean MNI co-ordinates=−51, 25, 10) showed a main effect

of control (F(1,17)=48.124, p < .001) and a main effect of session
(F(1,17)=4.642, p < .05). There was also a trend-level interaction
between control and session (F(1,17)=3.533, p=.08). Paired t-tests
(with Bonferroni correction adjusting p to < .0125) showed that neural
activity in LIFG was substantially greater for high control compared to
low control judgements in both sessions (IFG: t =5.323, p=.0001; OP:

Table 2
Brain activation for the high control and low control conditions during the baseline scan
and after TMS was applied to OP (control site) and LIFG.

Activation peak x y z Z Voxel

Baseline scan: high control
Cerebellar vermis 4 −76 −28 > 8 6498

L MOG (BA 17) −16 −100 0 > 8
R IOG (BA 17) 24 −100 −4 7.30
L MTG (BA 21/22) −60 −40 4 5.55
L SPL (BA 7) −24 −68 48 7.60
R SPL (BA 7) 24 −60 56 5.67
L Precentral gyrus (BA 9) −52 8 36 > 8
R Precentral gyrus (BA 6) 40 −16 68 7.72
L IFG (tri; BA 44) −44 16 24 7.47
R Insula 36 20 4 5.53
L Hippocampus −28 −28 −4 5.53 44
R MFG (BA 46) 56 28 32 4.13 25
L Postcentral gyrus (IPC) −56 −20 24 3.90 22
R Precentral gyrus (BA 6) 60 8 36 3.75 9
R Rolandic operculum 44 0 16 2.89 2

Baseline scan: low control
Cerebellar vermis 4 −76 −28 > 8 7796

L Lingual gyrus (BA 17) −8 −80 −12 > 8
R Lingual gyrus (BA 17) 8 −76 −12 > 8
L MTG (BA 21/22) −60 −44 8 5.27
L SPL (BA 7) −24 −68 48 > 8
R SPL (BA 7) 24 −60 56 6.65
L Precentral gyrus (BA 9) −52 4 40 7.81
R Precentral gyrus (BA 6) 40 −16 68 > 8
L IFG (op) −52 12 0 5.47
R Insula 44 16 −4 4.56
R MFG (BA 46) 52 32 32 3.94 26
L MTG (BA 21) −60 −16 −4 3.27 5

OP scan: high control
Cerebellar vermis 4 −76 −28 > 8 5412

L MOG (BA 18) −20 −100 0 > 8
R Cuneus (BA 17) 0 −92 16 > 8
L MTG (BA 22) −60 −44 4 6.23
L SPL (BA 7) −24 −64 44 > 8
R SPL (BA 7) 24 −60 56 7.14
L Precentral gyrus (BA 9) −52 8 36 > 8
R Postcentral gyrus (BA 3) 40 −28 52 7.75
L IFG (tri; BA 44) −44 16 24 > 8
R Insula 36 24 4 6.61
L Postcentral gyrus −56 −20 24 3.08 11
L SMG −48 −44 24 3.46 8
L Midbrain −12 −24 −20 3.08 3
R Midbrain 8 −24 −20 2.83 3

OP scan: low control
Cerebellar vermis 4 −76 −28 > 8 10409

L Cuneus (BA 18) 0 −80 12 > 8
R Cuneus (BA 17) 8 −88 4 > 8
L MTG (BA 22) −64 −32 0 4.98
L IPL −24 −68 44 > 8
R SPL (BA 7) 24 −60 56 > 8
L Precentral gyrus (BA 9) −52 4 36 > 8
R Postcentral gyrus (BA 2) 44 −28 52 > 8
L IFGtri −40 16 24 7.73
R Postcentral gyrus 52 −20 20 5.33

IFG scan: high control
Cerebellar vermis 4 −76 −24 > 8 8050

L Cuneus (BA 18) 0 −80 12 > 8
R Lingual gyrus (BA 17) 12 −80 0 > 8
L MTG (BA 21/22) −60 −40 4 6.45
L SPL (BA 7) −24 −64 44 > 8
R SPL (BA 7) 24 −60 56 5.72
L Precentral gyrus (BA 9) −48 8 36 > 8
R Postcentral gyrus (BA 3) 44 −24 52 7.70
L IFGtri (BA 45) −52 28 12 7.16
R MFG (BA 46) 56 28 32 5.96
R Insula 36 24 −4 5.61
R MTG (BA 21) 48 −32 0 3.60 16

(continued on next page)
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t=4.759, p=.0001). There was a reduced response to strong association
trials with low control demands following stimulation of LIFG com-
pared to OP (t=−3.714, p=.002), which might have reflected the local
inhibitory effect of the stimulation. There was no difference in
percentage signal change for weak association judgements with higher

control demands following LIFG and OP stimulation (t < 1).

3.2.2. Left middle temporal ROI
Left pMTG (mean MNI co-ordinates =−56,−47, 2) showed a main

effect of control (F(1,17)=14.667, p =.002). There was also an inter-
action between session and control demands (F(1,17)=4.636, p =.048).
Paired t-tests (with Bonferroni correction adjusting p to < .0125)
confirmed that neural activity in pMTG was higher for high control
compared to low control judgements following IFG stimulation (t
=3.905, p =.001) with a near-significant effect of control demands in
the scan following OP stimulation (t =1.897, p =.077). This pattern of
results is consistent with the possibility that activity in pMTG made a
greater contribution to demanding semantic judgements following
perturbation of the LIFG.

3.2.3. Right inferior frontal ROI
RIFG (mean MNI co-ordinates=48, 26, 9) showed a main effect of

control (F(1,17)=9.383, p =.008) and a main effect of session (F(1,17)
=6.482, p < .022). There was also a significant interaction between
control and session (F(1,17)=5.509, p=.033). Bonferroni-corrected t-
tests showed a stronger response in RIFG for high compared to low
control judgements only in the IFG session (t=3.394, p=.004) and not
following OP stimulation (t < 1). There was a reduced response in
RIFG for low control judgments following stimulation of LIFG com-
pared with stimulation of OP (t =−3.041, p=.008). However, for high
control judgements, there was no difference between LIFG and OP
stimulation (t < 1). Thus, TMS to LIFG reduced the contribution of this
region to relatively easy tasks, but this effect was not seen for harder
judgements.

3.2.4. Pre-supplementary motor area ROI
The pre-SMA (mean MNI co-ordinates =−6, 19, 57) showed a main

effect of control (F(1,17)=7.712, p =.014) and an interaction between
session and control (F(1,17)=6.79, p =.02). Paired t-tests showed that
activity was stronger during high control compared to low control
judgements only in the IFG session (t =3.513, p =.003) and not the OP
session (t =1.104, p =.287). However, differences between the sessions
did not reach significance for either high-control (t =1.106, p =.286) or
low-control trials (t=−1.441, p=.170).

3.2.5. Connectivity analysis
We investigated functional connectivity during the task with

psychophysical interactions that examined the whole-brain connectiv-
ity of the LIFG stimulation site, for weak and strong associations. We
compared this effect at the stimulation site to a control region selected
to be relatively close to the stimulation site but in a different functional
network (mPFC in the default mode network), as this allowed us to
demonstrate the spatial selectivity of the results. Across all three
sessions, LIFG showed greater connectivity to surrounding voxels in
LIFG and inferior frontal sulcus, left pMTG, RIFG, and pre-SMA
compared to the mPFC seed (Fig. 3), during the task compared to the
implicit baseline. The reverse contrast revealed greater connectivity
from mPFC to other areas in the default-mode network (posterior
cingulate, bilateral angular gyri). There were no main effects or
interactions involving task condition (high > low control demands)
or session (LIFG > OP stimulation). Taken together, these results
suggest that performance on the semantic association task is supported
by the distributed semantic control network, including all of our ROIs
taken from Noonan et al.’s (2013) meta-analysis. While components of
this network appear to change the strength of their recruitment in
response to LIFG stimulation (i.e., in the analyses of the BOLD
response above), we did not observe evidence that the network itself
significantly changes. Indeed, LIFG shows a similar pattern of func-
tional connectivity to sites implicated in semantic control in resting-
state data (Davey et al., in press; see also Supplementary Fig. 1)..

Table 2 (continued)

Activation peak x y z Z Voxel

R IFG (tri) 36 32 28 2.74 2

IFG scan: low control
Cerebellar vermis 4 −76 −20 > 8 7156

L Calcarine gyrus (BA 18) 0 −80 12 > 8
R Calcarine gyrus (BA 17) 28 −60 4 6.77
L MTG (BA 21/22) −60 −40 4 5.21
L SPL (BA 7) −24 −64 44 > 8
R SPL (BA 7) 24 −60 56 5.98
L Precentral gyrus (BA 6) −40 −4 64 > 8
R Postcentral gyrus (BA 3) 44 −24 52 > 8
L IFG (tri) −40 20 24 5.57
R Insula 48 16 −4 3.72
L Hippocampus −28 −32 −4 5.83
R STG (BA 22/21) 44 −32 0 3.29 12
R MFG (BA 46) 56 28 32 3.93 6
R Insula 44 0 16 2.72 3
R STG (BA 42) 68 −36 20 2.64 2

Note: L=left, R=right, FFG=fusiform gyrus, IFG=inferior frontal gyrus, op=pars
opercularis, tri=pars triangularis, orb=pars orbitalis, IOG=inferior occipital gyrus,
mCC=middle cingulate gyrus, MFG=middle frontal gyrus, MOG=middle occipital gyrus,
MTG=middle temporal gyrus, SFG=superior frontal gyrus, SMA=supplementary motor
area, SOG=superior occipital gyrus, SPL=superior parietal lobule, STG=superior
temporal gyrus.

Table 3
Brain activation for the high control > low control contrast during the baseline scan and
after TMS was applied to OP and LIFG.

Activation peak x y z Z Voxel

Baseline high > low control
L IFG (tri; BA 45) −52 24 20 5.86 511
L SMA (BA 6) −4 16 56 4.22 90
R IFG (orb; BA 47) 36 28 −8 4.27 54
R Cerebellum 12 −80 −32 3.58 29
R IFG (tri) 44 24 24 3.49 21
R SMA 12 12 48 2.99 5
L MTG (BA 21) −52 −40 0 3.02 4
R Cerebellum 20 −80 −48 2.72 2

OP high > low control
L IFG (orb) −48 44 −8 4.80 355
L SMA (BA 6) −4 20 60 4.15 76
R Cerebellum 20 −80 −32 3.36 29
L MTG (BA 21) −52 −40 −4 3.59 18
R IFG (orb) 28 32 −4 3.21 5
R IFG (tri; BA 45) 48 24 12 2.80 2

IFG high > low control
L IFG (tri; BA 45) −52 28 12 6.06 807
R Cerebellum 16 −84 −32 5.44 326
R Insula 32 24 −4 5.39 254
L SMA (BA 6) −4 20 56 6.10 243
L MTG (BA 21) −56 −48 4 3.73 96
L Thalamus −4 −24 −4 3.99 95
L FFG (BA 37) −28 −40 −20 3.93 54
L IOG −27 −92 −8 3.23 22
R IOG 40 −92 −4 2.97 4
R Midbrain 20 −24 −8 3.06 3
L Postcentral gyrus (BA 4) −52 −12 44 2.74 2
L Pallidum −12 4 −4 2.78 2

Note: L=left, R=right, FFG=fusiform gyrus, IFG=inferior frontal gyrus, op=pars
opercularis, tri=pars triangularis, orb=pars orbitalis, IOG=inferior occipital gyrus,
mCC=middle cingulate gyrus, MTG=middle temporal gyrus, SMA=supplementary motor
area. Co-ordinates in MNI space.
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3.3. Behavioural analysis

We analysed median response time (RT) to reduce the influence of
outlying values (Wilcox and Keselman, 2003). We examined error rate
and RT with incorrect trials and outliers ( ± 2 SD) removed (9.63% of
the data was discarded for this reason). The data were entered into
repeated-measures ANOVAs with FMRI SESSION (Baseline, OP and
IFG scan) and SEMANTIC CONTROL (strong vs. weak associations) as
within-subject factors. 2-tailed paired t-tests were used for post-hoc
analyses.

The ANOVA for median RT revealed a main effect of SEMANTIC
CONTROL (F(1, 17)=114.864, p < .001), with longer RTs for the task
with high as opposed to low semantic control demands. Individual
comparisons confirmed that participants were slower for the high
control than the low control task during the baseline scan (high control:
M =1603 ms, SD =288; low control: M =1373 ms, SD =208; t(17)
=7.08, p < .001), the OP TMS scan (high control: M =1530 ms, SD
=250; low control: M =1316 ms, SD =162; t(17)=6.74, p < .001) and
the IFG scan (high control: M =1562 ms, SD =283; low control: M
=1355 ms, SD =222; t(17)=8.25, p < .001). There was a significant
effect of FMRI SESSION (F(1,17)=5.015, p < .05, Baseline session: M
=1488 ms, SD =244; OP session: M =1423 ms, SD =211; IFG session
M =1458 ms, SD =260). Individual comparisons showed that median
reaction times were slower in the baseline scan compared to the OP
scan (p < .05) with no difference between the baseline and IFG scan
(p=.522) or between the OP scan and IFG scan (p=.286) There was no
interaction between SEMANTIC CONTROL and FMRI SESSION (F <
1). Participants were slowest on the baseline session and this is likely to
have reflected the fact that this session was always the first time they
attempted the task.

We also investigated whether the reaction time changed as a result
of time since the stimulation (see page 19). To investigate this, we split
each session into the first half and last half. We then entered these into
a separate ANOVA for each session with SEMANTIC CONTROL and
TIME (1st half or 2nd half) as within subject factors. For the baseline
scan there was a main effect of semantic control (F(1,17)=70.28, p
< .001), with reaction times faster for low control than high control.
There was no main effect of time (1st half or 2nd half; F(1,17)=1.508,
p=.237) and no interaction between control and time (F(1,17)=.828,

p=.376). For the OP scan there was a main effect of semantic control
(F(1,17)=73.89, p < .001), with reaction times faster for low control
than high control. There was no main effect of time (1st half or 2nd
half; F(1,17)=.014, p=.907) and no interaction between control and
time (F(1,17)=.603, p=.449). For the IFG scan there was a main effect
of semantic control (F(1,17)=74.22, p < .001), with reaction times
faster for low control than high control. There was no main effect of
time (1st half or 2nd half; F(1,17)=.184, p=.184). However, there was
an interaction between control and time (F(1,17)=6.862, p=.019): low
control judgments were faster in the second half of the scan compared
to the first (t=5.092, p < .001), but there was no difference for high
control judgments in the first half and second half (t =−.388, p=.703).
An additional omnibus ANOVA that included the effects of SEMANTIC

CONTROL, TIME, and SCAN as within-subject factors revealed no interaction
between semantic control, time and scan session (F(1,17)=.981,
p=.39).

Although participants made relatively few errors, ANOVA examin-
ing accuracy revealed the same main effect of SEMANTIC CONTROL (F(1, 17)
=48.19, p < .001). Participants were less accurate for high control than
the low control trials during the baseline scan (high control: M =7.22%,
SD =5.58; low control: M =3%, SD =3.16; t(17)=3.22, p=.005), the OP
scan (high control: M =6.44%, SD =4.83; low control: M =3.89%, SD
=4.01; t(17)=3.00, p=.008) and the IFG scan (high control: M =5.78%,
SD =4.80; low control: M =3.11%, SD =3.01; t(17)=3.17, p=.006). No
other main effects or interactions were significant (F < 1).

4. Discussion

TMS-induced modulation of cortical activity can be observed even
in the absence of behavioural disruption, and this method has been
used to elucidate neurophysiological relationships between distant
brain regions (Paus, 2005; Ruff et al., 2009; Zanto et al., 2011;
Bestmann et al., 2004; Sack et al., 2007). We applied TMS to a key
site for semantic control (LIFG) and measured the impact on neural
recruitment using fMRI. We compared brain activity following stimu-
lation of LIFG and a control site (occipital pole), confirming that
modulation of the BOLD signal was site-specific. We found task-
dependent modulation of the BOLD response in right IFG, posterior
middle temporal gyrus (pMTG) and pre-SMA; regions which all show

Fig. 2. Results of the Region of Interest (ROI) analyses.
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greater activation when healthy individuals make semantic judgement
with high as opposed to low controlled retrieval demands in the
absence of TMS (Badre et al., 2005; Thompson-Schill et al., 1997;
Wagner et al., 2001; Noonan et al., 2013). These regions showed two
distinct patterns of modulation following stimulation of LIFG: (i)
effects of the semantic control manipulation (strength of association)
were magnified in left pMTG and pre-SMA; (ii) the response of LIFG
and RIFG was reduced in magnitude, particularly for the easy, strong-
association condition. In the discussion that follows, the contribution
of each of these sites to semantic control is discussed.

4.1. LIFG

In the whole brain fMRI analysis, off-line stimulation of LIFG did
not produce any significant local effects (cf. Chouinard et al., 2003;
O’Shea et al., 2007; Ruff et al., 2008), presumably reflecting the fact
that we applied TMS to a functional peak that was anatomically unique

for each participant. Since participant-specific LIFG stimulation sites
were not spatially aligned, local changes in activation induced by TMS
might have been spread out across the whole region. The region of
interest analysis took this variation into account by identifying
individual activation peaks (in the baseline scan without TMS, using
the high > low control contrast). An ROI centred around these peak
coordinates showed reduced signal change to semantic judgements in
the context of LIFG stimulation, relative to OP stimulation (i.e., overall
TMS had a local inhibitory effect on the BOLD signal). Moreover,
neural recruitment of LIFG showed a trend-level interaction between
control demands and stimulation site: the response in this region
following stimulation to LIFG might have been better maintained for
weaker associations that required greater control.

The global reduction in the BOLD response following TMS was
expected, given that we used an inhibitory stimulation protocol that
was expected to reduce recruitment of the underlying brain area (e.g.
Binney and Lambon Ralph, 2015). However, our observation of greater

Fig. 3. A. Brain activation for PPI analysis comparing connectivity of the IFG stimulation site with the mPFC control seed (red/yellow) and the inverse contrast (blue/green). Colour
bars represent t values. B. Overlap of IFG connectivity in IFG scan with binorised mask of the Noonan meta-analysis of high > low semantic control, showing overlap in the networks.
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TMS-induced changes for low-control items at LIFG was unexpected.
We did observe stronger recruitment of LIFG for harder trials, in line
with the literature, and a reduced response following stimulation, but
this effect of stimulation did not interact with difficulty in the manner
that we predicted. It is unclear why the recruitment of LIFG showed the
biggest reduction for easy trials. There are still relatively few studies
combining neuroimaging with offline TMS protocols (e.g. Binney and
Lambon Ralph, 2015; Paus, 2005; Ruff et al., 2009; Zanto et al., 2011;
Bestmann et al., 2004; Sack et al., 2007) and further work is needed to
establish if this pattern will emerge across sites and tasks. While we
cannot provide a complete interpretation of this pattern of results, we
were able to show that response times to the low control trials
decreased over time in the LIFG stimulation session, presumably
because retrieval became more automatic when participants were more
experienced at the task. High-control trials that required the retrieval
of weak associations were unable to benefit from task practice in the
same way. If TMS applied to LIFG reduced the efficiency of controlled
retrieval processes as expected, participants may have been encouraged
to adopt a more automatic retrieval strategy for the low-control trials.
When a similar TMS protocol was applied to LIFG (albeit at a higher
intensity) in an earlier study (Whitney et al., 2011), there was
behavioural disruption of weak but not strong associations, suggesting
that LIFG may not be essential for the efficient retrieval of strong
associations, which may be retrieved via automatic spreading activa-
tion between highly-related concepts. If LIFG does not make an
essential contribution to low-control trials, its engagement might be
more readily reduced following inhibitory TMS. However, differences
in the TMS protocol prevent us from directly comparing these studies
and further research is clearly needed to replicate and investigate the
pattern we observed.

We also examined the pattern of functional connectivity for LIFG
using psychophysical interaction models. LIFG and pMTG showed an
increase in their coupling during the semantic task, supporting the view
that these regions act together to support semantic cognition; however,
we did not observe changes in the structure of this network following
IFG stimulation or for high-control vs. low-control trials. It might be
that this analysis lacked the sensitivity to uncover such effects.
Alternatively, TMS might have produced quantitative changes in the
recruitment of nodes within this network without significantly altering
the structure of the network itself: even when the BOLD response in
LIFG was reduced post-stimulation, fluctuations in this response could
still be correlated with fluctuations in the signal in pMTG. Recent
research has shown that functional connectivity between executive and
default mode regions can increase during a control-demanding seman-
tic task, even when these regions show opposite patterns in BOLD (i.e.,
an increased BOLD response in PFC and deactivation in the default
mode; Krieger-Redwood et al., 2016). Consequently, if participants
adopted a more ‘automatic’ strategy for easy semantic trials following
inhibitory TMS to LIFG, the neural basis of this effect may have been
reduced signal in the stimulated region without a change in the
correlation with pMTG.

4.2. RIFG

Although control-demanding semantic decisions elicit activity in a
largely left-lateralised network, there is also significant recruitment of
right IFG when judgements requiring more control are contrasted with
more automatic semantic retrieval (Noonan et al., 2013), and thus we
included this region as an ROI. RIFG showed a significant interaction
between semantic control demands and site of stimulation (LIFG vs.
OP), which again reflected reduced recruitment for easier judgements
following LIFG stimulation. This finding can be considered within
opposing theoretical frameworks about the contribution of left and
right IFG to semantic processing (see Geranmayeh et al., 2014). By one
view, RIFG is independently recruited alongside LIFG for more
demanding judgements when additional semantic control is required.

However, this proposal is not consistent with our data, since it fails to
explain why RIFG activation was reduced following LIFG stimulation.
Other accounts suggest that the balance of activity within LIFG and
RIFG reflects inter-hemispheric interactions (e.g., Seghier et al., 2011,
Chiarello and Maxfield, 1996), which could be inhibitory or might
reflect the transfer of information (Bloom and Hynd, 2005). Our data
are not readily explained by the principle of interhemispheric inhibi-
tion since a reduction in activation in LIFG for the easy task following
TMS to this region elicited the same pattern in RIFG. Instead, our
findings are more consistent with the proposal that LIFG and RIFG
show coupled activity – thus TMS-induced modulation of LIFG would
be expected to elicit similar effects in these two regions. Consistent with
this pattern, studies have shown that executively demanding tasks
which recruit PFC such as working memory and voluntary emotion
regulation, may benefit from bilateral processing (see Geranmayeh
et al., 2014; Buhle et al., 2013; Jansma et al., 2004; Niendam et al.,
2012).

4.3. pMTG

In the neuroimaging meta-analysis of Noonan et al. (2013), left
pMTG showed highly reliable recruitment across tasks that tapped
semantic control in different ways – second only to LIFG. Therefore,
LIFG and pMTG are recruited together when semantic retrieval must
be steered away from dominant and automatically retrieved aspects of
knowledge, towards more unusual features or associations (see also
Davey et al., in press). LIFG and pMTG are highly interconnected:
strong fibre pathways – running either ventrally via the extreme
capsule/uncinate fasciculus (EC/UF) or dorsally via the arcuate
fasciculus (AF) – allow the transmission of semantic information from
posterior temporal to inferior frontal areas (Anwander et al., 2007;
Croxson et al., 2005; Rilling et al., 2008; Saur et al., 2010).

However, the contribution of pMTG to semantic control remains
controversial, largely because this site has alternatively been described
as a key repository of semantic knowledge (Damasio et al., 1996;
Martin, 2007; Small et al., 1995). In conventional fMRI studies, the
greater neural response seen in pMTG during high-control semantic
conditions might conceivably reflect additional activation of conceptual
knowledge on demanding trials, as opposed to neural processing
essential for semantic control; indeed, many researchers have adopted
this interpretation (Badre et al., 2005; Bedny et al., 2008; see also
Gennari et al., 2007; Gold and Buckner, 2002). Our previous research
employing the same tasks has already shown that TMS to LIFG and
pMTG can produce equivalent behavioural disruption for high-control
but not low-control semantic decisions, strengthening the view that
pMTG is necessary for efficient semantic control alongside LIFG
(Whitney et al., 2011). However, semantic tasks are not process-pure
(in that they always require stored representations to interact with
control processes). The observation that TMS to LIFG magnified the
effect of strength of association in the BOLD response in pMTG
therefore provides critical support for the view that these regions are
key sites within a flexible distributed neural system underpinning
semantic control.

Our PPI results are also broadly compatible with this proposal,
since they show that pMTG was coupled with LIFG during the semantic
task, although we did not observe a modulation of this relationship
with stimulation or semantic control demands. As noted above, the
percentage signal change increases that were observed within pMTG
for high control semantic judgements following TMS to LIFG, com-
bined with an absence of stimulation effects in the PPI analysis, are
consistent with the possibility that TMS produced quantitative changes
in recruitment across the semantic network, but not changes to the
structure of the network itself. However, these null results of task
demands and stimulation might also have reflected our relatively short
functional scan which was designed to fit within the period in which
TMS effects were expected. Snijders et al. (2010) observed increased
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coupling between pMTG and large portions of bilateral anterior
temporal lobes, left inferior and middle temporal gyri and fusiform
gyrus when participants read semantically demanding ambiguous vs.
unambiguous sentences. Strong correlations were found between left
pMTG and ventral parts of LIFG (amongst other frontal areas),
reflecting their common engagement in semantic control processes.
Given pMTG's close proximity to temporal areas that store semantic
representations/feature knowledge (e.g. Martin, 2007), yet strong
connectivity with LIFG, this region might serve a complex role during
semantic processing, mediating between storage and control regions
and maintaining information about currently-relevant semantic fea-
tures (Davey et al., in press).

4.4. Pre-SMA

The pre-SMA is involved in effortful cognitive control (Aron et al.,
2007; Fedorenko et al., 2013; Harding et al., 2015) and is a component
of the “multiple-demand” network (Duncan, 2010), supporting execu-
tively-demanding non-semantic tasks. Pre-SMA is also strongly en-
gaged during semantic judgements requiring control over conceptual
retrieval (see the meta-analysis of Noonan et al., 2013). The recruit-
ment of this site in the current study was modulated by the application
of TMS to LIFG in a similar way to pMTG: it showed a stronger
response to the strength of association manipulation following LIFG
stimulation, suggesting that this domain-general executive region may
have been making a greater contribution to semantic control after an
inhibitory TMS protocol was applied to a key semantic control site
(LIFG).

4.5. dAG/IPS

There was no response to the task within dAG/IPS in the whole-
brain analysis, even though this region is a putative part of the
semantic control network and involved in broader cognitive control
beyond the semantic domain (Dumontheil et al., 2011; Duncan, 2006;
Nagel et al., 2008). Since ROIs were defined per participant using the
contrast of high over low control in the baseline scan, and this contrast
elicited little activation or deactivation at this site, we did not include
dAG/IPS as an ROI. One possible explanation for this null result is that
dAG is not critical for the type of controlled semantic retrieval required
in the paradigm we used – instead, it might have a more specific role in
the orientation of selective attention towards specific semantic features
like shape, colour or size (Badre et al., 2005). Feature selection was not
a major requirement of our high-control judgements, since the probe-
target pairs were globally (though weakly) semantically related. In line
with this interpretation, a previous TMS study showed that stimulation
of dAG disrupted performance on a semantic feature selection task but
not the weak association task used here (Whitney et al., 2012). Thus,
different aspects of semantic control might recruit partially overlapping
yet distinct neural networks.

4.6. Limitations

We acknowledge that the behavioural results did not reproduce the
previously reported pattern of selective disruption of high control
semantic judgments (Whitney et al., 2011); rather we found a main
effect of TMS disruption for both types of semantic judgement that
approached significance. There are several possible explanations for
this weaker, non-significant effect. First, we applied stimulation at a
lower intensity than in the previous study, and also for a shorter
duration than some other studies that have used a combined TMS-
fMRI approach (e.g. Rounis et al., 2006; Ward et al., 2010). Secondly,
the novelty of the scanner environment may have resulted in both easy
and harder judgements recruiting executive-semantic regions. Third,
practical constraints, such as the reduced number of trials that we
included in order to fit the task into a brief fMRI session within the

period of TMS-induced disruption, may have reduced the sensitivity of
our behavioural measure to subtle disruption. In any case, other
studies have also reported modulation of neural activity following
TMS in the absence of behavioural effects (e.g., O’Shea et al., 2007;
Feredoes et al., 2011; Blankenburg et al., 2010; Bestmann et al., 2008).

In addition, although the OP provided a useful control site in that it
was outside the semantic control network and thus not expected to
modulate behaviour differentially according to the task demands, it was
not equivalent to LIFG in terms of the perceived unpleasantness of
stimulation and peripheral effects such as muscle twitches and eye
blinks. Given that TMS was applied offline, these peripheral effects
were not expected to directly influence task performance. Nevertheless,
future research should examine double-dissociations between proximal
brain regions that lie within different functional networks and are
therefore expected to modulate the brain in distinct ways. A second
point is that the OP stimulation site was determined using anatomical
landmarks, as opposed to fMRI peak activation as for LIFG.
Consequently, this site was less variable across participants and this
could conceivably influence the effect of OP stimulation on the brain.
We are unable to directly characterise the effects of OP stimulation,
since we only employed one control site. However, our key analysis
examines ROIs within the semantic control network which do not show
strong connectivity to OP (Davey et al., in press). In contrast, the LIFG
stimulation site selected for every participant was within the semantic
control network of Noonan et al. (2013).

We also acknowledge that this study focussed on a specific aspect of
semantic control – controlled semantic retrieval, i.e., the ability to
identify relatively weak connections between probe and targets words
that would not be accessed through relatively automatic patterns of
spreading activation; it is possible that other aspects of semantic
control, such as the selection of conceptual information relevant to a
pre-encoded goal, is would not show the same pattern. For example,
there is some evidence suggesting pMTG may be less important when
specific semantic information has to be selected to suit a well-specified
goal provided by the task instructions, as opposed to when semantic
relationships defined by the input are weak or ambiguous (Davey et al.,
in press).

In sum, this study combines fMRI and TMS to provide evidence for
a distributed semantic control network that extends beyond left
prefrontal cortex. We show changes in the BOLD signal in several
regions of the spatially-distributed semantic control network following
offline stimulation to LIFG, including pMTG and pre-SMA: these sites
are thought to contribute to semantic control and domain-general
executive control respectively. We conclude that efficient semantic
retrieval requires the flexible activation of semantic representations
shaped by control processes to suit current task demands (Noonan
et al., 2013) and perturbation of one component of the semantic
control system (e.g., LIFG) results directly in changes within function-
ally connected components (e.g., pMTG).

Acknowledgements

This work was supported by a Wellcome Value in People award
awarded to CW. GH was supported by a Stroke Association project
grant (TSA/12/02). EJ was supported by grants from BBSRC (BB/
J006963/1) and the European Research Council (SEMBIND –

283530). Funders had no role in study design, collection, analysis
and interpretation of data, writing the report, or decision to submit the
article for publication.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.neuropsychologia.2016.09.012.

G.P. Hallam et al. Neuropsychologia 93 (2016) 40–52

50

http://dx.doi.org/10.1016/j.neuropsychologia.2016.09.012


References

Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., Buckner, R.L., 2010.
Functional-anatomic fractionation of the brain's default network. Neuron 65,
550–562.

Anwander, A., Tittgemeyer, M., Von Cramon, D.Y., Friederici, A.D., Knösche, T.R., 2007.
Connectivity-based parcellation of Broca's area. Cereb. Cortex 17, 816–825.

Aron, A.R., Behrens, T.E., Smith, S., Frank, M.J., Poldrack, R.A., 2007. Triangulating a
cognitive control network using diffusion-weighted magnetic resonance imaging
(MRI) and functional MRI. J. Neurosci. 27, 3743–3752. http://dx.doi.org/10.1523/
JNEUROSCI.0519-07.2007.

Badre, D., Wagner, A.D., 2007. Left ventrolateral prefrontal cortex and the cognitive
control of memory. Neuropsychologia 45, 2883–2901. http://dx.doi.org/10.1016/
j.neuropsychologia.2007.06.015.

Badre, D., Poldrack, R.A., Paré-Blagoev, E.J., Insler, R.Z., Wagner, A.D., 2005.
Dissociable controlled retrieval and generalized selection mechanisms in
ventrolateral prefrontal cortex. Neuron 47, 907–918. http://dx.doi.org/10.1016/
j.neuron.2005.07.023.

Barredo, J., Öztekin, I., Badre, D., 2015. Ventral fronto-temporal pathway supporting
cognitive control of episodic memory retrieval. Cereb. Cortex 25, 1004–1019.

Bedny, M., McGill, M., Thompson-Schill, S.L., 2008. Semantic adaptation and
competition during word comprehension. Cereb. Cortex 18, 2574–2585. http://
dx.doi.org/10.1093/cercor/bhn018.

Bestmann, S., Baudewig, J., Siebner, H.R., Rothwell, J.C., Frahm, J., 2004. Functional
MRI of the immediate impact of transcranial magnetic stimulation on cortical and
subcortical motor circuits. Eur. J. Neurosci. 19, 1950–1962. http://dx.doi.org/
10.1111/j.1460-9568.2004.03277.x.

Binney, R.J., Lambon Ralph, M.A., 2015. Using a combination of fMRI and anterior
temporal lobe rTMS to measure intrinsic and induced activation changes across the
semantic cognition network. Neuropsychologia 76, 170–181.

Bloom, J.S., Hynd, G.W., 2005. The role of the corpus callosum in interhemispheric
transfer of information: Excitation or inhibition? Neuropsychol. Rev. 15, 59–71.

Bozeat, S., Lambon Ralph, M. a, Patterson, K., Garrard, P., Hodges, J.R., 2000. Non-
verbal semantic impairment in semantic dementia. Neuropsychologia 38,
1207–1215. http://dx.doi.org/10.1016/S0028-3932(00)00034-8.

Brett, M., Anton, J.L., Valabregue, R., Poline, J.B., 2002. Region of interest analysis using
an SPM toolbox. Neuroimage 16, 497.

Büchel, C., Holmes, A.P., Rees, G., Friston, K.J., 1998. Characterizing stimulus–response
functions using nonlinear regressors in parametric fMRI experiments. Neuroimage
8, 140–148.

Buhle, J.T., Silvers, J. a, Wager, T.D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J.,
Ochsner, K.N., 2013. Cognitive reappraisal of emotion: A meta-analysis of human
neuroimaging studies. Cereb. Cortex 24, 2981–2990. http://dx.doi.org/10.1093/
cercor/bht154.

Chiarello, C., Maxfield, L., 1996. Varieties of interhemispheric inhibition, or how to keep
a good hemisphere down. Brain Cogn. 30, 81–108.

Chouinard, P.A., Werf, Van Der, Leonard, Y.D., Paus, T, G., 2003. Modulating neural
networks with transcranial magnetic stimulation applied over the dorsal premotor
and primary motor cortices. J. Neurophysiol. 90, 1071–1083. http://dx.doi.org/
10.1152/jn.01105.2002.

Corbett, F., Jefferies, E., Ehsan, S., Lambon Ralph, M.A., 2009. Different impairments of
semantic cognition in semantic dementia and semantic aphasia: evidence from the
non-verbal domain. Brain 132, 2593–2608. http://dx.doi.org/10.1093/brain/
awp146.

Croxson, P.L., Johansen-Berg, H., Behrens, T.E.J., Robson, M.D., Pinsk, M.A., Gross,
C.G., Richter, W., Richter, M.C., Kastner, S., Rushworth, M.F.S., 2005. Quantitative
investigation of connections of the prefrontal cortex in the human and macaque
using probabilistic diffusion tractography. J. Neurosci. 25, 8854–8866. http://
dx.doi.org/10.1523/JNEUROSCI.1311-05.2005.

Damasio, H., Grabowski, T.J., Tranel, D., Hichwa, R.D., Damasio, A.R., 1996. A neural
basis for lexical retrieval. Nature 380, 499–505. http://dx.doi.org/10.1038/
380499a0.

Davey, J., Rueschemeyer, S.-A., Costigan, A., Murphy, N., Krieger-Redwood, K., Hallam,
G., Jefferies, E., 2015. Shared neural processes support semantic control and action
understanding. Brain Lang. 142, 24–35. http://dx.doi.org/10.1016/
j.bandl.2015.01.002.

Davey, J., Thompson, H.E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Case, I.,
Krieger-Redwood, K., Bernhardt, B.C., Smallwood, J., Jefferies, E., 2016. Exploring
the role of the posterior middle temporal gyrus in semantic cognition: Integration of
anterior temporal lobe with executive processes. NeuroImage 137, 165–177. http://
dx.doi.org/10.1016/j.neuroimage.2016.05.051.

Dumontheil, I., Thompson, R., Duncan, J., 2011. Assembly and use of new task rules in
fronto-parietal cortex. J. Cogn. Neurosci. 23, 168–182. http://dx.doi.org/10.1162/
jocn.2010.21439.

Duncan, J., 2006. Brain mechanisms of attention. Q. J. Exp. Psychol. 59, 2–27. http://
dx.doi.org/10.1080/17470210500260674.

Duncan, J., 2010. The multiple-demand (MD) system of the primate brain: mental
programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179. http://
dx.doi.org/10.1016/j.tics.2010.01.004.

Fedorenko, E., Duncan, J., Kanwisher, N., 2013. Broad domain generality in focal regions
of frontal and parietal cortex. Proc. Natl. Acad. Sci. USA 110, 16616–16621. http://
dx.doi.org/10.1073/pnas.1315235110.

Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turner, R., 1998. Event-
related fMRI: characterizing differential responses. Neuroimage 7, 30–40. http://
dx.doi.org/10.1006/nimg.1997.0306.

Gennari, S.P., MacDonald, M.C., Postle, B.R., Seidenberg, M.S., 2007. Context-
dependent interpretation of words: evidence for interactive neural processes.
Neuroimage 35, 1278–1286. http://dx.doi.org/10.1016/j.neuroimage.2007.01.015.

Geranmayeh, F., Brownsett, S.L.E., Wise, R.J.S., 2014. Task-induced brain activity in
aphasic stroke patients: what is driving recovery? Brain 137, 2632–2648. http://
dx.doi.org/10.1093/brain/awu163.

Gold, B.T., Buckner, R.L., 2002. Common prefrontal regions coactivate with dissociable
posterior regions during controlled semantic and phonological tasks. Neuron 35,
803–812.

Gouws, A., Woods, W., Millman, R., Morland, A., Green, G., 2009. DataViewer3D: an
open-source, cross-platform multi-modal neuroimaging data visualization tool.
Front. Neuroinform. 3 (9). http://dx.doi.org/10.3389/neuro.11.009.2009.

Harding, I.H., Yücel, M., Harrison, B.J., Pantelis, C., Breakspear, M., 2015. Effective
connectivity within the frontoparietal control network differentiates cognitive control
and working memory. Neuroimage 106, 144–153. http://dx.doi.org/10.1016/
j.neuroimage.2014.11.039.

Hodges, J.R., Bozeat, S., Lambon Ralph, Ma, Patterson, K., Spatt, J., 2000. The role of
conceptual knowledge in object use evidence from semantic dementia. Brain 123,
1913–1925. http://dx.doi.org/10.1093/brain/123.9.1913.

Hoffman, P., Jefferies, E., Lambon Ralph, M.A., 2010. Ventrolateral prefrontal cortex
plays an executive regulation role in comprehension of abstract words: convergent
neuropsychological and repetitive TMS evidence. J. Neurosci. 30, 15450–15456.
http://dx.doi.org/10.1523/JNEUROSCI.3783-10.2010.

Jansma, J.M., Ramsey, N.F., Van Der Wee, N.J.A., Kahn, R.S., 2004. Working memory
capacity in schizophrenia: a parametric fMRI study. Schizophr. Res. 68, 159–171.

Jefferies, E., 2013. The neural basis of semantic cognition: converging evidence from
neuropsychology, neuroimaging and TMS. Cortex 49, 611–625. http://dx.doi.org/
10.1016/j.cortex.2012.10.008.

Jefferies, E., Lambon Ralph, M.A., 2006. Semantic impairment in stroke aphasia versus
semantic dementia: a case-series comparison. Brain 129, 2132–2147.

Krieger-Redwood, K., Jefferies, E., 2014. TMS interferes with lexical-semantic retrieval
in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from
cyclical picture naming. Neuropsychologia 64C, 24–32. http://dx.doi.org/10.1016/
j.neuropsychologia.2014.09.014.

Krieger-Redwood, K., Jefferies, E., Karapanagiotidis, T., Seymour, R., Nunes, A., Wei, J.,
et al., 2016. Down but not out in posterior cingulate cortex: Deactivation yet
functional coupling with prefrontal cortex during demanding semantic cognition.
Neuroimage 141, 366–377. http://dx.doi.org/10.1016/j.neuroimage.2016.07.060.

Kucera, H., Francis, W., 1967. Computational Analysis of Present-day EnglishBrown.
University Press, Providence; RI.

Lambon Ralph, M.A., Patterson, K., 2008. Generalization and differentiation in semantic
memory: insights from semantic dementia. Ann. N. Y. Acad. Sci. 1124, 61–76.
http://dx.doi.org/10.1196/annals.1440.006.

Lambon Ralph, M.A., Pobric, G., Jefferies, E., 2009. Conceptual knowledge is
underpinned by the temporal pole bilaterally: convergent evidence from rTMS.
Cereb. Cortex 19, 832–838. http://dx.doi.org/10.1093/cercor/bhn131.

Martin, A., 2007. The representation of object concepts in the brain. Annu. Rev. Psychol.
58, 25–45. http://dx.doi.org/10.1146/annurev.psych.57.102904.190143.

Moss, H., Older, L., 1996. Birkbeck Word Association NormsPsychology. Press, Hove,
UK.

Nagel, I.E., Schumacher, E.H., Goebel, R., D’Esposito, M., 2008. Functional MRI
investigation of verbal selection mechanisms in lateral prefrontal cortex. Neuroimage
43, 801–807. http://dx.doi.org/10.1016/j.neuroimage.2008.07.017.

Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S., 2012. Meta-
analytic evidence for a superordinate cognitive control network subserving diverse
executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268.

Noonan, K.A., Jefferies, E., Visser, M., Lambon Ralph, M. a, 2013. Going beyond inferior
prefrontal involvement in semantic control: evidence for the additional contribution
of dorsal angular gyrus and posterior middle temporal cortex. J. Cogn. Neurosci. 25,
1824–1850. http://dx.doi.org/10.1162/jocn_a_00442.

Noonan, K.A., Jefferies, E., Corbett, F., Lambon Ralph, M.A., 2010. Elucidating the
nature of deregulated semantic cognition in semantic aphasia: evidence for the roles
of prefrontal and temporo-parietal cortices. J. Cogn. Neurosci. 22, 1597–1613.

Novick, J.M., Kan, I.P., Trueswell, J.C., Thompson-Schill, S.L., 2009. A case for conflict
across multiple domains: memory and language impairments following damage to
ventrolateral prefrontal cortex. Cogn. Neuropsychol. 26, 527–567. http://dx.doi.org/
10.1080/02643290903519367.

O’Reilly, J.X., Woolrich, M.W., Behrens, T.E.J., Smith, S.M., Johansen-Berg, H., 2012.
Tools of the trade: psychophysiological interactions and functional connectivity. Soc.
Cogn. Affect. Neurosci. 7, 604–609. http://dx.doi.org/10.1093/scan/nss055.

O’Shea, J., Johansen-Berg, H., Trief, D., Göbel, S., Rushworth, M.F.S., 2007. Functionally
specific reorganization in human premotor cortex. Neuron 54, 479–490. http://
dx.doi.org/10.1016/j.neuron.2007.04.021.

Pascual-Leone, A., Tormos, J.M., Keenan, J., Tarazona, F., Cañete, C., Catalá, M.D.,
1998. Study and modulation of human cortical excitability with transcranial
magnetic stimulation. J. Clin. Neurophysiol. 15, 333–343.

Patterson, K., Nestor, P.J., Rogers, T.T., 2007. Where do you know what you know? The
representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8,
976–987. http://dx.doi.org/10.1038/nrn2277.

Paus, T., 2005. Inferring causality in brain images: a perturbation approach. Philos.
Trans. R. Soc. B Biol. Sci. 360, 1109–1114. http://dx.doi.org/10.1098/
rstb.2005.1652.

Pobric, G., Jefferies, E., Ralph, M.A.L., 2007. Anterior temporal lobes mediate semantic
representation: mimicking semantic dementia by using rTMS in normal participants.
Proc. Natl. Acad. Sci. USA 104, 20137–20141. http://dx.doi.org/10.1073/
pnas.0707383104.

G.P. Hallam et al. Neuropsychologia 93 (2016) 40–52

51

http://refhub.elsevier.com/S0028-16)30349-sbref1
http://refhub.elsevier.com/S0028-16)30349-sbref1
http://refhub.elsevier.com/S0028-16)30349-sbref1
http://refhub.elsevier.com/S0028-16)30349-sbref2
http://refhub.elsevier.com/S0028-16)30349-sbref2
http://dx.doi.org/10.1523/JNEUROSCI.05192007
http://dx.doi.org/10.1523/JNEUROSCI.05192007
http://dx.doi.org/10.1016/j.neuropsychologia.2007.06.015
http://dx.doi.org/10.1016/j.neuropsychologia.2007.06.015
http://dx.doi.org/10.1016/j.neuron.2005.07.023
http://dx.doi.org/10.1016/j.neuron.2005.07.023
http://refhub.elsevier.com/S0028-16)30349-sbref6
http://refhub.elsevier.com/S0028-16)30349-sbref6
http://dx.doi.org/10.1093/cercor/bhn018
http://dx.doi.org/10.1093/cercor/bhn018
http://dx.doi.org/10.1111/j.14602004.03277.x
http://dx.doi.org/10.1111/j.14602004.03277.x
http://refhub.elsevier.com/S0028-16)30349-sbref9
http://refhub.elsevier.com/S0028-16)30349-sbref9
http://refhub.elsevier.com/S0028-16)30349-sbref9
http://refhub.elsevier.com/S0028-16)30349-sbref10
http://refhub.elsevier.com/S0028-16)30349-sbref10
http://dx.doi.org/10.1016/S0028-00)00034-,0,0,2
http://refhub.elsevier.com/S0028-16)30349-sbref12
http://refhub.elsevier.com/S0028-16)30349-sbref12
http://refhub.elsevier.com/S0028-16)30349-sbref13
http://refhub.elsevier.com/S0028-16)30349-sbref13
http://refhub.elsevier.com/S0028-16)30349-sbref13
http://dx.doi.org/10.1093/cercor/bht154
http://dx.doi.org/10.1093/cercor/bht154
http://refhub.elsevier.com/S0028-16)30349-sbref15
http://refhub.elsevier.com/S0028-16)30349-sbref15
http://dx.doi.org/10.1152/jn.01105.2002
http://dx.doi.org/10.1152/jn.01105.2002
http://dx.doi.org/10.1093/brain/awp146
http://dx.doi.org/10.1093/brain/awp146
http://dx.doi.org/10.1523/JNEUROSCI.13112005
http://dx.doi.org/10.1523/JNEUROSCI.13112005
http://dx.doi.org/10.1038/380499a0
http://dx.doi.org/10.1038/380499a0
http://dx.doi.org/10.1016/j.bandl.2015.01.002
http://dx.doi.org/10.1016/j.bandl.2015.01.002
http://dx.doi.org/10.1016/j.neuroimage.2016.05.051
http://dx.doi.org/10.1016/j.neuroimage.2016.05.051
http://dx.doi.org/10.1162/jocn.2010.21439
http://dx.doi.org/10.1162/jocn.2010.21439
http://dx.doi.org/10.1080/17470210500260674
http://dx.doi.org/10.1080/17470210500260674
http://dx.doi.org/10.1016/j.tics.2010.01.004
http://dx.doi.org/10.1016/j.tics.2010.01.004
http://dx.doi.org/10.1073/pnas.1315235110
http://dx.doi.org/10.1073/pnas.1315235110
http://dx.doi.org/10.1006/nimg.1997.0306
http://dx.doi.org/10.1006/nimg.1997.0306
http://dx.doi.org/10.1016/j.neuroimage.2007.01.015
http://dx.doi.org/10.1093/brain/awu163
http://dx.doi.org/10.1093/brain/awu163
http://refhub.elsevier.com/S0028-16)30349-sbref29
http://refhub.elsevier.com/S0028-16)30349-sbref29
http://refhub.elsevier.com/S0028-16)30349-sbref29
http://dx.doi.org/10.3389/neuro.11.009.2009
http://dx.doi.org/10.1016/j.neuroimage.2014.11.039
http://dx.doi.org/10.1016/j.neuroimage.2014.11.039
http://dx.doi.org/10.1093/brain/123.9.1913
http://dx.doi.org/10.1523/JNEUROSCI.37832010
http://refhub.elsevier.com/S0028-16)30349-sbref34
http://refhub.elsevier.com/S0028-16)30349-sbref34
http://dx.doi.org/10.1016/j.cortex.2012.10.008
http://dx.doi.org/10.1016/j.cortex.2012.10.008
http://refhub.elsevier.com/S0028-16)30349-sbref36
http://refhub.elsevier.com/S0028-16)30349-sbref36
http://dx.doi.org/10.1016/j.neuropsychologia.2014.09.014
http://dx.doi.org/10.1016/j.neuropsychologia.2014.09.014
http://dx.doi.org/10.1016/j.neuroimage.2016.07.060
http://refhub.elsevier.com/S0028-16)30349-sbref39
http://refhub.elsevier.com/S0028-16)30349-sbref39
http://dx.doi.org/10.1196/annals.1440.006
http://dx.doi.org/10.1093/cercor/bhn131
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://refhub.elsevier.com/S0028-16)30349-sbref43
http://refhub.elsevier.com/S0028-16)30349-sbref43
http://dx.doi.org/10.1016/j.neuroimage.2008.07.017
http://refhub.elsevier.com/S0028-16)30349-sbref45
http://refhub.elsevier.com/S0028-16)30349-sbref45
http://refhub.elsevier.com/S0028-16)30349-sbref45
http://dx.doi.org/10.1162/jocn_a_00442
http://refhub.elsevier.com/S0028-16)30349-sbref47
http://refhub.elsevier.com/S0028-16)30349-sbref47
http://refhub.elsevier.com/S0028-16)30349-sbref47
http://dx.doi.org/10.1080/02643290903519367
http://dx.doi.org/10.1080/02643290903519367
http://dx.doi.org/10.1093/scan/nss055
http://dx.doi.org/10.1016/j.neuron.2007.04.021
http://dx.doi.org/10.1016/j.neuron.2007.04.021
http://refhub.elsevier.com/S0028-16)30349-sbref51
http://refhub.elsevier.com/S0028-16)30349-sbref51
http://refhub.elsevier.com/S0028-16)30349-sbref51
http://dx.doi.org/10.1038/nrn2277
http://dx.doi.org/10.1098/rstb.2005.1652
http://dx.doi.org/10.1098/rstb.2005.1652
http://dx.doi.org/10.1073/pnas.0707383104
http://dx.doi.org/10.1073/pnas.0707383104


Postman, L., Keppel, G., 1970. Norms of Word Association. Academic Press, New York.
Rilling, J.K., Glasser, M.F., Preuss, T.M., Ma, X., Zhao, T., Hu, X., Behrens, T.E.J., 2008.

The evolution of the arcuate fasciculus revealed with comparative DTI. Nat.
Neurosci. 11, 426–428. http://dx.doi.org/10.1038/nn2072.

Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A., 2009. Safety, ethical
considerations, and application guidelines for the use of transcranial magnetic
stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039.
http://dx.doi.org/10.1016/j.clinph.2009.08.016.

Rounis, E., Stephan, K.E., Lee, L., Siebner, H.R., Pesenti, A., Friston, K.J., Rothwell, J.C.,
Frackowiak, R.S.J., 2006. Acute changes in frontoparietal activity after repetitive
transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued
reaction time task. J. Neurosci. 26, 9629–9638. http://dx.doi.org/10.1523/
JNEUROSCI.2657-06.2006.

Ruff, C.C., Driver, J., Bestmann, S., 2009. Combining TMS and fMRI: from “virtual
lesions” to functional-network accounts of cognition. Cortex 45, 1043–1049. http://
dx.doi.org/10.1016/j.cortex.2008.10.012.

Ruff, C.C., Bestmann, S., Blankenburg, F., Bjoertomt, O., Josephs, O., Weiskopf, N.,
Deichmann, R., Driver, J., 2008. Distinct causal influences of parietal versus frontal
areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb. Cortex
18, 817–827. http://dx.doi.org/10.1093/cercor/bhm128.

Sack, A.T., Kohler, A., Bestmann, S., Linden, D.E.J., Dechent, P., Goebel, R., Baudewig,
J., 2007. Imaging the brain activity changes underlying impaired visuospatial
judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb. Cortex 17,
2841–2852. http://dx.doi.org/10.1093/cercor/bhm013.

Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Küpper, H., Kellmeyer, P., Kümmerer,
D., Klöppel, S., Glauche, V., Lange, R., Mader, W., Feess, D., Timmer, J., Weiller, C.,
2010. Combining functional and anatomical connectivity reveals brain networks for
auditory language comprehension. Neuroimage 49, 3187–3197. http://dx.doi.org/
10.1016/j.neuroimage.2009.11.009.

Seghier, M.L., Josse, G., Leff, A.P., Price, C.J., 2011. Lateralization is predicted by
reduced coupling from the left to right prefrontal cortex during semantic decisions
on written words. Cereb. Cortex 21, 1519–1531. http://dx.doi.org/10.1093/cercor/
bhq203.

Small, S.L., Hart, J., Nguyen, T., Gordon, B., 1995. Distributed representations of
semantic knowledge in the brain. Brain 118, 441–453.

Snijders, T.M., Petersson, K.M., Hagoort, P., 2010. Effective connectivity of cortical and

subcortical regions during unification of sentence structure. Neuroimage 52,
1633–1644. http://dx.doi.org/10.1016/j.neuroimage.2010.05.035.

Thompson-Schill, S.L., D’Esposito, M., Aguirre, G.K., Farah, M.J., 1997. Role of left
inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proc.
Natl. Acad. Sci. 94, 14792–14797. http://dx.doi.org/10.1073/pnas.94.26.14792.

Thompson-Schill, S.L., Swick, D., Farah, M.J., D’Esposito, M., Kan, I.P., Knight, R.T.,
1998. Verb generation in patients with focal frontal lesions: a neuropsychological test
of neuroimaging findings. Proc. Natl. Acad. Sci. 95, 15855–15860. http://dx.doi.org/
10.1073/pnas.95.26.15855.

Wagner, A.D., Paré-Blagoev, E.J., Clark, J., Poldrack, R.A., 2001. Recovering meaning:
left prefrontal cortex guides controlled semantic retrieval. Neuron 31, 329–338.
http://dx.doi.org/10.1016/S0896-6273(01)00359-2.

Ward, N.S., Bestmann, S., Hartwigsen, G., Weiss, M.M., Christensen, L.O.D., Frackowiak,
R.S.J., Rothwell, J.C., Siebner, H.R., 2010. Low-frequency transcranial magnetic
stimulation over left dorsal premotor cortex improves the dynamic control of
visuospatially cued actions. J. Neurosci. 30, 9216–9223. http://dx.doi.org/10.1523/
JNEUROSCI.4499-09.2010.

Wassermann, E.M., 1998. Risk and safety of repetitive transcranial magnetic
stimulation: report and suggested guidelines from the International Workshop on
the Safety of Repetitive Transcranial Magnetic Stimulation. June 5–7,
1996Electroencephalogr. Clin. Neurophysiol. 108, 1–16.

Whitney, C., Kirk, M., O’Sullivan, J., Lambon Ralph, M.A., Jefferies, E., 2011. The neural
organization of semantic control: TMS evidence for a distributed network in left
inferior frontal and posterior middle temporal gyrus. Cereb. Cortex 21, 1066–1075.
http://dx.doi.org/10.1093/cercor/bhq180.

Whitney, C., Kirk, M., O’Sullivan, J., Lambon Ralph, M.A., Jefferies, E., 2012. Executive
semantic processing is underpinned by a large-scale neural network: revealing the
contribution of left prefrontal, posterior temporal, and parietal cortex to controlled
retrieval and selection using TMS. J. Cogn. Neurosci. 24, 133–147. http://
dx.doi.org/10.1162/jocn_a_00123.

Wilcox, R.R., Keselman, H.J., 2003. Modern robust data analysis methods: measures of
central tendency. Psychol. Methods 8, 254–274. http://dx.doi.org/10.1037/1082-
989X.8.3.254.

Zanto, T.P., Rubens, M.T., Thangavel, A., Gazzaley, A., 2011. Causal role of the prefrontal
cortex in top-down modulation of visual processing and working memory. Nat.
Neurosci. 14, 656–661. http://dx.doi.org/10.1038/nn.2773.

G.P. Hallam et al. Neuropsychologia 93 (2016) 40–52

52

http://refhub.elsevier.com/S0028-16)30349-sbref55
http://dx.doi.org/10.1038/nn2072
http://dx.doi.org/10.1016/j.clinph.2009.08.016
http://dx.doi.org/10.1523/JNEUROSCI.26572006
http://dx.doi.org/10.1523/JNEUROSCI.26572006
http://dx.doi.org/10.1016/j.cortex.2008.10.012
http://dx.doi.org/10.1016/j.cortex.2008.10.012
http://dx.doi.org/10.1093/cercor/bhm128
http://dx.doi.org/10.1093/cercor/bhm013
http://dx.doi.org/10.1016/j.neuroimage.2009.11.009
http://dx.doi.org/10.1016/j.neuroimage.2009.11.009
http://dx.doi.org/10.1093/cercor/bhq203
http://dx.doi.org/10.1093/cercor/bhq203
http://refhub.elsevier.com/S0028-16)30349-sbref64
http://refhub.elsevier.com/S0028-16)30349-sbref64
http://dx.doi.org/10.1016/j.neuroimage.2010.05.035
http://dx.doi.org/10.1073/pnas.94.26.14792
http://dx.doi.org/10.1073/pnas.95.26.15855
http://dx.doi.org/10.1073/pnas.95.26.15855
http://dx.doi.org/10.1016/S0896-01)00359-,0,0,2
http://dx.doi.org/10.1523/JNEUROSCI.44992010
http://dx.doi.org/10.1523/JNEUROSCI.44992010
http://refhub.elsevier.com/S0028-16)30349-sbref70
http://refhub.elsevier.com/S0028-16)30349-sbref70
http://refhub.elsevier.com/S0028-16)30349-sbref70
http://refhub.elsevier.com/S0028-16)30349-sbref70
http://dx.doi.org/10.1093/cercor/bhq180
http://dx.doi.org/10.1162/jocn_a_00123
http://dx.doi.org/10.1162/jocn_a_00123
http://dx.doi.org/10.1037/1082-.8.3.254
http://dx.doi.org/10.1037/1082-.8.3.254
http://dx.doi.org/10.1038/nn.2773

	Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control
	Introduction
	Materials and methods
	Participants
	Experimental procedure and task
	Stimuli
	fMRI procedure
	Data acquisition
	fMRI data analysis
	Connectivity analysis

	TMS protocol
	Localization of stimulation sites

	Results
	fMRI analysis: whole-brain analysis
	ROI analysis
	Left inferior frontal ROI
	Left middle temporal ROI
	Right inferior frontal ROI
	Pre-supplementary motor area ROI
	Connectivity analysis

	Behavioural analysis

	Discussion
	LIFG
	RIFG
	pMTG
	Pre-SMA
	dAG/IPS
	Limitations

	Acknowledgements
	Supporting information
	References




