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Abstract: There have been several studies of hand gesture recognition for human–machine interfaces.
In the early work, most solutions were vision-based and usually had privacy problems that make them
unusable in some scenarios. To address the privacy issues, more and more research on non-vision-
based hand gesture recognition techniques has been proposed. This paper proposes a dynamic hand
gesture system based on 60 GHz FMCW radar that can be used for contactless device control. In this
paper, we receive the radar signals of hand gestures and transform them into human-understandable
domains such as range, velocity, and angle. With these signatures, we can customize our system to
different scenarios. We proposed an end-to-end training deep learning model (neural network and
long short-term memory), that extracts the transformed radar signals into features and classifies the
extracted features into hand gesture labels. In our training data collecting effort, a camera is used
only to support labeling hand gesture data. The accuracy of our model can reach 98%.

Keywords: hand gesture recognition; FMCW radar sensor; range-Doppler map; deep learning;
bidirectional long short-term memory

1. Introduction

There are many kinds of interfaces for human-computer interaction (HCI). Most
commonly used interfaces are hand-manipulated [1,2], such as a mouse, keyboard, and
touchscreen. During the COVID-19 pandemic, people desire to reduce the time spent touch-
ing their devices, which makes the solutions of the contactless HCI even more necessary.
In this case, hand gestures will be practical in many fields.

Previously, studies related to hand gesture recognition were vision-based, usually
using RGB cameras [3,4] or time-of-flight cameras [5–7], which have a high accuracy in
recognizing whether an object is a hand or not. However, the hand gesture images captured
from cameras usually contain personal or environmental information, which might cause
privacy issues [8]. In addition, vision-based sensors are often sensitive to the environment,
such as the intensity of light. Therefore, non-vision-based hand gesture recognition has
been actively studied, such as using IR sensors, ultrasound, and radar [9–19]. These sensors
have fewer privacy issues and consume low power. The data captured from these sensors
is much simpler than images captured by cameras which makes it easier to be computed.
However, the accuracy of determining whether an object is a hand or not might reduce.

In this paper, we will focus on hand gesture recognition with radar sensors. A radar
sensor has more advantages in detecting moving objects; therefore, there are more studies
about dynamic hand gesture recognition with radar than static hand gesture recognition.
A recent study, the Soli project [13] from Google, shows the possibility of using radar in
hand gesture recognition. The received signal from the radar is usually converted to data
in the frequency domain such as range–Doppler maps (RDMs) or micro–Doppler images.
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These data in the frequency domain contain velocity and range information and are passed
into the next stage of algorithms or models to predict hand gestures. In previous approaches,
algorithms such as random forest trees or hidden Markov models were commonly used.
With the advance in deep learning technology and computing power, neural networks are
being used in an increasing number of applications to replace the traditional algorithms or
machine learning models.

The position of the radar affects the effectiveness of these methods. The hand ges-
ture set defined in each of the different studies also influences the chosen neural network
architecture. In studies related to the Soli project [13,14], the radar was positioned un-
derneath the user’s hand. The defined hand gesture set is based on micro hand gestures,
which means it focuses on the variations between the user’s fingers and there is no direc-
tional hand gesture in this set [15]. Although these studies have good performance, these
limitations make them not usable in some fields.

In this paper, we propose a dynamic hand gesture recognition system based on radar
range–Doppler maps (RDMs). The hand gesture set we defined is based on the normal hand
gestures that focus on the movement of the user’s palm, and our radar sensor is placed in
front of the user’s hand. We propose a method to identify the specific direction of a hand
gesture and locate the position of the hand relative to the radar sensor. We use a neural
network (NN) for the feature extraction of the data as mentioned and long short-term
memory (LSTM) model to classify the hand gestures.

In summary, we make the following contributions:

• An image-based radar data collection software;
• A trigger algorithm for data collection;
• A gesture recognition model architecture.

In Section 4.3, we show that the accuracy of predicting gestures using bidirectional long
short-term memory (BiLSTM) is better than LSTM and has an accuracy of 98%. Additionally,
on the data set collection, collecting more people but fewer data per person gives better
training results than collecting fewer people but more data per person.

2. Background and Related Work
2.1. Vision-Based Hand Gesture Recognition

Most of the solutions for hand gesture recognition in early work are vision-based.
The authors in [1] analyzed previous research related to hand gestures in HCI tasks, and
then mentioned the data need to be processed in vision-based hand gesture recognition.
Multiple machine learning algorithms for classification are also discussed in this research.
In [3], the author reviewed the vision-based sensors and hand gesture databases used in
vision-based hand gesture recognition.

2.2. Radar System
2.2.1. FMCW Radar

Frequency modulated continuous wave (FMCW) radar is a radar system using fre-
quency modulation techniques. In the FMCW radar system, the frequency of the transmit-
ting wave increases linearly at a constant rate as shown in Figure 1. A short time of these
signals is named a “fast time signal” or a “chirp”, and multiple collected chirps are called a
“frame” or a “long time signal” [20].Sensors 2022, 22, x FOR PEER REVIEW 3 of 17 
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2.2.2. Hand Gesture Recognition with Radar System

Hand gestures also affect the methods of recognition. Gestures contain two movements
of a human body which are the fingers and the palm. The main moving part of normal
hand gestures is usually the palm. With only finger movement, these hand gestures are
called micro hand gestures.

In [21], the authors proposed a method to detect the valid frames of hand gestures
using micro–Doppler signatures of a CW radar. The accuracy of detecting valid frames is
96.88%. The authors in [22] used the micro–Doppler signature of a 77 GHz FMCW radar
and trained a convolutional neural network (CNN) model for hand gesture recognition.
This research shows the probability of predicting gestures from micro–Doppler signatures
in different directions. Additionally, the classification accuracy with different incident
angles was discussed. In [13], the author proposed a 60 GHz FMCW radar with two Tx and
four Rx antennas. The RDMs were computed to the defined features and meta-features.
The random forest classifier was used for classification and the result was filtered by a
Bayesian filter. In [14], the same FMCW radar sensor in [13] was used. The hand gesture
set in this research was a micro hand gesture set such as pinching index or finger sliding.
The features of collected sequence RDMs were extracted by a CNN and classified by a
recurrent neural network (RNN). In [23], four Rx antennas were located at four diagonal
corners of the sensor board, and the Tx antenna was located at the center. The distance
between the Rx and Tx antennas was 4.24 cm with a 24 GHz FMCW radar. The sequence
RDMs from four Rx antennas were processed to obtain feature vectors named “projected
RDM”, and passed to the input of LSTM for hand gesture recognition.

3. Proposed Method
3.1. System Description

The system flowchart is shown in Figure 2. The whole system can be divided into the
following three steps:

1. Preprocessing radar data;
2. Data capturing;
3. Classification.

These steps are discussed in the following sections.
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3.2. Preprocessing Radar Data

The flowchart of preprocessing radar signals is shown in Figure 3. In the following
section, we will describe how we pre-process the radar signal, the problems of the RDMs,
and how we solved the problems.
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3.2.1. Processing Range–Doppler Maps

A typical way to process the radar signal is to transform chirps into micro–Doppler
signatures, but these kinds of data do not have enough physical significance for hand
gestures. Although we can still recognize hand gestures through this data with a machine
learning algorithm, it is a challenge when we need more customization for our system.
In this paper, we opt to use RDMs to recognize hand gestures since they have much
information for us to make our system more flexible.

The signal data from radar antennas are collected as chirps, and chirps are stacked to
a matrix. From these chirps, we can obtain the frequency spectrum by using a fast Fourier
transform (FFT). The bins of the frequency spectrum refer to the range of targets from the
radar. The range resolution (dres) of the radar sensor is given by

dres =
c

2B
, (1)

and the max range (dmax) is given by

dmax =
Fs × c × Tc

2B
, (2)

where c is the light speed (3 × 108 m/s), B is the bandwidth of the radar sensor, Fs is the
analog-to-digital converter (ADC) sampling rate, and Tc is the time separation between
two chirps in a frame. Normally, there is a DC bin in the frequency spectrum that makes it
unable to represent the true distance of objects. Thus, we perform mean removal on each
chirp before the FFT process [24]. A comparison of doing mean removal or not is shown in
Figure 4.
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The range bins of each chirp are stored as the rows of a matrix. We then perform FFT
across every column that resolves the targets in velocity. The velocity resolution (Vres) of
the radar is given by

Vres =
λ

2T f
, (3)

and the max velocity (Vmax) is given by

Vmax =
λ

4Tc
, (4)

where λ is the wavelength of the radar signal, Tf is the frame time. We calculate the
resolution and the max value of range and velocity through the above equations, and
then the frequency bins can be mapped as range and velocity values; this process is called
“range–Doppler transforming process”. In this way, a signal sequence received by the
radar can be transformed into an RDM as shown in Figure 5. With RDMs, we can measure
moving targets in front of our radar sensor such as a user’s hand.
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3.2.2. The Problems of Using Range–Doppler Map

Using only RDM as a feature to recognize hand gestures causes some problems. In this
section, we describe these problems, and a way to solve them is described in Section 3.2.3.

The Position of Radar Sensor

Hand gestures have different patterns in the RDM when the radar is under the user’s
hand, making these hand gestures easy to identify by using only RDM. In Figure 6, the radar
sensor is placed underneath the user’s hand. The horizontal swipe has more speed variation
but almost no range variation in its RDM. However, the vertical swipe has both. That
makes the entire RDM sequence completely different. In Figure 7, the radar sensor is placed
in front of the user’s hand. For horizontal and vertical swipes, they both have only speed
variation but no range variation. That makes us not able to recognize these hand gestures
by using only RDM.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 5. A range–Doppler map (RDM). The X-axis represents the velocity, and the Y-axis repre-
sents the range. 

3.2.2. The Problems of Using Range–Doppler Map 
Using only RDM as a feature to recognize hand gestures causes some problems. In this 

section, we describe these problems, and a way to solve them is described in Section 3.2.3. 

The Position of Radar Sensor 
Hand gestures have different patterns in the RDM when the radar is under the user’s 

hand, making these hand gestures easy to identify by using only RDM. In Figure 6, the 
radar sensor is placed underneath the user’s hand. The horizontal swipe has more speed 
variation but almost no range variation in its RDM. However, the vertical swipe has both. 
That makes the entire RDM sequence completely different. In Figure 7, the radar sensor is 
placed in front of the user’s hand. For horizontal and vertical swipes, they both have only 
speed variation but no range variation. That makes us not able to recognize these hand 
gestures by using only RDM. 

 
(a) 

 
(b) 

Figure 6. The RDM of horizontal and vertical swipe. (Radar is underneath the user’s hand.) (a) Hor-
izontal swipe. The arrow shows the changes in the velocity between frames. (b) Vertical swipe. The 
arrow shows the changes in the range between frames. 

Figure 6. The RDM of horizontal and vertical swipe. (Radar is underneath the user’s hand.) (a) Hor-
izontal swipe. The arrow shows the changes in the velocity between frames. (b) Vertical swipe.
The arrow shows the changes in the range between frames.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 17 
 

 

 
(a) 

 
(b) 

Figure 7. The RDM of horizontal and vertical swipe. (Radar is in front of the user’s hand.) (a) Hori-
zontal swipe. The arrow shows the changes in the velocity between frames. (b) Vertical swipe. The 
arrow shows the changes in the range between frames. 

No Direction in Range–Doppler Map 
Another problem is that RDM does not contain direction information. It only shows 

range and speed values. That is, we are not able to recognize hand gestures with the same 
patterns but in different directions by only using RDM. Figure 8 shows the RDM of left 
and right swipes. Clearly, the patterns in the RDM of both two swipes are similar. Alt-
hough we can measure the time difference of the same signal received from the transmit-
ter antenna between multiple received channels to recognize the directions of hand ges-
tures, this method needs a larger distance between antennas and is more difficult to deal 
with the RDMs when there is a requirement for system customization. 

 
(a) 

 
(b) 

Figure 8. The RDM of left and right swipes. (a) Left swipe. The arrow shows the changes in the 
velocity between frames. (b) Right swipe. The arrow shows the changes in the velocity between 
frames. 

3.2.3. Using Range–Angle Map 
The two problems we mentioned above can be solved if we can obtain information 

about the object’s directions from radar data. This section introduces how we calculate the 
directional data and convert it to a more uncomplicated feature. 

Setup Radar Antennas 
To obtain the angle relative to the radar sensor of an object, the antennas of the radar 

need to be a uniform linear array (ULA). We need at least two antennas of a ULA for every 
direction we want. If we need both horizontal and vertical orientations, we need to set our 
antennas as an L shape, as in Figure 9. 

Figure 7. The RDM of horizontal and vertical swipe. (Radar is in front of the user’s hand.) (a) Hor-
izontal swipe. The arrow shows the changes in the velocity between frames. (b) Vertical swipe.
The arrow shows the changes in the range between frames.

No Direction in Range–Doppler Map

Another problem is that RDM does not contain direction information. It only shows
range and speed values. That is, we are not able to recognize hand gestures with the same
patterns but in different directions by only using RDM. Figure 8 shows the RDM of left and
right swipes. Clearly, the patterns in the RDM of both two swipes are similar. Although we
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can measure the time difference of the same signal received from the transmitter antenna
between multiple received channels to recognize the directions of hand gestures, this
method needs a larger distance between antennas and is more difficult to deal with the
RDMs when there is a requirement for system customization.
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3.2.3. Using Range–Angle Map

The two problems we mentioned above can be solved if we can obtain information
about the object’s directions from radar data. This section introduces how we calculate the
directional data and convert it to a more uncomplicated feature.

Setup Radar Antennas

To obtain the angle relative to the radar sensor of an object, the antennas of the radar
need to be a uniform linear array (ULA). We need at least two antennas of a ULA for every
direction we want. If we need both horizontal and vertical orientations, we need to set our
antennas as an L shape, as in Figure 9.
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Calculate Angle of Arrival

The angle of arrival (AoA) is a technique to calculate the distance and direction of
a target by processing the received signal. The result of AoA can be determined by the
measured phase difference in the 2D–FFT peak of each two different antennas in the antenna
array. The schematic diagram is shown in Figure 10.
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Here, d is the distance between two antennas, λ is the wavelength of the radar signal
and θ is the AoA of the object. By inverting Equation (5), we can calculate the θ by
the following:

θ = sin−1
(

λω

2πd

)
. (6)

Finally, we can obtain the AoA matrix in the same dimension as the RDM, which
is named the range–angle map (RAM). An example of an RAM is shown in Figure 11.
The X-axis in RAM refers to the angle, Y-axis refers to the range, and the value refers to
the magnitude.
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3.2.4. Calculate Range–Angle Feature

After obtaining the RAM, we extract the range–angle feature (RAF) from RAM to
reduce the complexity of the data. We pick one maximum value point from the RAM and
use the range, velocity, and magnitude of that point as RAF. Then, we also normalize the
range and velocity by dividing them by the max coordinate value of each axis. In our
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case, the size of RAM is 32 × 32, so we divided both range and velocity by 32. The feature
extraction is defined as Equation (7):

S ∈ R2,
Si

i = X, Y, XY
=

argmax
(x, y) (RAM i(x, y)) ,

∃(m, n) ∈ Si ,

RAFi =

 m/32
n/32

RAMi(m, n)

 (7)

In our case, we have an L shape antenna array which allows us to calculate three
RDMs and the horizontal, vertical, and diagonal RAFs as shown in Figure 12.
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3.3. Data Capturing

The simplest way to capture the time-sequenced radar frames is using a sliding
window, but it is usually not efficient or flexible enough for most cases. Instead of using
a sliding window, we design a trigger algorithm for data capturing which is shown in
Figure 13. This algorithm determines a trigger flag that controls the capturing of radar data.
Then the captured time-sequenced radar data is passed into the gesture recognition model.
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By using the radar data from Section 3.2, we then choose one of the RDMs and perform
the following image processing:

1. Binarize the RDM with a threshold;
2. Find contours in the binarized image;
3. Get the max area contour.

A threshold for the contour area value (θcnt) is determined depending on the range
value (Y-axis) of the max contour in RDM. Finally, a trigger flag is determined by θcnt and
the previous status of the trigger flag. We can also add different custom rules for different
usage cases. For example, we might want the user’s hand gestures to start from the mid of
the radar sensor so that we can add a rule to the RAFs data to make sure the start position
of a hand gesture is in the middle of the sensor.

3.4. Gesture Recognition Model

We proposed a deep learning-based model to recognize the input radar data. The ar-
chitecture is shown in Figure 14 and combines the three parts of our model.
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3.4.1. Feature Extractor

The general feature extractor architecture is CNN, which is widely used in tasks like
image classification [25–27]. For micro hand gesture recognition, the position (refers to
the range and velocity of the user’s hand) of the gesture pattern between the RDM frames
is mostly static, but the pattern style changes. In this case, CNN is an effective feature
extractor in which we do not care about the loss of position information due to convolutions.
For normal hand gesture recognition, not only does the pattern between the RDM frames
change but also the coordinate of that pattern. There are different coordinate changes on
RDM for various hand gestures. The coordinate of the gesture data in a frame is also an
important feature to recognize hand gestures, which means CNN might not be an effective
feature extractor. Therefore, instead of using CNN, we use NN as our feature extractor. We
design separate NN feature extractors for RDMs and RAFs from input frames. Since each
RAF (in our case we have horizontal, vertical, and diagonal) represents different directional
information, the NN feature extractor for each RAF is also distinct.
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3.4.2. RNN Model

In traditional machine learning, several algorithms are used to process time or space
sequence data such as the Bayesian network or hidden Markov models (HMM). In deep
learning, these tasks are usually performed by RNNs such as LSTM. In this paper, we use
LSTM to recognize the feature extracted by NN. Two kinds of LSTM layer are used in our
model, which is the normal LSTM layer and the BiLSTM layer. A bidirectional LSTM layer
is a layer that not only reviews the sequence data from start to end as a normal LSTM layer
does but also from end to start. Although a BiLSTM layer requires double parameters as
the normal LSTM layer, it provides stronger robustness to our model. The comparison
result of these two structures is discussed in the next chapter.

This section has reviewed the feature extractor model and the gesture recognition
model. In the training stage, the two models are trained jointly. First, the frames of RDMs
and RAFs obtained by the data capturing algorithm can be used to generate the gesture
feature sequences by the feature extractor, and then we pass the gesture feature sequences
to the LSTM layer and output them to a SoftMax layer for predicting gesture labels.

4. Experiments

In this section, we design several experiments to evaluate our proposed method.
In Section 4.1, we first show the hardware setup and the environment of our experiment.
We then describe the method of how we collect the hand gestures dataset and introduce
the datasets we collected. In Section 4.3, we compare the model performance between two
different model structures in the LSTM layer. In Section 4.4, we discuss the model efficiency
when adding a few training data to train from an external dataset.

4.1. Data Collection
4.1.1. Collecting and Labeling Data with an Image-Based Algorithm

The hardware setup for data collection is shown in Figure 15. The distance between
the user’s hand and the radar sensor is about 40 to 75 cm. We set a camera on the top of the
radar sensor.
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To make it easier to collect hand gesture data, we developed a specific software.
The architecture of the collecting software is shown in Figure 16. In this application, we
used the data capturing trigger algorithm discussed in Section 3.3 to determine which frame
is going to be collected. When capturing the radar hand gestures data, camera images are
also collected, and it is important that the camera is only used for data collecting. We then
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designed an image-based hand gesture recognition algorithm to automatically label the
collected data.
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4.1.2. Hand Gesture Dataset

The hand gesture set used in our experiment is illustrated in Figure 17. We design
gestures that focus on the palm motion such as swiping, rotating, near, and away. The swipe
gesture contains four different directions including swiping up, down, left, and right;
the rotate gesture contains clockwise and counterclockwise rotating.
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In dataset A, we have two users performing each hand gesture, and in dataset B,
we have three users, for a total of five different users. The number of records is shown in
Table 1. The frame lengths of the gesture data in these datasets are different, ranging from
5 to 49 (30 fps). Dataset A is used as a large dataset for training and dataset B is used as
an external testing dataset. We also copied 30% of the data from dataset B and added it to
dataset A as a new training dataset C.

Table 1. Numbers of datasets.

Dataset Users Horizontal Swipe Vertical Swipe Rotating Near/Away Total Records

Dataset A 2
Swipe left: 289 Swipe up: 306 Clockwise: 272 Near: 120

2012Swipe right: 300 Swipe down: 300 Counter-clockwise: 309 Away: 116

Dataset B 3
Swipe left: 82 Swipe up: 82 Clockwise: 139 Near: 59

732Swipe right: 85 Swipe down: 82 Counter-clockwise: 144 Away: 59

4.2. Evaluation Metrics

In this paper, three evaluation metrics are used in our experiment, which are accuracy,
recall, and precision.

4.2.1. Confusion Matrix

A confusion matrix is a matrix that shows the prediction of the model and the true
answer. A confusion matrix of two classes is shown in Table 2. In this paper, there are eight
gestures in our experiment, so the confusion matrix of our model is a multi-class confusion
matrix with a size of 8 × 8.

Table 2. Confusion matrix.

Predicted Class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

4.2.2. Accuracy

Accuracy is a commonly used metric to evaluate the performance of a model. The ac-
curacy is given by

Accuracy =
TP + TN

TP + TN + FP + FN
. (8)

Since we have eight classes, the accuracy shown in the following sections is the average
accuracy of the eight classes.

4.2.3. Recall and Precision

Although we can preliminarily evaluate the model performance by using accuracy,
accuracy is not a good metric according to the accuracy paradox. Recall and precision are
better measures in most cases. The recall and precision are given by

Recall =
TP

TP + FN
, (9)

Precision =
TP

TP + FP
. (10)

The recall is used to evaluate how accurately a model predicts a positive class when
the answer is positive such as malware detection. The precision is a metric to measure the
misjudgment rate of the model which is used in cases like face recognition. The recall and
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precision shown in the following experiment are the average recall and average precision
of eight classes.

4.3. Normal and Bidirectional LSTM Layer

From the discussion in Section 3.4, two different structures of the LSTM layer are tested
in our research. The number of parameters of two LSTM layers is listed in Tables 3 and 4
lists the hyperparameters of the model we used. As mentioned, the BiLSTM layer requires
double parameters compared to the normal LSTM layer.

Table 3. The numbers of parameters of two different LSTM layers.

Model Structure Parameters of
Feature Extractor

Parameters of
LSTM Layer Total Parameters

Normal LSTM 5164 8256 13,556
BiLSTM 5164 16,512 21,940

Table 4. The hyperparameters of the model.

Parameter Values of the Parameter

Batch size 32
Number of hidden units of LSTM 16

Number of hidden units of NN 8, 16, 32
Pool size of Max pooling (2, 2)

Number of iterations (epochs) 150
Steps per epoch 49
Validation steps 49

Optimizer Adam
Learning rate 0.001

We used dataset A to train two different models. Figure 18 shows the result of the
training. Comparing the two results, it can be seen that the accuracy of training is about
99% for both models. However, the BiLSTM layer has about 10% more accuracy in the
validation of dataset B. Hence, although using a BiLSTM layer requires more training
parameters, the improvement in accuracy makes it acceptable.
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4.4. The Strategy of Data Collecting

From the result of previous experiments (Figure 18), it can be seen that there is an
accuracy gap between the training stage and the validation of dataset B. The first reason
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is that our dataset is not varied enough, and the second is that the data distribution of
the same person’s gestures looks quite the same, which makes the model validated by
overlapping data.

To confirm our model has robustness, we need more data. That is, the strategy of data
collecting is important. We then used dataset C mentioned in Section 4.1.2 to train our
model and used the remaining 70% of dataset B as an external testing dataset; the result is
shown in Figures 19 and 20.

We had different strategies when collecting dataset A and dataset B. In dataset A, we
collect fewer people’s hand gestures but more data per person; in dataset B, we collected
more people’s hand gestures but fewer data per person. The result shows that there is
no need to collect that much data per person to make the model recognize one person’s
hand gesture. Additionally, the final accuracy of the validation of the external dataset is
about 98%. Based on the result, we believe that our model can keep robustness with a more
varied training dataset.
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5. Conclusions

In this paper, we proposed a dynamic hand gesture recognition system based on an
FMCW radar sensor. In the research, we calculate the RAF from the RDM of each radar
antenna, which allows us to obtain information about the direction of hand gestures and
locates the position of the user’s hand. The data capturing trigger algorithm captures the
hand gesture data that need to be recognized. We then proposed an end-to-end trained
model with an NN feature extractor and RNN. The accuracy of our model can reach 99.75%
while training with our collected training dataset and reach 98.64% on an external testing
dataset. From our experiments, we believe that our model can keep its robustness when
facing a larger training dataset.

In future work, we will collect more users’ hand gesture data to make our training
dataset more varied. In addition, we also plan to design a deep learning-based model
for our data capturing trigger algorithm to make it more accurate in various scenarios.
In addition, we plan to add more hand gestures to our hand gesture set to increase the
number of available functions in our system.
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