
RESEARCH ARTICLE

Airline transportation and arrival time of

international disease spread: A case study of

Covid-19

Pei-Fen KuoID*, Chui-Sheng Chiu☯

Department of Geomatics, National Cheng Kung University, Tainan, Taiwan

☯ These authors contributed equally to this work.

* peifenkuo@gmail.com

Abstract

In this era of globalization, airline transportation has greatly increased international trade

and travel within the World Airport Network (WAN). Unfortunately, this convenience has

expanded the scope of infectious disease spread from a local to a worldwide occurrence.

Thus, scholars have proposed several methods to measure the distances between airports

and define the relationship between the distances and arrival times of infectious diseases in

various countries. However, such studies suffer from the following limitations. (1) Only tradi-

tional statistical methods or graphical representations were utilized to show that the effective

distance performed better than the geographical distance technique. Researchers seldom

use the survival model to quantify the actual differences among arrival times via various dis-

tance methods. (2) Although scholars have found that most diseases tend to spread via the

random walk rather than the shortest path method, this hypothesis may no longer be true

because the network has been severally altered due to recent COVID-related travel reduc-

tions. Therefore, we used 2017 IATA (International Air Transport Association) to establish

an airline network via various chosen path strategies (random walk and shortest path).

Then, we employed these two networks to quantify each model’s predictive performance in

order to estimate the importation probability function of COVID-19 into various countries.

The effective distance model was found to more accurately predict arrival dates of COVID-

19 than the geographical distance model. However, if pre-Covid airline data is included, the

path of disease spread might not follow the random walk theory due to recent flight suspen-

sions and travel restrictions during the epidemic. Lastly, when testing effective distance, the

inverse distance survival model and the Cox model yielded very similar importation risk esti-

mates. The results can help authorities design more effective international epidemic preven-

tion and control strategies.

1 Introduction

The expansion of global business, recreational travel and the connection of regional economies

have led to an increased demand for international travel. Thus, the airlines have become the
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most vital mode of transportation due to their speed, worldwide range and reliability. How-

ever, the potential threat that accompanies these major strides is that epidemics also spread

more rapidly, causing global public health crises and the necessity for epidemic prevention [1,

2]. According to epidemiologists, infectious diseases are spread through contact in close quar-

ters [3]. In earlier studies, some researchers predicted that risk of disease spread was based on

the geographical distance of the airport connection network (World Airport Network (WAN))

of various countries [2, 4]. For example, Lemey used the stochastic Monte Carlo method to

separate flight routes into various airport zones in order to explore the correlation of geo-

graphical distance and the transmission of H3N2 [5]. Similarly, the ranges of some mosquito

borne diseases were found to be affected by geographical distance, such as dengue [6] and

malaria [7]. However, this element ignores the major impact of modern transportation sys-

tems, particularly aviation [1, 8–10]. For example, although two airports may be very far away

from each other, they would still experience heavy interaction because of busy flight schedules,

which would accelerate epidemic spread over long distances. To solve this puzzle, Brockmann

proposed the effective distance method, which is based on traffic flow, to predict global disease

spread [11]. For example, although the Narita Airport and the Haneda Airport in Tokyo,

Japan have a relatively close geographical distance (�71 km), their effective distance is almost

infinite because there are no regular flights between them, which makes it virtually impossible

for COVID-19 to be transferred from these two airports by passenger plane. This new method

allows researchers to convert airline passenger volume into a metric form that can be applied

in epidemiological studies to predict the arrival dates of various types of diseases. For example,

Lin used the effective distance of land traffic volume to estimate the regional transmission risk

of COVID-19 [12]. These results showed that cities with higher connection density have more

rapid disease spread (COVID-19). Additionally, Brockmann found effective distance to be

highly correlated with the arrival time of SARS and H1N1 [11]. This method has also been

used to estimate the risk of other infectious diseases, including Zika [13], influenza [14], and

MERS [15].

In other words, graphical representations or traditional statistical methods were used in

most previous studies to determine if effective distance can predict disease arrival time better/

more accurately than geographical distance [5, 11, 16]. In addition, scholars have applied effec-

tive distance to establish transition probability in order to predict disease risk, possible case

numbers, or arrival times [12, 13, 17]. However, none have incorporated different types of dis-

tance among airports (effective distance and geographical distance) into the survival model to

predict arrival times and to compare the accuracy of these two estimators with the actual dis-

ease arrival dates in each country. Thus, by using a survival model and real data (IATA air traf-

fic volume and real-world Covid-19 arrival data), we were able to measure the true/actual

error rate of arrival time estimators and determine the difference between geographical dis-

tance and effective distance estimators. In addition to utilizing different types of distance as

predictive variables (geographic distance and effective distance), the contribution of this study

also includes the incorporation of two path selection strategies (shortest path and random

walk) into two different survival models (the Cox model and the inverse effective distance

model).

The course of disease spread is another critical research topic [10, 18]. In the past, many

scholars assumed that a disease would spread via the shortest path due to having the shortest

transmission time [5, 13]. However, it is now known that diseases may be transmitted via all

possible paths rather than simply the shortest [5]. In order to test the accuracy of the random

walk theory, Gautreau developed a probability function of disease spread via multiple paths,

which inspired Brockmann’s concept of effective distance [10]. Almost ten years later, Iannelli

utilized Gautreau’s findings to calculate the effective distance via the random walk and
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compared the results to those of the effective distance via the shortest [18]. While the shortest

path walk involves a transmission route of the least length, the random walk path theory

hypothesizes that the disease follows one path from all other possible paths based on

probability.

Survival models are often used to predict the time an event occurred or will occur. The

main reason is that the survival times are usually highly skewed, which causes the normality

assumption to be violated. Thus, use of linear regression was inappropriate in this case. For

example, the higher survival rates in some countries (that persist to this day and the fact that

these countries have not had any newly imported Covid-19 cases) have caused our arrival time

data to be impacted by an atypical skewed distribution and censoring bias. With its probability

function, the survival model can solve these problems by estimating the probability that an

event will occur at each time t, and the degree of danger that disease arrival presents. In this

study we used the most straightforward and common methods (the inverse effective distance

and the Cox model), to estimate the probability of arrival time. The Cox model includes the

hazard function which can be used to estimate the impacts of the explanatory variables, such

as effective distance in this study [19]. Although few scholars have used the survival model to

predict disease arrival time, none have compared the prediction performance of the inverse

distance model to the Cox model for each country. Lastly, few researchers have used historical

airline datasets to examine effective distance and path selection. However, it must be noted

that due to the recent decrease in air traffic volume because of travel restrictions, the effective

distance estimator and the random walk path may not be the most effective techniques for

analysis of disease spread.

To account for these limitations, we compared the performance of various distances and

path selection prediction models. (1) The effective distance was calculated based on the IATA

flight database, and the geographic distances was calculated among the WAN airports. (2) We

then utilized the different path approaches (random walk and shortest path) to establish the

airport network. (3) Then, two survival models were employed to quantify the prediction per-

formance for importation risk.

2 Materials and methods

2.1 Study data

The goal of the current study was to define how passenger airline travel has influenced the

international spread of COVID-19. Our hypotheses are briefly stated below:

1. Effective distance will have a significantly higher positive correlation with disease arrival

time in various counties than will geographical distance.

2. The random walk effective distance will have a higher positive correlation with arrival time

than will the shortest path.

3. The effective distance can be included in the survival model to estimate the risk of spread-

ing the disease to various countries.

Therefore, the study data included both a disease dataset and an airline dataset. In order to

limit this study to cases connected with air transportation, we focused exclusively on the first-

confirmed incidences reported in various countries and searched the associated airports to

find those who were first infected.

Since COVID-19 is a progressive pandemic, up-to-date data was continuously collected

from news websites. The disease arrival time in each country was based on information pub-

lished on Wikipedia, which not only provides the most multi-faceted and current information
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but it also is overseen by a volunteer editor. Unlike other official data sources, such as The

Johns Hopkins Coronavirus Resource Center and The Program for Monitoring Emerging Dis-

eases (Promed), Wikipedia includes more recent and detailed information about the spread of

this deadly disease at (https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_

territory). We collected unstructured data manually and extracted the dates of the first cases

reported/first confirmed cases. For example, Fig 1 shows a screenshot from a Wiki page of

COVID- 19 spread in Italy in late January. From this first-case information, the arrival time

(January 31) and original airport (Milan Malpensa Airport) can be determined.

Due to the fact that Wikipedia’s data sources come from volunteers with varying levels of

expertise, we also utilized Promed (Program for Monitoring Emerging Diseases) to double

check this dataset. For this study, we downloaded 160 Covid-19 reports from the Promed sys-

tem during our study period (from 12th January to 21st April, 2020), and searched the

reported time of first confirmed case via country name. We utilized this arrival date as a refer-

ence point to doublecheck Wiki’s dataset. For example, according to Wiki news, the first con-

firmed Covid-19 case in Italy was reported on 30th January. We compared this with the

Promed report, which corroborated this information (shown as below). Based on this method,

there are 69 countries (34% of all countries with Covid-19), and their information was veri-

fied/double checked with Promed.) It must be noted that Promed lacked detailed data on 109

countries.

The air transportation data in this study, provided by the International Air Transport Asso-

ciation (IATA). IATA, included only international airlines and passenger flights rather than

code-sharing airlines, cargo flights, or the transfer airports. After calculating the number of

flights in service during the study period, we found that IATA had many flights scheduled

from Málaga Airport (AGP) to Bucharest Henri Coandă International Airport (OTP), as

shown in Table 1. For example, after calculating the service days, it became clear that flight

number 0B126 was in service once per day on Tuesdays, Thursdays and Sundays from January

3, (the scheduled effective date), to March 23, 2017, the (scheduled discontinued date). Later in

Fig 1. Screenshot of the “COVID-19 pandemic in Europe” Wiki page.

https://doi.org/10.1371/journal.pone.0256398.g001

Table 1. An example of IATA flight data.

Flight Number Effective Discontinued Day1 Day2 Day3 Day4 Day5 Day6 Day7 Departure Arrival Service

Date Date Airport Airport days

0B 126a 03/01/2017 23/03/2017 0 1 0 1 0 0 1 AGP OTP 35

0B 126a 26/03/2017 28/10/2017 0 0 0 1 0 1 1 AGP OTP 93

0B 126a 27/03/2017 24/10/2017 1 1 0 0 0 0 0 AGP OTP 62

0B 126a 29/10/2017 24/03/2018 0 0 0 1 0 1 1 AGP OTP 63

0B 126a 30/10/2017 20/03/2018 1 1 0 0 0 0 0 AGP OTP 42

W6 3190b 28/03/2017 28/10/2017 0 1 0 0 0 1 0 AGP OTP 62

W6 3190b 31/10/2017 24/03/2018 0 1 0 0 0 1 0 AGP OTP 42

a 0B: Blue Air Aviation.
b W: Wizz Air Hungary Ltd.

https://doi.org/10.1371/journal.pone.0256398.t001
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the year, flight number 0B126 would be in service once per day on Thursdays, Saturday, and

Sundays from March 26, the scheduled effective date, to October 28, 2017, the scheduled dis-

continued date, etc.

During the first period, there were 35 flights in service for 10 weeks. As shown in Fig 2, there

were two in service during the last week of the first period. The first period flight consisted of 11

weeks which had three service days, so this flight had a total of 35 service days (3×11+2 = 35).

When all flights shown in Table 2 were combined, # 0B126 had a total of 295 (= 35+93+62+63

+42) service flights. When all service flights from AGP to OTP (such as 0B12 and W6 3190),

were added up, there were 399 in this O-D pair (AGP-OTP) from the original (AGP) to the des-

tination airport (OTP). The corresponding fraction ratio was calculated from flights in service in

this O-D pair (AGP-OTP) divided by all service flights from the original airport (AGP) (=

71,980). Thus, the effective distance of the O-D pair (AGP-OTP) was equal to one minus the

fraction ratio, which was 6.195 (� 1-log ( 399

71980
)).

During the one-year study period (2017), 1,312 airports and 14,707,367 flights were

included in the IATA dataset. The O-D matrix in our study was established from arrival

and departure airport codes. The airline data and the frequency of flights during this year

were summarized to generate an O-D pair dataset, which included the annual flight fre-

quency from each O-D line (origin airport to destination airport). By combining the

COVID-19 cases and IATA airport datasets, the originating importation airport from the

IATA database was determined based on the importation information. Fig 3 displays the

flights between COVID-19 arrival airports used in this study. The 178 points represent the

airports which imported confirmed COVID-19 cases, and the lines represent the flights

between these airports. It should be noted that each line has a uniform thickness, simply

represents the Covid-19 airport network (which imported the first Covid-19 case). Because

some lines overlap with each other near the hub/large airport, they appear to have different

thicknesses.

Fig 2. An example of flight number calculation.

https://doi.org/10.1371/journal.pone.0256398.g002

Table 2. Comparison table of Wiki news and Promed report.

resource

Successful verified/match Fail to verify/unmatched

Wiki News On 30 January, the first two cases were

confirmed in Rome. Two Chinese tourists,. . .

The first two confirmed cases in Vietnam were

admitted to Cho Ray Hospital, Ho Chi Minh City

on 23 January 2020

Promed

report

On Thursday [30 January 2020], Italy reported

the 1st confirmed cases of infection in two

Chinese tourists, currently hospitalized, in

isolation, at the Lazzaro Spallanzani Reference

Center in Rome.

There have also been 4 suspected cases in

Taiwan,2 in Vietnam.

(Promed just included the number of cases in

Vietnam but did not mention the reported time

of the 1st confirmed case.)

https://doi.org/10.1371/journal.pone.0256398.t002
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2.2 Effective distance

The effective distance is equal to the arrival time multiplied by the effective speed. Brockmann

[11] developed this approach to estimate the arrival times in various countries via the effective

distance, (which is calculated only by the percentage of passengers) divided by the effective

speed (which is measured by epidemiological parameters, such as the transmission rate) [11],

which is shown below:

deff
ij ¼ 1 � ln

wij
P

jw
ð1Þ

As seen in Eq 1, ∑jw is the total passenger flow form airport j. The effective distance from

airport i to airport j (deff
ij ) is determined by the percentage of passengers P (

wijP
j
w
). For example,

in Fig 4, which shows an airport network, the links between airports is the flight, and the per-

centage of passengers from airport i to j is Pij (equal to
wijP

j
w
). Thus, the effective distance

between airports can be calculated.

2.3 Selection strategy of different paths

In Fig 4, airport A is the original airport (disease seed), B and C are the transfer airports, and

D is the destination airport. We assumed that there is no direct flight between airport A (dis-

ease seed) and airport D; therefore, the infectious disease can only be transmitted to airport D

by airports B or C. Previous researchers used the shortest path and random walk methods to

determine the actual transmission path of disease spread, as discussed in the section below.

2.3.1 Shortest path walk. In order to estimate risk at airports that are not directly linked

to the disease seed airport, Brockmann used the shortest path technique to define the potential

route of disease spread [11]. For this method, the path with the minimum total effective dis-

tance was selected as the most likely route for disease spread.

DSP
ij ¼ min

Gij

P
ðk;lÞ � Gij

deff
kl ð2Þ

Fig 3. The airport network of the COVID-19 arrival airports.

https://doi.org/10.1371/journal.pone.0256398.g003
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In Eq 2, Γij represents all possible paths from airport i to airport j, in which all nodes cannot

pass more than once. A path is composed of consecutive links (k,l), from i to j, and the mini-

mum function is calculated via the minimum total length of effective distance. Although

Brockmann found a high correlation between the shortest path walk and arrival time at air-

ports, use of the former might cause researchers to overlook the probability of disease spread

by different paths, resulting in overestimation of the arrival time [10, 20].

2.3.2 Random walk path. Due to the abovementioned limitations, several scholars, such

as Iannelli [18], later used the random walk theory to simulate how infectious diseases have

spread via all possible paths within a transportation network. For example, as shown in Fig 4,

there are four airports which are linked via flight patterns. In this scenario, airport A is the dis-

ease seed and we must determine the arrival time of the disease at airport D. While the shortest

path walk is utilized to find the route with the least total effective distance (A to B and D), the

random walk method is used to analyze all possible paths, noting that the paths may pass

through one node more than once. This method is used to calculate the probability of disease

spread by each path. Using the definition of effective distance described above, Gautreau deter-

mined that the arrival probability function of multiple paths can be calculated by utilizing Eq

3, in which Dmp
ij is the multiple path effective distance, defined as the time at which the disease

began to be transmitted via multiple paths [10]. Following this equation, the multiple paths

can be determined by summarizing the exponentials of the effective distance of all possible

paths.

e� D
mp
ij ¼

P
path � Gij

e� D
eff
path ð3Þ

Dmp
ij ¼ � ln½

X

path � Gij

ðe� npath �
Y

ðk;lÞ � path

PklÞ�

In Eq 3, Deff
path1 represents the total effective distance via several paths, and npath is the length

of these “paths”; To simplify the effective distances of the multiple paths, Iannelli established

the Fij(n) function to summarize the percentage of paths a passenger could take, which are

included in Γij, with the same length n [18]. Thus, Eq (3 can be rewritten as Eq 4, as shown

Fig 4. An example of an airport network.

https://doi.org/10.1371/journal.pone.0256398.g004
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below.

Dmp
ij ¼ � ln½

Pnmax
n¼1

e� nFijðnÞ� ð4Þ

FijðnÞ ¼
P
jpathj¼n½

Q
ðk;lÞ � pathPkl� ð5Þ

In Eq 4, nmax symbolizes the maximum path length. Iannelli et.al 2017combined multiple

path effective distance and random walk effective distance to account for all possible paths and

the fact that these paths may pass through a node more than once [18]. These researchers

replaced Fij(n) with an Hij(n) function that allows flights to pass through the paths more than

once. Because every node can be reached several times and the maximum length of the path is

infinite, a power series was used to simplify the formula into Eq 6:

DRW
ij ¼ � lnf½eIðjjjÞ � PðjjjÞ�� 1pðjÞgi ð6Þ

¼ � ln½
P1

n¼1
e� nHijðnÞ� ∵power series

1

1 � x
¼
P1

i x
i

� �

The Hij(n) function is part of Eq (6) as the nth power matrix of the percentage of passenger

s P(j|j)Hij(n) = [P(j|j)n]ij, P(j|j) represents the percentage of the passenger matrix P that

removes the jth row and jth column.), which means that the path was unable to reach the desti-

nation airport. This function is equal to the sum of the probability of disease transmission via

the i to j path with “n” length nodes. Following the example shown in Fig 3, the infectious dis-

ease may spread from A!B!C or from A!D!C. On the other hand, because the disease

may reach a node more than once [16], there may be many different transmission paths, e.g.

A!D!A!B!C or A!B!D!B!C.

For more details, Fig 5 shows an example of an Hij matrix. The percentage of passengers of

Hij(1) is P(j|j), which means that the disease only comes into contact with one airport on its

way to the destination airport and includes the percentage of passengers (PAB, PAC, PBA, PBC,

PCA, PCB). Therefore, Hij(2) is the percentage of passengers via two nodes. For example, if

those from A to B are equal to PAD multiplied by PDB. (HAB(2) = PADPDB), then, Hij(3), the

path from A to B would also include path A, A!D!A!B.

2.4 The survival model

To estimate the risk of disease arrival based on effective distance, we utilized the tradi-

tional Cox model and inverse distance model. Because our goal was to determine the

arrival time of COVID-19 by airline at various countries, at first, we focused on the

Fig 5. The calculation of Hij(n).

https://doi.org/10.1371/journal.pone.0256398.g005
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uncensored data, which included 178 countries that were affected as a result of air trans-

portation. The right censored data included 29 countries with the IATA airports that had

no COVID-19 infections. According to the definition of censored data above, disease

spread began on Dec. 29, 2019 and ended on April 18, 2020 (Fig 6). The study period

included the disease arrival time as well as observation time. The number of countries

affected by COVID-19 during the observation time were considered to be uncensored data

(178 countries), and the countries that were unaffected were right-censored data (29 coun-

tries), which might be impacted by COVID-19 in the future.

In the survival model, f(x) is the probability density function that an event will occur. S(t) is

the survival function to determine the probability of survival (or that no event will occur) at

time t. Eq 8 is the hazard function, or also the probability that an event will occur at time t.

SðtÞ ¼ 1 �
R t

0
fðxÞdx ð7Þ

h tð Þ ¼
fðtÞ
SðtÞ

ð8Þ

In Eqs 7 and 8, t is the time unit; S (t) is the probability that the event will not occur before

time t; h (t) symbolizes the hazard function that the event will occur at time t or that no event

will occur before time t. The simple hazard function ignores the heterogeneity of each individ-

ual element. The Cox model is used to analyze the effect of the explanatory variable multiplied

by the baseline hazard function, as indicated below:

hðtÞ ¼ h0ðtÞexpfXibþ ag ð9Þ

In Eq 9, h0(t) is the baseline hazard function; Xi is the explanatory variable (such as

DSP
ij ; D

RW
ij ; β represents the coefficient and α is the intercept. The explanatory variable, in this

case, can be either the effective distance or the geographical distance, which is calculated via

the Euclidean distance formula (DGeo
ij ¼ sqrtððLati � LatjÞ

2
þ ðLoni � LonjÞ

2
Þ). Nah proposed

a type of survival model based on effective distance as an “inverse distance” model (ID), which

was used to estimate the spread risk of the Zika virus [13] and MERS [15]. The hazard of

Fig 6. Censored data of COVID-19 arrival time.

https://doi.org/10.1371/journal.pone.0256398.g006
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transmission was assumed to be an inverse of effective distance.

hSP
j tð Þ ¼

k
DSP

ij

ð10Þ

hRW
j tð Þ ¼

k
DRW

ij

ð11Þ

hGeo
j tð Þ ¼

k
DGeo

ij

ð12Þ

For the hazard function, as calculated by Eqs 10,11 and 12, Airport i is the disease seed and

k is a constant parameter. In order to compare the Cox model to the ID model, the explanatory

variable of the Cox model was subtracted from the distance log (log (Distance)). Eqs 13 and 14

show the two hazard functions of the Cox and ID models.

hCox
j ðtÞ ¼ h0ðtÞexpflogðDijÞbþ ag ¼ h0ðtÞexpfag½Dij�

b
ð13Þ

hID
j tð Þ ¼

k
Dij
¼ k½Dij�

� 1
ð14Þ

In Eq 13, h0(t) is the exponential hazard function, which is a constant. The main difference

between the two hazard functions is the order of distance. In addition, the density function

fj(t), is based on the exponential distribution, and the integral of fj(t) is the cumulative proba-

bility of function F.

fjðtÞ ¼ hjðtÞexpð�
R t

0
hjðsÞdsÞ ð15Þ

FjðtÞ ¼ 1 � expð�
R t

0
hjðsÞdsÞ ð16Þ

The density function f is used to calculate the probability that a disease has arrived in coun-

try j at an average time t, and the cumulative probability function F is the probability that the

disease will arrive before time t. According to the parameter estimation of the traditional sur-

vival model, we used the likelihood function from Nah’s survival model [13], which included

both uncensored and right censored data. The parameter, k, is estimated by maximizing the

likelihood function. In Eq 17, tj represents the arrival time of the disease at airport j, and tm is

the observation time (April 18, 2020). For example, the likelihood of uncensored data was cal-

culated by analyzing 178 countries with the probability function fj, and right censored was

determined via 37 countries which were not involved in Covid-19 importation with (1

−Fj(tm)), which represents the probability of an event occurring before the observed day (April

18, 2020, tm).

LðkÞ ¼
Q

uncensoredfjðtjÞ
Q

right censoredð1 � FjðtmÞÞ ð17Þ

3 Results

The following is a summary of our hypotheses.

1. Effective distance will have a significantly higher positive correlation with disease arrival

time in various counties than with geographic distance.
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2. The random walk effective distance will have a higher positive correlation with arrival time

than the shortest path.

3. The effective distance can be included in the survival model to estimate the risk of spread-

ing the disease to various countries.

First, we used the IATA flight schedule to establish an effective distance matrix among all

the WAN airports. Table 3 shows an example of a partial effective distance matrix, and Table 4

displays the descriptive statistics of this matrix, which included 1,312 airports and 25,569 O-D

links. The maximum distance was 13.573 kilometers (from the Amsterdam Schiphol Airport

(AMS, Netherlands) to the Abruzzo Airport (PSR, Italy)), and the minimum was one. (These

effective distances corresponded to 406 airports in 152 countries, which included 44 departure

countries, 63 arrival countries, and 45 countries of both). As mentioned above, the effective

distance was based on the passenger flow ratio. In other words, when the effective distance is

equal to one, the airport would only link to one other airport and the percentage of passengers

would be equal to one (1-ln (1) = 1–0 = 1). If there are no passenger flights between the two

airports, their effective distance would be infinite due to the fact that there would be no travel-

ers on those planes (1-ln (0) = 1- (-1) =1). Therefore, these outliers were removed from the

effective distance matrix (0 or infinity with which detection is infinite () function of R). For

example, the effective distance from WUH to HND is infinite, because there are no direct

flights between them. It must be noted that an infinite effective distance was not included in

Table 3.

As previously mentioned, the shortest path and random walk are two types of disease

spread path theories that require effective distance to establish the WAN. Because diseases do

not always spread through a direct flight or the shortest path, effective distance can be calcu-

lated using the disease arrival probability function [10]. The descriptive statistics for the short-

est -path and the random -walk effective distance from Wuhan Airport to airports throughout

the world are shown in Table 4. It should be noted that we assigned only one airport for each

country through which the disease could spread. There are 178 airports with effective distances

from the Wuhan Airport (China). The minimum shortest-path and random-walk effective dis-

tances are 3.209 and 3.095 respectively (both are approximately three). However, the

Table 3. An example of an effective distance matrix (an infinite effective distance).

Origin

Airport

Destination

Airport

WUH BKK HND ICN IAD TPE

WUH - 3.21 Inf 3.64 Inf 4.09

BKK 6.30 - 5.09 4.12 Inf 4.62

HND Inf 3.84 - 4.58 Inf 5.53

ICN 6.79 4.24 5.89 - 7.13 4.37

IAD Inf Inf Inf 5.00 - Inf

TPE 6.82 4.82 6.42 4.04 Inf -

https://doi.org/10.1371/journal.pone.0256398.t003

Table 4. Descriptive statistics of the distance from Wuhan airport.

Min. Max. Median Mean Std.

Effective distance 1.000 13.573 5.570 5.542 1.809

Shortest path 3.209 18.862 12.818 12.512 2.975

Random walk 3.095 11.079 8.409 8.111 1.592

https://doi.org/10.1371/journal.pone.0256398.t004
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maximum values of the two types of effective distance were quite different (18.862 vs. 11.079).

According to previous study results [10, 18], use of the random-walk effective distance method

(which accounts for multiple possible paths) tends to lead to an underestimation of arrival

time more frequently than the shortest path method (which includes only one path). Further-

more, the median and mean also indicated a similar trend, which is consistent with previous

studies.

A scatter plot was used to illustrate how differences in arrival time are correlated with the

effective distances of the shortest path, random walk or geographical distance. In Fig 7, the

x-axis illustrates the geographical and effective distance from Wuhan to other airports that

have been associated with importation. The y-axis shows the actual arrival time based on

online searches of confirmed cases. (Fig 7A–7C) show regression models of geographical,

shortest-path, and random-walk effective distance. It is clear that the linear models of each dis-

tance all have significant coefficients and interceptions. The effective distance of the shortest

path coefficient in the regression equation was 3.643, which represents the mean increase of

COVID-19 arrival time in days for every additional one unit of effective distance. The inter-

cept may represent the difference between the report time of the first confirmed case and the

actual time it took for the first person to become infected.

As mentioned above, researchers have found that the multiple paths (e.g. random walk)

technique, which is more realistic, is the most accurate method for estimating the arrival time

of disease spread. Moreover, as previously stated, use of the shortest-path effective distance

technique tends to lead to an overestimation of arrival time [10, 18]. We utilized a linear

regression model (ordinary least square) to calculate the correlation of various distances with

the actual arrival times. As seen in Fig 6, the R square of the random walk effective distance

was lower than that of the shortest path, results that were inconsistent with previous studies.

According to the scatter plot, this is due to more outliers being associated with the random

walk effective distance than the shortest path. Also, the effective distance model performance

was more accurate than that for geographical distance. The R square of the shortest path effec-

tive distance model was approximately 0.4, which indicates that this model can better explain

the more realistic data patterns than those of the other two distance methods. In general, the

shortest-path effective distance model yielded the best performance in this study.

The model fitting performance of the traditional Cox model vs. the inverse distance model,

shown in Table 5, was based on two types of distance. The log likelihoods of the models were

also comparable, meaning their performances were similar. To compare the traditional Cox

model to the inverse distance-based model, we chose a log of shortest path effective distance as

an explanatory variable of the Cox model. This was positive which indicates that countries

Fig 7. Scatter plot of the geographic distance. (a) the shortest-path and the random–walk effective distance (c) from

Wuhan Airport to the other airports, and the arrival time of COVID-19.

https://doi.org/10.1371/journal.pone.0256398.g007
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with greater effective distance from Wuhan would be more likely to have longer disease arrival

times. For the inverse distance-based model, k was the scale parameter of the hazard function

(hazard function = k / effective distance), which is a constant that is used to predict when an

event will occur. For example, a higher level of k is associated with a greater risk of COVID-19

and a shorter arrival time in all countries. The hazard functions (h (t)) of survival models are

used to estimate the importation risk at time t, so the hazard at arrival time (h(Tarr)) should be

significant.

As seen in Table 5, the model results showed that the log likelihood of the effective distance

survival models was higher than those of the geographical distance model. Thus, probability

distribution of disease arrival time can be calculated based on these parameter estimates.

Although the two models had similar log likelihoods, their importation risk estimations were

slightly different. For more information about this finding, Table 6 provides a summary of the

various probability estimations of actual arrival times.

As shown in Table 6, the mean importation risk estimation with effective distance was

greater than that of the geographical distance. Also, the standard deviation of importation risk

estimation of geographical distance was larger than that of effective distance. The ID (Eff)

model had the highest mean of importation risk and its log likelihood was also the highest,

which shows that it yielded the best performance. Fig 8 shows the model that can provide the

most accurate risk estimation for each country. The purple points are the importation airports

which had the highest risk estimation according to the ID (Eff) model. The yellow points rep-

resent the countries with highest risk according to the ID (Geo) model.

There are 112 importation countries of COVID-19. As shown in Fig 8, approximately 63%

have a higher risk estimation according to the ID (Eff) model, while the other countries with a

higher risk of ID (Geo) are closer to the Wuhan Airport. This result indicates that the countries

nearest to China are inconsistent with this hypothesis, because the geographical distance

yielded a higher importation risk.

Table 5. Survival model results with the shortest path of effective distance.

Cox model Inverse Distance model

(Nah et al., 2016)

Effective distance Geographic distance Effective distance Geographic distance

(k=DSP
ij ) (k=DGeo

ij )

Intercept. 1.687 � 3.760 ���

distance 1.090 ��� 0.147.

Parameter k 0.148 0.961

Log likelihood (model) -960.2 -966.6 -954.9 -990.9

Significant Code: 0.0001’���’; 0.001’��’; 0.01’�’; 0.05 ‘.’; 0.1 ‘ ‘

https://doi.org/10.1371/journal.pone.0256398.t005

Table 6. Descriptive statistics of the arrival probability based on the Cox model and the effective distance model.

Min. Max. Median Mean Std.

ID (Eff) 0.253 0.840 0.559 0.547 0.096

ID (Geo) 0.093 1.000 0.476 0.512 0.217

Cox (Eff) 0.260 0.850 0.555 0.545 0.098

Cox (Geo) 0.135 0.730 0.550 0.536 0.108

https://doi.org/10.1371/journal.pone.0256398.t006
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4 Conclusions

The goal of this study was to use the effective distance technique to establish a worldwide air-

port network in order to estimate disease spread. Two types of effective distance (shortest path

and random walk) based on historical airline data (2017 IATA) and airport connection links

were used to compare the predictability of the date of disease arrival. The conventional COX

survival model and inverse distance model including effective distance were used to estimate

the importation risk of disease.

After analysis, the results yielded several interesting findings.

• Effective distance performed better than geographical distance.

According to our results, effective distance provided better predictive performance than

geographical distance, with the results confirming our expectations based on R-square. This

finding is also consistent with Brockmann’s findings [11]. Although the IATA flight data of

2017 may not reflect the current reduction in air traffic due to the impacts of COVID-19, the

metric of airline passenger flow is still more effective for estimating the arrival time of disease

than geographical distance. For example, although Mactan–Cebu International Airport

(IATA: CEB) in the Philippines is geographically closer to Wuhan Airport than the Paris

Charles de Gaulle Airport (IATA: CDG) in France, according to the disease arrival time data

utilized in this study, the later was affected by COVID-19 before the Philippines, which is con-

sistent with this actual disease path.

• Random-walk effective distance did not perform better than shortest-path effective distance.

We found the model performance of the random-walk effective distance to be inferior to

that of the shortest-path effective distance. This result is inconsistent with previous findings

[18]. As previously mentioned, the random walk technique was developed to overcome the

limitations of the simple path propagation by considering all possible paths within the airport

network. A possible reason for this poor predictive power is that we used out-of-date pre-

Covid IATA flight data that did not take into account the decreased number of flights due to

COVID-19. Adiga et.al 2020 included a more recent IATA passenger flow dataset from Feb,

2020, which yielded higher model performance for the shortest path (R-square: 0.78) than our

Fig 8. The map of maximum risk.

https://doi.org/10.1371/journal.pone.0256398.g008
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study (0.39) [16]. Unlike our arrival time dataset, their study included an analysis of the coun-

tries that were affected by COVID-19 before Feb 24. Thus, their results may not have been

impacted by the multiple disease seeds which resulted in better model performance.

• The inverse distance survival model performed better than the Cox model.

We compared two survival models: the traditional cox model and the inverse distance sur-

vival model [13]. With regard to the uncensored data, the ID (Eff) model generated the highest

importation probability at the actual arrival time. When we compared the ID model of effec-

tive distance to the geographical distance, we found that the arrival times in 66 uncensored

countries (approximately 37%) were inconsistent with our original hypothesis, and most of

them had higher risk estimation according to ID (Eff). This comparison will help scholars to

better understand the characteristics of these survival models and to develop more accurate

applications in the future. Due to the fact that risk assessment of former models was based

only on the effective distance, these models can only be used to determine the importation risk

of disease via air transportation.

The key results are listed below:

1. The effective distance model was found to more accurately predict the arrival dates of

COVID-19 than the geographical distance model.

2. However, if out-of-date, pre-Covid airline data is included, the path of disease spread might

not follow the random walk theory due to the recent flight suspensions and travel restric-

tions during the epidemic.

3. Lastly, with regard to effective distance, the inverse distance survival model and the Cox

model yielded very similar importation risk estimates. Therefore, the possible application

of this study is that if a new pandemic outbreak occurs in the near future, we can use out-

off date airline flow to estimate the effective distance and then use the shortest path strategy

to build the survival model.

There are several limitations of the current study, the first of which is the input data time

scale. Because effective distance is designed to calculate typical percentages of passengers at all

airports, this monthly or yearly flight data cannot capture the actual time the passengers spend

traveling between airports. In addition, historical flight data was used in this study to establish

effective distance. Thus, our model was unable to accurately represent the current traffic flow

that is associated with disease spread. Some large airports with high traffic flow may became

new disease seeds, which may influence the predictive performance of effective distance from

the Wuhan Airport.

Future scholars may wish to collect more updated and detailed passenger flow data from

additional airline databases. For example, not only does the OAG database include booking

data for all flights, this platform can export passenger flow data each month. By using more

current or updated airline datasets, researchers will be able to establish a more accurate global

airport network which will help them to calculate effective distance more efficiently. Further-

more, this technique can be used to pinpoint the locations of multiple disease seeds. It will

allow future scholars to reproduce the propagation path of COVID-19 using a dynamic

numerical simulation model and to locate other possible disease seeds (such as in Italy and

Iran) to prevent future peaks of this virus. In addition to the arrival time and the time of dis-

ease peak, cases of reinfection also require attention. Lastly, agent-based modeling is a com-

mon technique for simulating the status of individuals. In the future, researchers may wish to

compare the stable epidemic model to the dynamic simulation model (agent-based model) in

order to obtain a better understanding of the transmission process of COVID-19.
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