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Abstract: Breast cancer is the most commonly diagnosed cancer in women worldwide, and >90% of
breast cancer-related deaths are associated with metastasis. Breast cancer spreads preferentially to
the lung, brain, bone and liver; termed organ tropism. Current treatment methods for metastatic
breast cancer have been ineffective, compounded by the lack of early prognostic/predictive methods
to determine which organs are most susceptible to developing metastases. A better understanding
of the mechanisms that drive breast cancer metastasis is crucial for identifying novel biomarkers
and therapeutic targets. Lung metastasis is of particular concern as it is associated with significant
patient morbidity and a mortality rate of 60–70%. This review highlights the current understanding
of breast cancer metastasis to the lung, including discussion of potential new treatment approaches
for development.
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1. Introduction

Globally breast cancer is the most common malignancy in women, and 626,679 deaths worldwide
in 2018 were attributed to it [1]. In the past, breast cancer has been a higher burden in developed
nations due to risk factors associated with lifestyle [1]. However, in developing nations the incidence
rates of breast cancer have increased in recent years due to advancements in health infrastructure and
the adoption of a ‘westernized’ lifestyle [1]. In Canada, 1 in 8 women will develop breast cancer over
their lifetime while 1 in 31 will die from their disease [2]. Of the deaths caused by breast cancer, over
90% are attributed to metastasis-related complications [3]. Metastasis is a poorly understood process
that begins with the detachment of tumor cells from the primary tumor and their intravasation into the
blood stream [4]. These circulating tumor cells (CTCs) eventually arrest in the capillary beds of distant
organs and extravasate through the vascular wall into the parenchyma, resulting in the generation of
metastatic colonies in the secondary site [4].

Breast cancer has a tendency to target the bone, brain, liver and lung; known as organ tropism [5].
For breast cancer patients with metastases; 30–60% have lesions in the bone, 4–10% in the brain,
15–32% in the liver, and 21–32% in the lung [6]. Lung metastases in particular tend to occur within
5 years of initial breast cancer diagnosis and have a significant impact on patient morbidity and
mortality. Physiologically, these metastases disrupt normal lung function, resulting in coughing,
labored breathing, hemoptysis, and eventual death. Lung metastasis remains difficult to treat, with
an estimated 60–70% of patients who die of breast cancer having lung metastasis [7]. For patients
with metastases confined solely to the lung, the prognosis is exceedingly poor with a median survival
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of only 25 months [8]. This poor outcome is attributed to the limited number of treatment options
associated with inoperable lesions [9].

The underlying mechanisms that dictate which organ(s) become colonized by breast cancer are
complex and influenced by many factors, one of which is molecular subtype. First described by
Perou et al. (2000), breast cancer can be subdivided into four main clinical subtypes on the basis of gene
expression profiles and receptor status (estrogen receptor [ER], progesterone receptor [PR], human
epidermal growth factor receptor 2 [HER2]) and proliferation status as assessed by Ki67 [10]. These
clinical subtypes (in order of increasing aggressiveness) include: luminal A (ER+/PR+), luminal B
(ER+/PR+/ HER2−/+/Ki67+), HER2 overexpressing (ER−/PR−/HER+) and basal-like/triple-negative (TN)
(ER−/PR−/HER2−). While bone is the most common site for metastasis across all subtypes, TN breast
cancer has the greatest tendency to metastasize to the lung; occurring in ~32% of patients compared to
~21% of luminal A/B and ~25% of HER2+ patients [6]. However, the timing and mechanisms by which
breast cancer molecular subtype may influence metastasis to the lung is not yet understood.

In this review, we summarize current advancements in the understanding of molecular mechanisms
that drive breast cancer metastasis to the lung. By integrating the complex body of work that surrounds
this topic, we highlight key therapeutic targets and potential/emerging treatment approaches.

2. The Lung Metastatic Niche

The process of metastasis is highly inefficient, with less than 0.01% of primary tumor cells
successfully completing the metastatic cascade to develop macrometastases at the secondary site [11].
Clinically established patterns of organ-specific metastasis suggest that the site in which the cancer
grows successfully is not random, but rather influenced by the microenvironment in the secondary
organ. This phenomenon was first described by Stephen Paget in 1889, who hypothesized that cancer
cells (the “seed”) grew preferentially in the microenvironment of select organs (the “soil”) only if the
conditions at that site were permissive for growth [12]. Supporting this theory, our research group has
shown that in the presence of organ-conditioned media from common sites of breast cancer metastasis
(lymph node, lung, liver, bone, brain), breast cancer cells demonstrate organ-specific responses in
proliferation and migration; indicating certain organs produce soluble components that support
metastatic behavior [13]. However, in the early 1900s, James Ewing suggested a competing theory that
organ-specific metastasis was regulated solely by physiological blood flow patterns [14]. Certainly
the physical characteristics of organs such as the lung lends weight to Ewing’s theory, particularly for
breast cancer. The lung is the first major capillary bed that a breast cancer cell encounters after escaping
into the bloodstream. As tumor cells circulate through the lung, they may come into contact with as
much as 100 m2 of surface vasculature. Since these tumor cells are approximately five times larger
than the exceedingly narrow pulmonary capillaries, the likelihood of breast cancer cell arrest in these
capillary beds and subsequent extravasation into the lung tissue is high [15,16]. The lung capillaries are
comprised of endothelial cells that are encapsulated by a basement membrane and adjacent alveolar
cells. To facilitate transendothelial migration and extravasation, tumor must express cell surface
markers specific for the lung microenvironment [15,16]. However, although extravasation may occur
fairly easily via these physical processes, the ability of individual metastatic cells to successfully
transition to micrometastases and subsequently progress to macrometasases is quite rare, and thus
these final events represent rate-limiting steps in metastasis that rely on the optimal collaboration of
“seed” and “soil”. Therefore, it is likely that Paget’s and Ewing’s theories are highly complementary in
the development of metastasis to the lung [17].

More recently, growing evidence that the primary tumor has the potential to “prime” or augment
distant organ microenvironments in preparation for metastasis has added a further level of complexity
to Paget’s seed and soil theory [18–21]. The generation of this “pre-metastatic niche” is hypothesized
to be critical for the process of metastasis, and can be divided into four phases consisting of priming,
licensing, initiation and progression [22]. Priming is initiated by the secretion of tumor-derived soluble
factors (TDSFs) and/or exosomes by the primary tumor as it undergoes uncontrolled proliferation and
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becomes hypoxic. These molecules target the bone marrow for recruitment and initiate the remodeling
of the target secondary organ, generating a pre-mature metastatic niche. Bone marrow-derived cells
(BMDCs) and immune regulatory/suppressive cells are then progressively recruited to the secondary
site by the continual secretion of factors from the primary tumor. These processes facilitate the
licensing phase, generating an immune-suppressed environment and an extracellular matrix (ECM)
conducive for cancer colonization. Disseminated cancer cells that enter this fertile metastatic niche
may stay in a dormant state until the conditions at the secondary site can support tumor outgrowth
into micrometastases; termed initiation. In the final progression stage, the growth of micrometastases
is regulated by tumor secreted factors and other regulatory cells that infiltrate the secondary site, thus
enabling transition to macrometastases [22].

In order for these processes to occur successfully, there must be a well-choreographed sequence of
molecular and cellular events that enable the generation of a fertile pre-metastatic niche, and this is
regulated by a variety of tumor-secreted factors, exosomes and stromal components. In particular,
the close interplay between primary tumors and lung priming was first highlighted by Lyden and
colleagues (2005). They demonstrated that bone marrow derived hematopoietic progenitor cells (HPCs)
expressing vascular endothelial growth factor receptor-1 (VEGFR1) and very late antigen–4 (VLA-4)
targeted areas of the lung with increased fibronectin deposition [23]. Upon binding, VLA-4+VEGFR1+

HPCs secrete MMP9 to induce pro-metastatic changes in the lung ECM [23]. Subsequent studies have
elucidated how the BMDCs are recruited to the pre-metastatic niche and the underlying mechanisms
of increased fibronectin deposition in the lung; believed to be regulated by tumor-derived exosomes
and a variety of tumor-secreted and stromal-derived factors. These are summarized in Tables 1 and 2
and described in greater detail below.

Table 1. Molecular and cellular components secreted by breast cancer primary tumors that are associated
with the promotion of lung metastasis.

Secreted
Component Molecule Mobilized/Target

Cell Type Mechanism(s) Reference(s)

Tumor-Derived
Exosomes (TDEs)

PD-L1 T cells Blunts T-cell activation and killing activities [24]

miR-122 Fibroblasts
Reprograms metabolic activity, resulting in
decreased glucose need at pre-metastatic site by
inhibiting pyruvate kinase

[25]

miR-105 Endothelial cells
Uptake reduces expression of the gap junction
protein ZO-1, promoting metastasis at the
pre-metastatic site

[26]

ITGα6β1

Lung SPC+

Epithelial Cells/
Lung S100A4+

Fibroblasts

Targets exosomes to lung to induce
pre-metastatic niche formation [27]

Tumor-Derived
Soluble Factors

(TDSFs)

P2Y2R CD11b+ BMDCs Mediates LOX expression, causing collagen cross
linking in the lung recruiting CD11b+ BMDCs [28]

TGFβ Cancer cells
Primes breast cancer cells by inducing ANGPTL4
which disrupts endothelial tight junctions at
distant sites

[29]

VCAM1 Endothelial cells Facilitates transendothelial migration of tumor
cells into the lung [30]

CSF-1 Macrophages
Recruits macrophages to the primary tumor,
inducing an aggressive phenotype with a
propensity to metastasize to the lung

[31]

CXCR4/ CCR7 SDF-1/CCL21+
endothelial cells Enables tumor cell adhesion to lung endothelium [32,33]

LOX Leads to collagen crosslinking and recruitment of
CD11b+ BMDCs [34]

PD-L1, Programmed Death—Ligand 1; miR, microRNA; ITGα6β1, Integrin alpha 6 beta 1; SPC, Surfactant Protein
C; P2Y2R, Purinergic Receptor; TGFβ, Transforming Growth Factor beta; ANGPTL4, Angiopoiten-like 4; VCAM1,
Vascular Cell Adhesion Molecule 1; CSF-1, Colony Stimulating Factor-1; CXCR4, C-X-C Chemokine Receptor 4;
CCR7, C-C Chemokine Receptor Type 7; SDF-1, Stromal Cell Derived Factor-1; CCL21, C-C Motif Chemokine
Ligand 21; LOX, Lysyl Oxidase.
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Table 2. Molecular and cellular components secreted by stromal cells associated with promoting breast
cancer metastasis to the lung.

Secreted
Component Molecules Mobilized/Target

Cell Type Mechanism(s) Reference(s)

Stromal-Derived
Factors (SDFs)

PGE2 BMDCs/Cancer
Cells

Recruits BMDCs to the lung and
enhances CTC adhesion [35]

ANG-2 CCR2+Tie2−

Macrophages

Recruits macrophages, which cause
endothelial cells to release
proinflammatory and angiogenic factors

[36]

FN, TN-C,
PSTN, VCAN

BMDCs and
cancer cells

Promotes the adhesion of BMDCs
and CTCs [37–42]

CCL2 Cancer cells
Produced by CCR2+ inflammatory
monocytes, increases vasculature
permeability

[43]

MMP2 BMDCs Remodels lung ECM [44]

HSF1 CAFs/cancer cells Reprograms CAFs and cancer cells to
promote metastasis into the niche [45]

Id3 VEGFR1+ BMDCS

BMDC-derived, required for
recruitment of VEGFR1+ BMDCs to
areas of increased fibronectin
deposition in the lung

[23]

IL-32 Cancer cells CAF-derived, increases the metastatic
potential of breast cancer cells [46]

PGE2, Prostaglandin E2; ANG-2, Angiopoietin-2; CCR2, C-C Chemokine Receptor Type 2; FN, Fibronectin; TN-C,
Tenascin-C; PSTN, Periostin; VCAN, Versican; BMDCs, Bone Marrow-Derived Cells; CCL2, C-C Motif Chemokine
Ligand 2; CCR2, C-C Chemokine Receptor 2; MMP2, Matrix Metallopeptidase 2; ECM, Extracellular Matrix; HSF1,
Heat Shock Factor 1; Id3, Inhibitor of Differentiation 3; VEGFR1, Vascular Endothelial Growth Factor Receptor 1;
IL-32, Interleukin-32; CAF, Cancer Associated Fibroblast.

3. Tumor-Derived Exosomes

Tumor-derived extracellular vesicles can be subdivided on the basis of size including apoptotic
bodies (1000–5000 nm), microvesicles (200–1000 nm) and exosomes (30–150 nm) [47]. Exosomes are
formed through the endosomal pathway and predominantly released from cells through fusion with the
plasma membrane [48,49]. Tumor-derived exosomes (TDEs) have been shown to play a significant role
in modifying the lung microenvironment. This is highlighted by recent studies involving pre-treatment
of mouse models with TDEs from lung-seeking breast cancer cell lines that showed the potential to
“educate” the lung, inducing changes that made it more susceptible to metastasis [50]. Exosomes
secreted by the primary tumor have the ability to target the lung through use of integrins such as
ITGα6β1 [27]. Upon targeting specific organs, breast cancer-derived exosomes can deliver their cargo
of RNA, DNA and proteins to induce pro-metastatic changes in the lung [51]. Exosome production
and packaging is not static but is instead regulated by several factors including environmental stimuli,
such as hypoxia [52,53]. It has been demonstrated that breast cancer exosome production is increased
substantially in hypoxic conditions in a HIF-1α dependent manner [54]. Furthermore, exosomes have
the potential to translate properties such as chemotherapy resistance and increased invasiveness to
recipient breast cancer cells [55,56].

3.1. Exosomes and Immune Suppression

The process of generating the pre-metastatic niche in lung is highly reliant on immune-suppression
to ensure that CD8+ T cells, natural killer (NK) cells and patrolling monocytes are masked from the
presence of tumor cells trying to establish themselves as metastatic lesions in the lung [57,58].
Interestingly, Yang and colleagues (2018) demonstrated that breast cancer-derived exosomes expressing
programmed cell death-1 (PD-L1) on their surface have the ability to blunt T-cell activation and killing
activities, effectively protecting tumor cells from immune surveillance. By stunting the immune
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response, tumor cells have the potential to successfully seed and colonize distant organ sites, such as
the lung [24]. While cancer cells in the bloodstream try to avoid circulating immune elements, there
is growing evidence to suggest that there is a connection between immune cell dysregulation and
chronic inflammation at the pre-metastatic site [59–61]. Macrophages (key regulators of the immune
response and part of the innate immune system) phagocytose invading cells in order to induce the
expression of cytokines and chemokines [62]. Chow et al. (2014) demonstrated that exosomes derived
from MDA-MB-231 and MCF7 breast cancer cell lines have the ability to hijack lung macrophage
activity by activating the NF-κB pathway, resulting in the expression of the pro-inflammatory markers
IL-6, TNFα, G-CSF and CCL2 and promoting lung metastasis in vivo [63].

Precipitated by the work of Lyden and colleagues, BMDCs have emerged as a significant contributor
to establishing a pre-metastatic niche [64–66]. Furthermore, although it is well-established that
myeloid-derived suppressor cells (MDSCs) enable tumor progression, their development during tumor
growth was unknown [67–70]. Xiang and colleagues (2009) demonstrated that bone marrow myeloid
cells can be forced to differentiate into myeloid-derived suppressor cells (MDSCs, CD11b+Gr−11+)
by breast cancer derived exosomes [71]. The resulting change induces the accumulation of MDSCs
expressing Cox2, IL-6, VEGF and arginase-1 at the lung, generating a pro-inflammatory and immune
suppressed environment permissive for metastasis [71]. In a similar study, Peinado et al. (2012)
demonstrated that exosomes from highly metastatic melanoma cells had the ability to “educate” BMDCs
from non-tumor bearing mice, pushing towards a pro-vasculogenic and pro-metastatic phenotype via
the upregulation of MET [72]. The relevance of this process to breast cancer lung metastasis has yet to
be investigated.

3.2. Exosomes and Stromal Cells

Beyond interactions with immune cells, breast cancer-derived exosomes have the ability to
influence the status of the lung microenvironment by modulating the function of stromal cells.
Fong et al. (2015) demonstrated that exosomes isolated from the MDA-MB-231 breast cancer cell
line contained miR-122, and once applied to lung fibroblasts these exosomes were able to reprogram
glucose metabolism, reducing glucose uptake by inhibiting pyruvate dehydrogenase activity [25]. This
suggests that prior to colonization of the lung, secreted exosomes from the primary tumor can reduce
glucose uptake, allowing for newly arrived cancer cells to have enough energy to facilitate rapid
proliferation. Complementary to this data, Zhou and colleagues (2014) demonstrated that exosomes
released from MD-MB-231 cells were also enriched with miR-105 [26]. Tail vein injection of miR-105
containing exosomes resulted in modulation of the vasculature of common sites of metastasis such as
the lung such that it became “leaky” [26]. It was determined that exosomal delivery of miR-105 to
endothelial cells resulted in the downregulation of the tight junction protein ZO-1 [26]. Taken together,
these studies provide further evidence to support the concept that breast cancer derived exosomes
play a critical role in establishing a permissive niche in the lung required for metastatic colonization,
and highlights the possibility of considering exosomes in the clinical setting.

3.3. Exosomes as Clinical Biomarkers

Tumors secrete a number of factors into peripheral circulation (Table 1) that have the potential to
serve as a method of clinical monitoring of disease progression. Increased attention has thus been put
towards developing non-invasive blood-based biomarker approaches [73–75]. Many current methods
have focused on enumeration and characterization of circulating tumor cells (CTCs), but this has
proved to be a difficult task due to their sparse concentrations in blood [76,77]. In patients with early
stage breast cancer, the CTC detection rate ranges between 23–37%, and currently no effective strategy
exists to leverage CTCs analysis in order to predict which organs might be affected by metastasis [78].
In comparison, tumor-derived exosomes may provide an attractive alternative as they are stable in
blood, have the ability to be isolated from most bodily fluids (blood, urine, semen, milk) and are
present in circulation at similar quantities as soluble proteins (105

·mL−1) [79,80]. The innate issue
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with exosomes is differentiating their origin from normal or cancerous tissue. Etayash and colleagues
(2016) demonstrated that by utilizing the characteristics of tumor-derived exosomes (such as the
overexpression of CD24, CD63 and EGFR), they were able to isolate exosomes of breast cancer origin
by a multiplexed cantilever array sensor [81]. By isolating breast cancer exosomes, proteomic analysis
may provide the opportunity to identify sites susceptible to metastasis by identifying the presence of
specific organotropic integrins. Additionally, RNA analysis coupled with such proteomic data may
provide insight into how the exosomes are altering the secondary site, providing a targeted approach to
circumvent potential metastases. An alternative method developed by Zhai et al. (2018) demonstrated
that isolating patient plasma and incubating the sample with Au nanoflare probes specific to the
pro-metastatic exosomal miR-1246 was able to identify 100% of breast cancer patients with metastatic
disease [82]. These methods of early detection have great promise but must be refined, validated in the
clinical setting, and ideally coupled with new treatment approaches to have clinical applicability.

3.4. Therapeutic Implications of Exosomes

Beyond biomarkers, exosomes could provide an effective strategy to treat inoperable metastatic
lung lesions. In the majority of cases, lung metastases are multidrug resistant and efforts to change
treatments is thwarted by most chemotherapeutics having low aqueous solubility requiring alternative
delivery methods [83–85]. Exosomes, compared to other proposed delivery methods, have the potential
for organ-specificity and privileged immune status that results in reduced drug clearance [86]. Applying
this, Kim et al. (2016) demonstrated that exosomes released by macrophages can be loaded with
paclitaxel using ultrasound treatment and used to induce cytotoxicity in multidrug resistant lung
cancer cells [87]. Future work in the context of breast cancer lung metastasis is crucial to move towards
translation of this potential therapeutic approach to the clinic.

Interestingly, while tumor-secreted vesicles provide hope for earlier detection of lung metastasis
and treatment, there is emerging evidence to suggest that they may actually further complicate
treatment outcomes. Keklikoglou et al. (2019) recently demonstrated that the administration of taxanes
and anthracyclines to mice bearing breast tumors induced the release of extracellular vesicles with
an increased pro-metastatic capability [88]. These extracellular vesicles contained elevated amounts
of annexin A6 which targets lung endothelial cells to induce NF-κB activation, resulting in CCL2
release that caused Ly6C+CCR2+ expansion at the lung that enables the establishment of a fertile
pre-metastatic niche [88].

In addition to chemotherapy, immunotherapy has emerged as a revolutionary approach to cancer
treatment and management. Several recent clinical trials have focused on determining the efficacy of
PD-L1 inhibitors in the context of metastatic breast cancer [89,90]. Interestingly, in metastatic melanoma,
Chen et al. (2018) were able to demonstrate that the amount of PD-L1 expressed on tumor-derived
exosomes was a predictor for response to anti-PD-L1 therapy [91], whereby responders had lower
baseline levels of PD-L1 expressed on exosomes, and after 3–6 weeks of treatment the expression was
more pronounced for responders [91]. These observations indicate the importance of considering the
role of exosomes when designing treatment regimens for patients with metastatic disease, from the
perspective of drug delivery and response.

4. Tumor-Derived Secreted Factors

In addition to the secretion of exosomes, breast cancer primary tumors release a variety of other
factors that have the potential to prime or augment the lung microenvironment, known as tumor
derived secreted factors (TDSFs) (Table 1). An aspect of the niche that is critical for successful metastatic
colonization is the status of the ECM. In a pro-metastatic state, secondary organs such as the lung
upregulate the expression of several ECM components including versican, tenascin-c, periostin and
fibronectin [37–41,92]. As with exosome production, the effect that primary tumor-secreted factors
have on the secondary site is regulated by both environmental stimuli and interactions with stromal
cells that comprise the tumor microenvironment. Hypoxia within the primary tumor influences
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a wide variety of processes, including the increased expression of lysyl oxidase (LOX). LOX is an
amine oxidase that crosslinks collagen and elastins in the ECM and is associated with a variety of
pro-metastatic processes [42]. Erler et al. (2009) demonstrated that under hypoxic conditions breast
cancer primary tumors increase LOX expression, inducing crosslinking of collagen in the lung [34].
This change in the ECM enables the adhesion of CD11b+ myeloid cells, and upon binding produces
MMP2 resulting in the cleavage of collagen that is required for recruitment of BMDCs and cancer cells
to the lung microenvironment [34]. This highlights an interesting observation that the status of the
ECM determines which cells are recruited to the lung and can be changed by these recruited cells to
promote metastatic seeding.

5. Stromal-Derived Influences

In addition to hypoxia, the primary tumor may be influenced by cells that comprise the tumor
microenvironment which includes immune cells, endothelial cells, adipocytes and several other cell
types [93] that produce factors that influence the metastatic process (Table 2). Emerging evidence
suggests that a subset of activated stromal cells termed cancer-associated fibroblasts (CAFs) cause a
multitude of changes in the behavior of breast cancer cells [94–96]. These CAFs are a heterogenous
population of cells that vary in origin and are characterized by the expression of several markers
including αSMA and PDGFR-β [97]. In the context of breast cancer, CAFs drive the progression of
metastasis by paracrine signaling and mechanical pressure on the cancer tissue [98]. In relation to
paracrine signaling, CAFs in the tumor microenvironment have been shown to secrete IL-32 and,
once bound to integrin β3 on the cell surface of breast cancer cells, results in the activation of p38
MAPK signaling that causes increased expression of EMT markers such as fibronectin, N-cadherin and
vimentin [99]. In order to determine the influence of CAFs on metastasis in vivo, BT549 breast cancer
cells were co-cultured with CAFs and injected subcutaneously in mice, resulting in increased lung
metastases [46].

While the primary tumor has the ability to influence the immune response directly, this is also
achieved by the help of lung stromal cells. Breast primary tumors have the ability to up-regulate the
expression of S100A8 and S100A9 in the lung microenvironment [46]. These proteins are part of the S100
family which are characterized as calcium-binding cytosolic proteins. The expression of these elements
act as strong chemoattractants for both neutrophils and macrophages and promote the metastatic
potential of the breast primary tumors [46]. Specifically in the context of lung metastasis, S100A8 and
S100A9 have been shown to induce the recruitment of Mac-1+ myeloid cells to the lung that results in
the secretion of migration stimulating factors (TNFα, MIP2 and TGF) and ECM remodeling [100].

The primary tumor must influence several molecular and cellular processes in order to ensure that
metastasis to the lung is successful. One important example of this is the interplay between BMDCs
and the primary tumor, a relationship first highlighted by Lyden and colleagues [23] that has gained
increasing traction in recent years. Interestingly, previous research has demonstrated that bone marrow
derived mesenchymal stromal cells (MSCs) have the potential to differentiate into CAFs upon co-culture
with tumor cells [101,102]. Building off this observation, Raz et al. (2018) used collagen-α1 tracking of
transplanted bone marrow cells to demonstrate that MSCs make up a substantial proportion of CAFs
that are present in the breast primary tumor and lung lesions [103]. These MSC-derived CAFs generate
a unique inflammatory profile depending on the site they are recruited to and promote pro-metastatic
features such as angiogenesis, enabling breast cancer metastasis to the lung [103]. Interestingly, the
interaction between breast cancer cells and bone marrow cells is also crucial for cancer dormancy.
Breast cancer dormancy is a significant clinical concern, as cancer cells in this state remain in mitotic
arrest, making them resistant to drugs targeting highly proliferative cells. Upon recurrence, these
senescent cells have the potential to resurge as progressive metastatic disease. It is widely accepted
that the bone marrow serves as a sanctuary site for dormant breast cancer cells, and although this
process is believed to be mediated by MSCs, the molecular underpinning of this relationship remains
poorly understood [104–108]. Expanding on this interaction using a transwell model to recapitulate
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communication between MSCs and breast cancer cells, Bliss et al. (2016) showed that breast cancer
cells prime MSCs to secrete exosomes containing miR-222/223 which induce senescence in the recipient
cancer cells [109].

To recruit BMDCs to the lung, previous literature has demonstrated that the state of the secondary
site must be augmented to promote adhesion. Angiogenic factors such as VEGF released from
lung-seeking breast cancer cells can activate the Src-FAK pathway in lung endothelial cells, resulting in
increased expression of lung adhesion molecules and enhanced integrity of vascular permeability. Lung
endothelial cells also express PGE2 in response to VEGF, which acts as a powerful chemoattractant to
recruit BMDCs and tumor cells to the lung [110]. Under hypoxic conditions the expression profile
of the primary tumor changes, causing variations in downstream targets. Previous literature has
demonstrated that HIF-1 induces increased expression of Carbonin Anyhydrase IX (CAIX) which
has been shown to be required for breast cancer metastasis [35,111–113]. Taking this information,
Chafe et al. (2015) were able to demonstrate that CAIX is required for the production of G-CSF by
breast cancer cells, which in turn is responsible for the recruitment of granulocytic myeloid-derived
suppressor cells to the lung for generation of a lung pre-metastatic niche [114].

6. Potential for Clinical Translation

Successful prevention of breast cancer metastasis to the lung will be dependent on identifying
and treating not only the key characteristics of the “seed” (lung-seeking cancer cells), but also the
“soil”; including the lung microenvironment and the pre-metastatic niche. In particular, the lung
pre-metastatic niche has the potential to have significant implications in determining the risk that a
particular patient may have for developing lung metastases. However, thus far most studies pertaining
to the pre-metastatic niche have been limited to mouse models, although this is beginning to evolve
towards the clinic. For example, knowledge that S100A8 and S100A9 are crucial for the generation of
the pre-metastatic niche in the lung led to the development of S100A9 specific single photon emission
computed tomography (SPECT) whole body imaging which has been tested in a pre-clinical breast
cancer metastasis model [31]. In addition, using the knowledge that exosomes have the propensity to
target specific organs, Nikolopoulou and colleagues (2016) isolated exosomes from the breast cancer
cell line 4175-LuT which has a propensity to metastasize to the lung. The isolated exosomes were then
labeled and injected into tumor-naïve female nude mice. The tissues from the mice were harvested,
indicating a high accumulation of exosomes in the lung [115]. This method opens the potential to
use high resolution, non-invasive imaging such as SPECT to identify pre-metastatic niche formation.
Similar to this work, Soodgupta, et al. (2013) targeted VLA-4 expressed on BMDCs localized to the
lung with a radiopharmaceutical. PET was subsequently performed to provide an effective method of
detecting BMDCs in the pre-metastatic niche [116].

Upon identifying the presence of a pre-metastatic niche in the lung, the next step would involve
preventing lung metastasis. To date, potential therapeutics targeting the pre-metastatic niche have
mostly been assessed in the pre-clinical setting. However, the LSD1-specific inhibitor INCB059872
which is currently at phase 1 clinical trial for relapse of Ewing Sarcoma has been shown to reshape the
myeloid compartment in a spontaneous lung metastasis model. Lee et al. (2018) demonstrated that
INCB059872 reduced the migration of TN breast cancer cells, significantly reduced MSDC infiltration
of the primary tumor and lung associated with a reduction in circulating CCL2, corresponding to
a decrease in metastatic lung foci [117]. Alternatively, myeloid cells can be recruited to the lung
by exosomes containing CSF-1 which are produced under hypoxic conditions. CSF-1 is associated
with myeloid cell survival, proliferation and differentiation and has been previously been shown to
be inhibited by GW2580. Pretreatment of mice with GW2580 prior to tumor implantation resulted
in a significant decrease in myeloid cell recruitment to the lung and increase in anti-tumorigenic
M1-macrophages [118]. Finally, as with exosomes, hypoxia has the potential to promote the generation
of a pre-metastatic niche in the lung. Under hypoxic conditions hypoxia-inducible factors (HIFs)
become activated, resulting in the induction of LOX and lysyl oxidase like (LOXL) proteins which
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are responsible for collagen remodeling and BMDCs recruitment [119–121]. Wong et al. (2012)
demonstrated that administration of two chemically different HIF inhibitors (digoxin and acriflavine)
could prevent lung metastasis in an orthotropic breast cancer model. This inhibition was attributed
to stunted LOX and LOXL expression which ultimately prevented collagen remodeling and BMDC
recruitment [122].

Collectively, the results of these pre-clinical studies suggest that the effects of the pre-metastatic
niche have the potential to be attenuated, preventing colonization. While these results are promising,
the clinical benefit of these approaches for patients with an increased risk of lung metastasis has yet to
be delineated. Efforts to elucidate the complicated underlying mechanisms that drive lung metastasis
and pre-metastatic niche formation in the clinical setting have been hindered due to a limited number
of patient samples derived from metastatic lesions. However, the implementation of rapid autopsy
programs has the potential to provide these necessary samples [123]. In particular, the development of
robust biobanks of matched primary tumors and metastatic lesions (from lung and other organs) would
provide important research tools to advance this field. Profiling these samples could provide insightful
information into the underlying mechanisms that drive metastasis to specific organs, uncovering
potential biomarkers that could help predict and/or prevent organ-specific metastasis. Further research
should also be focused on determining the length of time in which the metastatic niche within the
lung lasts post-surgery, radiation and/or chemotherapy. This will allow for personalized treatment
regimens that will ensure that even after the eradication of cancer, the recurrence of metastatic disease
in the lung will be reduced or prevented altogether.

7. Conclusions

Breast cancer remains a significant burden in modern society, requiring further research to
understand the underlying mechanisms that drive metastasis and how to target it. Metastasis to the
lung is of particular concern as it is associated with high patient morbidity and mortality with no
current effective strategies for early detection or eradication. Colonization of the lung is facilitated by a
complex web of interactions with the tumor microenvironment, lung stroma, immune cells and BMDCs;
and crosstalk between these components is mediated by exosomes and tumor/stroma-derived factors
(summarized in Figure 1). These secreted elements are dynamic and vary based on environmental
stimuli and interaction with stromal cells that infiltrate the tumor microenvironment and secondary
site. Together these interactions transition the lung microenvironment into a fertile niche susceptible
for cancer cell colonization. The therapeutic approaches described above hold promise for preventing
lung metastasis, but have currently only been investigated in a pre-clinical setting, highlighting the
need for further development and research in this area. Concurrently, a major limitation in this area
of research is the lack of clinically relevant biomarkers to determine if a patient has an increased
risk for lung metastasis. To address this, further research must focus on the use of exosomes as a
predictor of organ-specific metastasis including validation of this in patient samples. These gaps in our
current understanding demonstrate the complexity of metastasis, indicating that to have a significant
impact on this disease we must consider the consolidated effect of all factors together rather than just
investigating them individually. In summary, developing a deeper understanding of the processes that
enable breast cancer metastasis to the lung will lead to the development of therapeutic targets and
biomarkers with the ultimate goal of preventing metastatic disease.
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