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Bio‑inspired contour extraction 
via EM‑driven deformable 
and rotatable directivity‑probing 
mask
Jung‑Hua Wang1,2*, Ren‑Jie Huang1,2 & Ting‑Yuan Wang3

This paper presents a novel bio‑inspired edge‑oriented approach to perceptual contour extraction. Our 
method does not rely on segmentation and can unsupervised learn to identify edge points that are 
readily grouped, without invoking any connecting mechanism, into object boundaries as perceived by 
human. This goal is achieved by using a dynamic mask to statistically assess the inter‑edge relations 
and probe the principal direction that acts as an edge‑grouping cue. The novelty of this work is that 
the mask, centered at a target pixel and driven by EM algorithm, can iteratively deform and rotate 
until it covers pixels that best fit the Bayesian likelihood of the binary class w.r.t a target pixel. By 
creating an effect of enlarging receptive field, contiguous edges of the same object can be identified 
while suppressing noise and textures, the resulting contour is in good agreement with gestalt laws of 
continuity, similarity and proximity. All theoretical derivations and parameters updates are conducted 
under the framework of EM‑based Bayesian inference. Issues of stability and parameter uncertainty 
are addressed. Both qualitative and quantitative comparison with existing approaches proves the 
superiority of the proposed method in terms of tracking curved contours, noises/texture resilience, 
and detection of low‑contrast contours.

Most early approaches to contour extraction mainly aim at quantifying the presence of boundary or tracking 
edge pixels at given image locations through local measurements using a fixed-shape filtering mask. The terms 
edge and boundary have often been used interchangeably for many years. Edge detection identifies points in 
a digital image at which the image intensity changes sharply or has discontinuities, it may filter out less relevant 
information while preserving the important structural properties of an image, allowing to reduce the amount 
of data to be processed significantly. Finding edges has long been regarded as a core means in various computer 
vision problems such as image  segmentation1, pattern  recognition2, and motion  tracking3. By far the most 
prevalent method for edge detection is the gradient-based methods, to name a  few4,5, the Sobel, Roberts, Pre-
witt operators detect edges by convolving a gray-scale image with first-order derivative filters. The Laplacian of 
Gaussian Operator (LoG) uses second-order derivative. The Canny  detector4, equipped with advanced features 
like nonmaximal suppression (NMS) and dual thresholding, is the most recognized gradient-based edge detec-
tor that can effectively exploit the pixel intensity discontinuity. Figure 1b shows excessive redundant textures 
and false edges (false positives, FP) preserved by Canny detector using dual thresholds Ht = 0.2 and Lt = 0.08. 
If an edge pixel’s normalized gradient magnitude g(x,y) > Ht , it is marked as a strong edge. If g(x,y) > Lt and g
(x,y) < Ht , it is marked as a weak edge. If g(x,y) < Lt , it will be suppressed and removed. Although the Canny 
detector also uses an edge tracking strategy called hysteresis, which is basically a process of Connected Compo-
nents Labeling, to remove some unqualified weak edges (i.e. false positives) possibly caused by noise. However, 
when it comes to more complex nature images, different local image areas may require rather different threshold 
values to achieve satisfactory results. The two threshold values are empirically determined and their definition 
will depend on the content of a given input image. All the aforesaid gradient-based methods either suffer from 
noises and textural interferences, or may require tedious work of empirically tuning parameters to fit different 
image content natures. Particularly, the sensitivity to noise and clutter in these detectors often yields false edges 
or fragmented details, which are undesired in cases where only contours of semantic objects as perceived by the 
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human  mind6 are needed. Take Fig. 1 as an example, the human visual system tends to focus only on the picnic 
basket in Fig. 1c, while neglecting cluttering objects such as the grasses.

Although contours are often obtained from edges, in practice they are aimed at being object contours. Contour 
extraction is seen as a distinctively different task from edge detection, it aims to find the boundaries between 
what humans would consider to be semantically different objects or regions of the image. Traditional contour 
extraction approaches are roughly divided into three categories: gradient-oriented, edge-oriented, and region-
oriented. Among them, the edge-oriented approach is considered having the most balanced performance between 
detection accuracy and computational complexity. Many edge-oriented  methods7,8 implement contour extrac-
tion as a two-stage process: edge detection followed by edge grouping. Ideally, a set of edges can be grouped, 
after the edge detection, for defining object boundaries. Unfortunately, traditional solutions for edge grouping 
often require a global optimization, whereby information from the entire image is taken into consideration 
simultaneously. For example, the work  of8 combines multiple local cues into a globalization framework based 
on spectral clusters and calculates the eigenvectors thereof, with the eigenvectors themselves carrying contour 
information. The difficulty of which is that the optimization problem is NP-hard, making it unlikely to find the 
solution in a reasonable time.

To avoid the NP-hard difficulty, a nice alternative to edge grouping strategy is the gestalt laws. The word 
gestalt is German for “unified whole”. Since the 1920s, many gestalt psychologists have identified a set of gestalt 
 laws9 helpful in accounting for the observation of how complex scenes can be reduced to more simple shapes by 
humans. Because the gestalt laws are the factors that lead to human visual perception, they naturally have been 
used as guidelines for grouping edges.  In10–12, they pointed out that textured areas often exhibit stronger local 
luminance changes than object contours and conjectured that the low-level edge features alone cannot be reli-
able indicators of the presence of a contour. gestalt laws were incorporated into their design of a morphological 
operator to exploit higher-level features. Three of these gestalt laws are most related to edges grouping: Proxim-
ity, Similarity, and Continuity. The similarity law says that elements that are similar, in attributes of color, size, 
shape, and orientation, are easier to be perceived as a unified group than dissimilar elements. The proximity 
law states that things that are close together appear to be more related than those spaced farther apart. In some 
cases, proximity is so powerful that it can override the similarity of color, shape, and other factors that might 
differentiate a group of objects. The law of continuity states that people tend to perceive objects in alignment as 
forming a smoothest line or curve.

More recently, deep learning (DL) models has been shown  effective13–15 in extracting object contours for 
various open datasets. DL is a new branch of machine learning (ML) and was introduced by Hinton et al.16. It 
is nowadays considered as one of the hot topics in the context of computing, especially in the field of computer 
vision. However, building an appropriate DL model is a challenging task, due to the dynamic nature and vari-
ations of real-world problems and data. Moreover, interpretability is an important factor when comparing DL 
with traditional ML algorithms. So far, it is still very difficult to explain how a deep learning result was obtained. 
DL models are typically considered as “black-box” machines that hamper the standard development of research 
and applications. Performance of DL models must rely on accurate and consistent labeled data, meaning inten-
sive labor workload is needed for data labeling and cleaning, let alone the issue of labeling bias that may arise, 
particularly when labeling subjective data by plural labelers with differences in experience, preference, and 
understanding of the assignment. Besides, in order to avoid the overfitting problem, huge amount of training 
data is required. In some cases, the amount of training data may never be satisfied! This is particularly true in 
applications involved with nature scene images, for example, pretrained DL models built on a self-driving car is 
very likely to see a scene that was too different from what it had been trained on it. Although car makers could 
always constantly update its DL models to deal with corner cases, the problem is, these corner cases are virtually 
limitless, which is often referred to as the “long tail” problem of DL.

Nevertheless, some interesting contour detection results generated by DL have been reported. HED (Holis-
tically-Nested Edge Detection)13 and RCF (Richer Convolutional Features)14 are two highly cited works, both 

Figure 1.  (a) A basket and grasses in the background. (b) Result of Canny  detection4, Ht = 0.2 , Lt = Ht × 0.4 . 
(c) Contours perceived by the human visual system.
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focusing on image-to-image transformation (i.e. coder-decoder) for yielding a coded feature vector for an input 
image. They are essentially region-oriented extractors built on a convolutional neural network (CNN) paradigm. 
Currently the most popular strategy for training CNN, however, is the backpropagation  algorithm17, which is well 
known for its slow training speed. Also, such “black-box” design may not be appropriate for some applications 
(e.g., medical image diagnostics) where interpretability is highly requested, let alone the pixel-level accuracy 
required to pinpoint the exact location and area of a lesion. Clearly, accurate edge positioning is needed, and so 
are the in-depth investigations on low-level characteristics of real image edges.

The human visual system can quickly digest complicated scenes into simple meaningful object contours. It is 
commonly acknowledged that the human visual system operates by performing low-level task of detecting light 
intensity discontinuities (edges) followed by mid-level, and higher levels semantic representation of object-like 
structures. All the information required to build the high-level semantic representation must already represented 
as mid-level features such as the orientations of edges that characterize an object contour. Little is known about 
the mid-level process, except some knowledge about the size of receptive field or sensory space become larger 
from the low-level of retinal ganglion cells and LGN (lateral geniculate nucleus) to the mid-level of the visual 
cortex. Recently, a research area concerning computational theory of visual receptive fields has increasingly 
received  attentions33. It deals with building idealized models similar to the biological receptive fields found 
in the retina ganglion cells, LGN, and the visual cortex, as well as derivations of theoretical explanation of the 
computational function of visual receptive fields. Certainly, consistent representation of image structures over 
multiple spatial and temporal scales are required for possible applications in computer vision. These observa-
tions make us believe that a mid-level vision task of detecting perceptual contours (e.g. salient boundaries of 
the picnic basket in Fig. 1c) is worth studying. Such mid-level vision task not only benefits by deepening our 
knowledge of the low-level feature extraction but also facilitates future high-level tasks such as object  detection18, 
object proposal  generation19, and sketch-based image retrieval (SBIR)20,21. Embodiments of these applications 
rely on using quality contours (not necessarily closed contours) as input data for the subsequent tasks of image 
segmentation or recognition etc., because if there are too many false or fragmented edges, they could greatly 
hamper the overall performance.

There exists a need to develop a novel approach capable of extracting perceptual contours without the prob-
lems encountered in aforesaid approaches, namely, false/fragmented edges, tedious parameter tuning, NP-hard 
global optimization, laborious data labeling, and low interpretability. To achieve this goal, a special sampling 
mask is designed to iteratively rotate and deform in search of a principal direction that characterizes the existence 
of perceptual contours. Upon convergence, Bayesian theory is employed to determine whether the target pixel is 
located on a perceptual contour. The deformability/rotatability property, which is generated by an unsupervised 
EM-algorithm, desirably enlarges the effective size of receptive field for exploiting Shannon probabilistic model 
of local image regularities. Such a unique design allows not only to utilize the low-level features that is vital to 
the successful  detection of a single edge point, but also to spatially exploit mid-level features that are essential to 
extract curved contours. Mathematically rigorous derivations for the proposed EM-based Bayesian framework 
are provided to facilitate objective qualitative analysis and quantitative evaluation.

The rest of the paper is organized as follows. Research work related to this paper is highlighted, we review 
the current limitations and the need for new methodology on perceptual contours extraction. Next, we stage by 
stage elaborate our method. In particular, the theory underlying the proposed deformable/rotatable directivity-
probing mask, which can deform and rotate to probe the principal direction over an image region (receptive 
field), is explained with three Hypotheses of human perception and concepts. Following that, extensive empirical 
results including comparisons with mainstream prior arts are provided. Finally, concluding remarks and possible 
future improvements are given.

Related work
Numerous researchers in the past two decades have attempted to detect perceptual contours in various ways. 
Various local methods emerged addressing the issue of efficiency. LSD (Line Segment Detection)22 was one of the 
first approaches to achieve fairly good results using local features. Taking a further  step7,10,11, considered gestalt 
laws for edges grouping in performing the contour depiction. Specifically, Elder and  Goldberg7 employed the 
inferential power of gestalt laws of proximity, continuity, and luminance similarity. They found that these laws 
are approximately uncorrelated, suggesting a simple factorial model for statistical inference. Neurophysiological 
evidence shows that a non-classical receptive field (NCRF) possesses a mechanism, called surround suppression, 
which inhibits the response of a contour edge in the presence of other similar features in the surroundings. To 
simulate NCRF,  Grigorescu10 introduced an inhibition term, which is supposedly high on textures and low on 
isolated edges, to the Canny detector and a Gabor  function5. While such an approach seemingly leads to better 
discrimination between object contours and texture edges than methods solely based on the gradient magnitude, 
it has two drawbacks: first, a phenomenon called self-inhibition occurs, i.e., neighboring pixels and the contour 
edge itself inhibit each other so that the inhibition term is quite high on isolated contours too; second, a param-
eter called “inhibition level” needs to be introduced, whose value is left to heuristics.  Papari11 further enhances 
the texture suppression effect by splitting the surround inhibition. However, as noted  in23 the effectiveness of 
reducing self-inhibition hinges on the assumption there are few textures and meaningless edges around the object 
contour edge. In reality, most natural images usually have many meaningless structures surrounding a target 
object. Another work based on the same assumption, aiming to improve LSD, is the Edge Drawing (ED)12. ED 
works in two steps: (1) computing a set of anchor pixels, and (2) fitting the desired line to connect these anchor 
pixels with a greedy procedure. Despite its real-time operation, because ED performs the edge detection step 
by applying steps of gradient estimation and non-maximum suppression, it is susceptible to noise and hence 
excessive number of fragmented or false contours.
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Other works related to using local statistical gradient  estimation24, overcome challenging problems such as 
line scratch detection in old films. By exploiting first- or second-order derivative  features25,26, studied the mid-
level representation of edges for generalized boundaries detection. Despite these great strides, the produced edges 
often remain noisy or excessively fragmented and therefore cannot be directly used in higher-level applications. 
A probabilistic method proposed  by27 is mainly based on gathering gradient orientations to efficiently depict 
aligned segments in an input image. However, only straight lines are preserved, making the reconstruction of 
curved contours virtually impossible. As another trial of mid-level  representation28, has suggested Shannon 
entropy is more resilient to noises than the previous approaches based on derivatives evaluation of pixel intensity. 
Still, using Shannon entropy alone cannot respond to intensity patterns over the spatial domain, because it only 
involves the overall pixel intensity statistics collected over a fixed receptive filed.

None of the prior efforts is successful in tracking curved contours without incurring excessive fragments, 
textures, and false contours. Furthermore, although the ability to infer psychologically the low-level  features29 
is vital to the success of straight edge detection, they are quite susceptible to noise and interferences. Abundant 
 studies30–32 of human visual system have indicated that information characterizing how successive edge pixels 
respond to intensity patterns (e.g. the contour in Fig. 2a) over the spatial domain must be exploited at the pixel 
level and beyond to tackle the task of extracting contours, especially the curved perceptual contours.

In this study an EM-driven mask is designed, in the context of computational theory of idealized receptive 
fields, to iteratively deform/rotate in search of the principal directions that can be used as grouping cues for 
contour detection. Upon convergence, the likelihood probability of a target pixel being a gestalt edge can be 
evaluated to allow Bayesian decision on whether the target pixel is located on a perceptual contour. Theoreti-
cal analysis of the likelihoods is provided to justify the invoking of Bayesian inference to deduce the posterior 
probability for the target edge pixel. Decision based on the converged likelihoods is proved to coincide with the 
optimality requirement in Bayes rule. All theoretical derivations, qualitative analysis, and parameters updates 
are conducted under the framework of EM-based Bayesian inference. The only simple assumption made here is 
that edges defining the boundary of perceivable objects should spatially align with a principal direction found by 
the converged mask. Accordingly, there is no need for the high complexity of choosing the right boundary gap 
measures from a sea of contour fragments as  in7,8, and no tedious parametric setting is required.

Our method uses solely orientation data for training the EM algorithm, the deformable/rotatable mask enables 
the unsupervised learning of the Shannon probabilistic model of the local directional regularities. As schemati-
cally shown in Fig. 2, the convergent masks (each centered at a gestalt edge, red dot) would be aligned with the 
principal direction of gradients (blue arrows in Fig. 2b), and together they could track in relays the contiguous 
edges of the same contour (Fig. 2c) while suppressing nearby noise and textures. With our method, the edge 
points E and B are too distinctly different in their principal directions, their convergent masks do not overlap, 
they will not be grouped into the same contour. Despite edge points C and D are apart from each other due to 
a falsely detected pixel therebetween, they share high similarity in the principal direction, and may afterwards 
be connected into the same contour. Unlike the NCRF  in10 and the splitting surround inhibition  in11, our mask 
provides an ideal receptive field that is free of the self-inhibition problem and no assumption of few textures/
meaningless edges around the object contour edge is needed. Moreover, as will be seen in Fig. 3, the EM-driven 
scheme can enlarge the effective size of receptive field, making it especially suitable for extracting perceptual 
contours by characterizing how edge pixels respond to intensity patterns over the spatial domain. The deforma-
tion/rotation not only facilitates pixels having the same or similar orientations to be covered by the mask, but also 
help discriminate a target pixel from pixels that have dissimilar gradient orientations, ensuring resilience to noises 
and  interferences28. In contrast to the prior works on perceptual contours, this study provides a unified approach 
that outperforms in tracking curved contours (vs. gestalt-based  methods7,10,11,28), less susceptible to noises (vs. 
gradient-based  methods12,24–27) more interpretable and mathematically rigorous (vs. deep learning  methods13–15), 
lower parameters uncertainty (vs. all prior arts).

The overall contribution of this paper is summarized as follows:

Figure 2.  (a) Principal directions for a set of edges probed by the proposed deformable mask. (b) a set of 
converged masks (c) the corresponding contiguous contour from edge point A to edge point E.
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• Realization of a novel contour extractor capable of producing results in good agreement with gestalt laws, 
without having to perform NP-hard global optimization for an edge-connecting mechanism.

• Introducing a deformable/rotatable sampling mask driven by an unsupervised EM algorithm to create an 
ideal receptive field, which is free of surround suppression and self-inhibition problems.

• Casting the problem of contour detection as a local optimization problem, all theoretical derivations are 
conducted under the framework of EM-based Bayesian inference.

• Physically quantifying two metrics of principal direction and belief thereof, and showing their usage as an 
effective grouping cue for contour detection.

• Using solely orientation data for training the EM algorithm enables the convergent masks to track, in relays, 
the contiguous edges of the same contour while suppressing noise and textures.

Methods
Hypotheses made about human vision. Because many neuroscience and other cognitive sciences pro-
vide merely evidence, laws and explanations of the functioning principles of certain aspects of visual perception 
in the human brain, to benefit from these principles and laws in their implementations on a computer vision 
task, it is necessary to carefully investigate the suitability of theoretical elements before taking them into actual 
design considerations of methodology. In the following discussions, we elaborate on three hypotheses of human 
perception that best fit our needs set forth in the previous sections. One hypothesis regards the biological evi-
dence of receptive fields of cells in the visual cortex, their larger size preference and the sensitivity to image 
orientations have inspired us to devise a deformable mask for probing the principal direction over an enlargeable 
image region. The other two hypotheses have strong connections with the gestalt laws.

Hypothesis-1 is based on the historical finding of  Hubel32 regarding the receptive fields in the visual cortex 
are larger and images for these receptive fields need to have an orientation to excite the cell. They can be tuned to 
different sizes, orientations and even motion directions in the image domain, enabling the visual system to com-
pute invariant image representations at higher levels in the visual hierarchy. Inspired by Hypothesis-1, numerous 
 methods34,35 employed a fixed large sampling mask to determine principal orientations of pixels, yet they failed 
to preserve smoothly varying contours. In this study, we introduce an idealized receptive field, which is not fixed 
in its shape and size and capable of imitating the ability of the human visual cortex to perceive the picnic basket 
in Fig. 1c easily while ignoring the grasses on the ground. Hypothesis-229 states that sensory representations are 
adapted to the local statistics in sensory signals. In the human visual system, sensory signals may simply refer 
to physical illumination and changes of which would cause significant changes in neuronal activity. Luminance 
gradients should encode essential information of a given object at early stages in the visual system. Humans can 
even convert the gradient of neighboring pixels with similar gradient orientations to illusory representations. For 
instance, the Craik-O’Brien-Cornsweet illusion and Müller-Layer  illusion36. Furthermore, it has been  found30 that 
gradients at object contour arguably provide the most fundamental cues to our visual system for identifying the 
edge location of object. Hypothesis-332 states that the human visual system also perceives orientation alignment 
continuity at the pixel level, implying a mechanism different from that of region-based edge detectors must be 
employed by the human visual system to allow the perception of smoothly varying contours.

To understand our design concept, it helps to elaborate on the connection between our method and the above 
hypotheses. Firstly, based on Hypothesis-2, we conjecture that the ability to statistically compile gradients must 
be functionally related to the process involved in detecting continuous edges. In this regard, we thus incorporate 
the gestalt laws of similarity and proximity, which explicitly point out that the resemblance in gradient orienta-
tions of proximal pixels plays an important role in visual perception, into the computational design of the mask 
operation. According to Hypothesis-2, the closer a target pixel is located to its neighboring pixels with similar 
gradient directions, the more likely they together form a set of contiguous edges to become perceivable or even 
illusory patterns. Considering that the gradient vector always points in the direction of the greatest intensity 
change, and the length of it corresponds to the rate of change in that direction, we will use a gradient operator to 

Figure 3.  (a) Receptive field effective enlarged after a repetitive sequence of deform-and-rotate. (b) The 
principal direction found for (a) upon convergence at nth iteration.
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calculate entropy and related probabilistic measures. Furthermore, since image entropy is an inverse indicator of 
direction uniformity, the gradient histogram of sampling pixels is adopted in this work to evaluate the entropy 
and hence likelihoods of the two classes � and � . This is motivated by the intuition that contours correspond 
to image discontinuities, and histograms provide a robust mechanism for modeling the content of an image 
region. Secondly, since a set of neighboring pixels having similar gradient angles might constitute a meaningful 
contour, presumably many such sets nearby should together form a spatially varying pattern over a large recep-
tive field. This, along with Hypothesis-1, inspire us to propose a deformable/rotatable sampling mask. Compared 
to a static mask, such a dynamic mask should be much more effective in finding the pertaining sets of pixels 
because it has a better chance of visiting pixels that are otherwise unreachable, thus ideally enlarging the effec-
tive size of receptive field using a single sampling mask. Lastly, our method evaluates a pair of likelihoods for a 
set of candidate edge pixels (CEP) generated by, in principle, any general edge detectors such as Canny detector, 
Gabor  wavelet4, Sobel operator, etc., or even the combination thereof. In processing a candidate pixel, the mask 
iteratively deforms and rotates in search of the existence of a principal direction that characterizes that most 
important mid-level feature associated with the candidate pixel. We will show that such a direction-aware mask 
evaluates not only the overall orientation alignment among the currently sampled pixels, but also the relation 
between the target and its neighborhoods.

Enlarging the effective receptive field. The deformable/rotatable sampling mask really lies at the heart 
of our localization machinery, as it enables more effective probing of the principal direction by enlarging the 
receptive field. To see this, we use the schematic diagram in Fig. 3 where an exemplar image region containing 
100 arrows is shown, with each arrow representing a pixel gradient direction (i.e., the level-line field  in22). Many 
red arrows at the diagonal area indicate the existence of an image contour having a principal direction of 45°. The 
question is how to effectively and stably locate these pixels and identify the principal direction (i.e., the red line 
in Fig. 3b). Using the center point in Fig. 3a as the target point, we start with a circular sampling mask. Clearly, 
arrows covered by that mask mostly are 90°. As will be derived later, through calculating the likelihood of the 
class (gestalt or non-gestalt) w.r.t the target point, the sampling mask will deform in response to that majority 
angles of 90° at 2nd iteration to become somewhat vertically elongated. Iterating in this way and letting the mask 
deform and align its long axis with the updated principal direction of sampled pixels, the mask will eventually 
stop deforming. Upon convergence in the nth iteration, the converged long axis of the mask coincides with the 
principal direction of 45°. Significantly, due to the elongation and rotation, the actual sampled area (noted by the 
dashed yellow circle) is much greater than that of the initial sampling mask. A larger receptive field allows cap-
turing more spatial context, thus increasing the ability to detect larger and more complex spatial patterns while 
neglecting smaller fragmented edges caused by noises. Entropy calculation within the converged mask allows us 
to assess, in addition to the overall gradient statistics, the similarity degree of a target pixel w.r.t its neighboring 
pixels. The deformation is driven by an EM algorithm especially tailored for adjusting the shape of the mask, and 
it can desirably respond to perceivable patterns and maximize the expectation likelihood w.r.t the target pixel.

In this work, a pair of probabilistic measures ∈[0,1] is defined as the latent variables in the EM algorithm. 
We will formally show how the EM algorithm is trained to iteratively adjust these two measures, which in turn 
control the deformation and rotation of the mask. Upon convergence, the mask optimally aligns with the prin-
cipal direction of the sampled pixels. Also, with the proper arrangement of training data to be detailed below, 
the two measures can serve as the likelihoods for gestalt edges and non-gestalt edges, respectively. In the context 
of Bayesian inference, this allows invoking the Bayes rule to determine whether the target pixel is located on an 
object contour as perceived by humans.

Our method mainly comprises the following steps: First, to generate two feature maps and a set of CEP; 
picking an unprocessed edge pixel from CEP as a target point and subjecting to the EM algorithm to iteratively 
update, using the feature maps as training data, the shape and rotation angle of the sampling mask. Upon conver-
gence, invoking the Bayes  rule37 to determine whether the target pixel is a gestalt edge, if not, it will be removed; 
subjecting the next unprocessed pixel to the EM algorithm until all elements in CEP are processed; finally, the 
remaining (preserved) pixels are outputted as the extracted contours.

Training data for EM algorithm. As in other machine learning algorithms, the EM algorithm requires 
(unlabeled) training data. In this work, two feature maps are generated from the input image, they provide the 
basic low-level features for learning mid-level representation by the EM algorithm. To prepare the training data, 
we may optionally apply a prefilter of low-pass  Gaussian38,39 or median filter to a raw input image to obtain an 
output image Img. Following that, gradients gx and gy are obtained by applying any gradient  operators4 such as 
Sobel, Roberts or Prwitt to Img. We then use the formulas of 

√

g2x + g2y  and arctan
(

gx/gy
)

 to obtain a magnitude 
matrix g and an orientation matrix θ , respectively. Afterward, a normalized gN

(
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)
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all the information needed for evaluating the likelihood p

(

�|x, y
)

 . The likelihood p
(

x, y|�
)

 of � w.r.t the target 
pixel 

(

x, y
)

 is a term chosen to indicate that the class � , for which p
(

x, y|�
)

 is large, is more “likely” to be the true 
class. Our goal is to calculate the posterior p

(

�x, y
)

 using the information evaluated by the EM algorithm. Note 
that p

(

�x, y
)

+ p
(

�|x, y
)

= 1. Shortly we will see that in implementing the EM algorithm, the maps θ τ and θ τ 
can be conveniently used as the probability distributions governing the latent variables p

(

x, y|�
)

 and p
(

x, y|�
)

 , 
respectively. For simplicity, we may use symbols p and p to denote p

(

�|x, y
)

  and p
(

�|x, y
)

 , respectively.

Generating CEP. Considering that gestalt edges must be edges, yet the converse is not necessarily true, it 
would be more computationally efficient to start with a set of CEP pre-identified as edge points, and then screen 
off those non-gestalt edges. As said, one can choose any low-level edge detectors to obtain CEP. However, due 
to its capability of removing spurious responses while preserving weak edges, Canny detector is ideal for use as 
the demonstrative generator of CEP. Besides, we can computationally benefit from the standard Canny detector, 
as its algorithm involves the step of generating gradients information. Unless otherwise specified, the Matlab-
version Canny detector with default settings of dual thresholds ( Ht = 0.2 , Lt = Ht × 0.4 ) and the smoothing 
parameter σ =

√

2 were used.

Evaluating likelihoods under the framework of EM algorithm. One key attribute of this work is to 
cast the implementation of the deformable sampling mask into the framework of an EM  algorithm40, especially 
the mask is driven by the EM algorithm to deform and rotate for probing the existence of a principal direction. 
The EM algorithm is really at the bottom of the many unsupervised algorithms in the field of machine learn-
ing. It is often used as an iterative method for solving chicken-and-egg problems by finding out the maximum 
likelihood or maximum a posteriori (MAP) estimates of unknown parameters in statistical models. These mod-
els depend on unobserved latent variables, i.e., variables not directly observable yet can be inferred from the 
observable data. The algorithm alternates between an expectation phase (E-phase) and a maximization phase 
(M-phase) until convergence. The E-step estimates the expected values of the hidden variables given the current 
values of the shape parameters and the observed data. The M-step then uses these expected values to find the set 
of parameters that maximize the likelihood of the data.

In this work, likelihoods p and p are treated as latent variables, they can be evaluated from the observable data 
θ τ and θ τ . The flowchart of evaluating likelihood values for a target pixel is shown in Fig. 4, where the value of the 
long axis L and the short axis W of a sampling mask are treated as the unknown parameters. Note that in princi-
ple the shape of the sampling mask is not limited, just like the structure element in morphological  operations4. 
Here we only use a rectangular mask for explanation purpose. Other shapes such as ellipse will generally work 
fine, and derivations of parameters are alike. One just needs to replace length and width with semi-major and 
semi-minor axes in case of using an elliptical mask. As will be proved later, a well-defined objective function 
will converge to maximize the likelihood s . The E-phase creates a function for the expectation of the likelihood 
values using the present estimate for the parameters L and W, whereas the M-phase computes new values of L 
and W that maximize the expected likelihood evaluated on the E-phase.

Initialization: Define an initial mask Mt=0 centered at a target pixel 
(

x, y
)

 picked from CEP. For ordi-
nary image size smaller than 1024*1024, Lt=0 and Wt=0 are set to 7. The initial mask size should prop-
erly increase with the Image resolution greater than 1024. Also, denote Bn as the total number of bins, set 
pt=0

= pt=0
= 0,  Bn = L×W . There is another mask Mt for sampling θ τ , yet we will only focus on elaborations 

of Mt for brevity.

Figure 4.  Flowchart of computing likelihood values for a target edge point.
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Step(a): Set t = t + 1. refer to Fig. 4, elements in  θ τ and θ τ sampled by the mask are the observable data useful 
for constructing a histogram of gradient orientation, wherein hti

(

x, y
)

 and hti
(

x, y
)

 represent the ith bin height 
for the sampled elements in θ τ and θ τ , respectively. Also, denote htT

(

x, y
)

and htT
(

x, y
)

 as the bins associated 
with the target pixel in θ τ and θ τ , respectively. In particular, htmax

(

x, y
)

 and htmin

(

x, y
)

 are the highest and low-
est bins among all bins sampled by the mask. Step(a) in conjunction with Step(b) correspond to the E-phase of 
EM algorithm.

Step(b): Update the likelihood p and p using Eqs. (1a) and (1b), respectively

where the second term on the RHS of Eq. (1a) and (1b) is defined as non-uniformity or directivity. A larger 
value of  

[

HBn
max −Ht

(

x, y
)]

 implies a higher chance of having a peak in the gradient histogram, i.e., a principal 
direction. The parameter α is defined as htT

(

x, y
)

/htmax

(

x, y
)

, it weights the belief on the non-uniformity from 
the perspective of the target pixel. Likewise, β in Eq. (1b) is defined as htmin

(

x, y
)

/h
t
T

(

x, y
)

 . Clearly, 0 ≤ α,β ≤ 1 . 
HBn

max given in Eq. (3) represents the upper bound of entropy defined by Mt , and Ht
(

x, y
)

 equals HBn
max only 

when all bins are equal in height. At this stage, one should be able to see that due to the NMS-like random 
assignment in preparing θ τ and θ τ , the gradient histogram of pixels covered by Mt in a sense serve to simulate 
the local distribution of  � or � . Later we will elaborate why the convergent likelihood pc

(

x, y|�
)

 or simply pc 
can plausibly represent the estimated probability of observing the target pixel 

(

x, y
)

 given the condition that it 
is from the gestalt class � . That is, the larger pt is, the more likely the pixel is located on a gestalt contour. The 
goal is to maximize pt by alternatively updating the unknown parameters Lt and Wt . That is, although pt is not 
directly observable, it can be inferred from hti

(

x, y
)

 using Eqs. (1a) and (2a).
Step(c): This step and Step(d) form the M-phase in the EM algorithm. Let  r =

√

Bn , L and W are updated as:

Step(d): If Wt
= Wt−1 , convergence reached, stop and output the convergent likelihoods; else, go to Step(e).

Step(e): Deform and rotate the mask Mt , go to Step(a).
Iterate Step(a) through Step(e) until convergence.
The rationality for the update Eq. (4) is explained as follows. The floor function and the ceiling function are 

used to ensure to ensure the updated integer value of W fall within the desirable range [1, ⌈r⌉] . Equation (4) is 
designed in such a way to ensure that when pt≧pt−1, which represents more pixels covered by the mask are 
directionally in line with the target pixel and hence possibly form a principal direction, the width W should 
become smaller. Thus, if pt≧pt−1 , then the new value of W should take on the floor integer, so as to make the 
mask elongate by Eq. (5), enabling the mask to further align with the principal direction. Conversely, when 
pt < pt−1, W should become larger. Iterating in this way, the mid-level feature of principal direction associated 
with a contour can be found upon convergence. Also, with r =

√

Bn and Bn = L×W and the inequality crite-
ria set forth by Eqs. (4) and (5), it is easy to prove that the lower and upper bounds of W and L are  (1, ⌈r⌉) and 
(⌊r⌋,Bn) , respectively. This updating process is schematically shown in Fig. 5, where an initial square Mt deforms 
to explore the existence of a principal direction in the local region surrounding the target pixel (x, y). Figure 5a 
shows an initial Mt=0 with L = 4 , W = 4 . After the 1st iteration, the sampling mask driven by the EM algorithm 
deforms (see Fig. 5b) in response to the more zero-degree gradients (red line fields). After the 2nd iteration, as can 
be seen in Fig. 5c Mt was further elongated ( L = 8 , W = 2 ) in response to the more pixels directionally in line 

(1a)pt = α ×

[

HBn
max −Ht

(

x, y
)

HBn
max

]

,

(1b)pt = β ×

[

H
t(
x, y

)

HBn
max

]

,

(2a)H
t
(

x, y
)

= −

Bn
∑

i=1

hti
(

x, y
)

× log
(

hti
(

x, y
))

,

(2b)H
t(
x, y

)

= −

Bn
∑

i=1

h
t
i

(

x, y
)

× log
(

h
t
i

(

x, y
)

)

,

(3)H
Bn
max = − log

(

1

Bn

)

,

(4)Wt
=







�

r ∗ (1− pt)
�

, if pt≧pt−1 and
�

r ∗ (1− pt)
�

> 1
�

r ∗ (1− pt)
�

, if pt < pt−1 and
�

r ∗ (1− pt)
�

> 1

1, otherwise

(5)Lt =
Bn
Wt
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with the target pixel covered by the updated mask in Fig. 5b. Through such a direction-aware sampling scheme, 
our method can automatically find out proximal pixels that share identical or similar gradient orientations with 
the target pixel. As will be proved later, our method ensures the maximal likelihood upon convergence. In the 
context of Bayesian inference, the sampling mask deforms iteratively to enhance the belief in the likelihood, it 
will eventually cover neighboring pixels from which the maximum likelihood estimation of pt can be obtained. 
During the iteration, the mask may rotate, and its shape will become narrower (wider) in response to a greater 
(smaller) likelihood. Such deformation not only facilitates pixels having the same or similar orientations to be 
covered by Mt , but also help discriminate a target pixel from pixels that have dissimilar gradient orientations, 
thus helping suppress noise and textures. This can be seen by comparing Fig. 6b,c, wherein the two target pixels 
(red box) in them are located in the same local area and hence has the same Shannon statistic (non-uniformity). 
But the small value of α in Fig. 6b guarantees a small likelihood, whereas the large value of α in Fig. 6c results in 
a high likelihood. This is why our method can suppress noise and texture effectively. Also, since both parameters 
α and non-uniformity are solely derived from angle data, the likelihood p is irrelevant to the gradient magnitude, 
thus enabling our method to effectively detect low-contrast contours as well.

The objective function and stability analysis. Considering that MSE (Mean Squared Error) is 
always  convex  on its input and parameters by itself, in order to prove the stability of the iterative sampling 
scheme, we can conveniently prescribe an objective (Lyapunov) function Et

(

x, y
)

 in the context of MSE between 
the new and old values of W as in Eq. (6)

And the stability analysis is cast into a convex optimization problem, the derivative of Et
(

x, y
)

 w.r.t the target 
pixel pt

(

x, y
)

 is calculated as in Eq. (7)

where �pt
(

x, y
)

= p
(

x, y
)t

− p
(

x, y
)t−1 . According to Eq. (4),

if �pt
(

x, y
)

≧0, thenWt  will take on the floor value of r∗(1− pt
(

x, y
)

) , ensuring the term 
[

Wt
− r∗(1− pt

(

x, y
)

)
]

< 0 , thus �Et
(

x, y
)

≤ 0.

If �pt
(

x, y
)

< 0, thenWt  will take on the ceiling value of r∗(1− pt(x, y)), ensuring the term 
[

Wt
− r∗(1− pt

(

x, y
)

)
]

> 0 , thus �Et
(

x, y
)

< 0.

In short, �Et
(

x, y
)

 is never positive. Thus, iteratively updating Lt and Wt with Eqs. (4) and (5) guarantees at 
least a local minimum convergence of Et . To see the rationale here, we denote the aspect ratio  ∧t

= Lt/Wt and 
assume Et

(

x, y
)

= 0, i.e., Wt
= r × (1− pt

(

x, y
)

). In an extreme case, if pt
(

x, y
)

→ 1, then Wt
→ 0 , meaning 

(6)Et
(

x, y
)

=

1

n{CEP}

∑

(x,y)∈CEP

[

Wt
− r∗(1− pt

(

x, y
)

)
]2

(7)�Et
(

x, y
)

= 2r ×
[

Wt
− r∗(1− pt

(

x, y
)]

�pt
(

x, y
)

Figure 5.  (a) L = 4,W = 4 . (b) L = 5,W = 3.2(discretized to 3). (c) L = 8,W = 2.

Figure 6.  The likelihood value is different as local image regularities vary. (a) p = 0, the target pixel cannot be a 
Gestalt edge. (b) p = 0.17, a rather low likelihood, the target pixel is unlikely a Gestalt edge, could be a noise. (c) 
p = 0.88, the target pixel is very likely a Gestalt edge. (d) p = 1, perfect likelihood, the target pixel is undoubtedly 
a Gestalt edge.
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the sampling mask has the highest aspect ratio, strongly indicating the existence of a principal direction. Con-
versely, if pt

(

x, y
)

→ 0 , then Wt
→ r and ∧t

→ 1 , meaning a rectangular sampling mask and hence no existence 
of a principal direction. Finally, since r is a constant and r2 = Lt ×Wt , when Lt is updated to become more 
in line with an existing principal direction, the value of pt

(

x, y
)

 also gets larger. In short, through alternatively 
updating the parameters Lt or Wt , the EM algorithm guarantees to find a principal direction that, if it does exist, 
provides sufficient evidence of a target edge being located on an object contour.

Qualitative analysis on the likelihood. For brevity, we only use (1a) as an illustrative example to explain 
the rationale of Eqs. (1a) and (1b). We start by noting that the entropy Ht

(

x, y
)

 calculated using Eq. (2) inversely 
stands for the orientation resemblance between the pixels covered by Mt . Using ht

(

x, y
)

 to compute Ht
(

x, y
)

 
allows to conveniently evaluate the orientation resemblance within Mt . Without the deformation scheme, Ht 
would merely account for image entropy surrounding the target pixel. Namely, a larger Ht

(

x, y
)

 represents a 
more uniform distribution in ht

(

x, y
)

 , hence it will be less likely to see a principal direction. Because the exist-
ence of principal direction is a necessary condition for � to be the true class for the target pixel 

(

x, y
)

 , it seems 
quite reasonable to define the likelihood, or class-conditional probability, for the class �  w.r.t the target pixel 
(

x, y
)

 as

However, human visual perception is quite a complicated task, using Ht
(

x, y
)

 alone is inadequate to accurately 
measure the likelihood for the target pixel. This can be seen by comparing Fig. 6b,c, where both have the same 
value of Ht

(

x, y
)

 , but clearly the target pixel in Fig. 6c should be more likely a gestalt edge. Considering this, a 
bias term Ht

bias

(

x, y
)

 is included as a compensating factor. We rewrite pt of Eq. (8) as

where the effective entropy Ht
Ef

(

x, y
)

 = Ht
(

x, y
)

+H
t
bias

(

x, y
)

 . According to Hypothesis-2, orientation similari-
ties provide the cue for forming smooth contours, that is why we use the parameter α = htT

(

x, y
)

/htmax

(

x, y
)

 
to specifically take account of the local bin strength of the target pixel relative to the highest bin (i.e., principal 
direction). Given the non-uniformity 

[

HBn
max −H

(

x, y
)]

 , the bias term is prescribed as follow

With such a design, given the same value of 
[

HBn
max −Ht

(

x, y
)]

, a smaller α tends to reduce the belief for the 
target pixel of Fig. 6b by adding more bias prescribed in Eq. (10). Conversely, a greater α tends to keep the more 
original entropy Ht

(

x, y
)

 intact by allowing less bias added to the receptive field in Fig. 6c. By plugging Eq. (10) 
into Eq. (9), we readily obtain Eq. (1a).

Finally, it is interesting to note: (i) for one extreme case shown in Fig. 6a where Ht
= HBn

max , soH
t
bias = 0 , 

according to Eq. (8), pt = 0 ; (ii) for another extreme case shown in Fig. 6d, because α = 1,Ht
bias = 0, again, 

Eq. (9) is reduced to Eq. (8), due to Ht
= 0 when pt = 1 by Eq. (1a), a smaller Ht represents a better chance to 

see a principal direction. However, the non-uniformity 
[

1−Ht
(

x, y
)

/HBn
max

]

 statistically assess how centralized 
the gradient orientations are distributed over the sampled region, that is, it evaluates the chance of observing a 
principal direction formed by proximal pixels. To comply with both the laws of proximity and similarity, a com-
plete definition for the likelihood should also consider the local information about how similar the target pixel 
is to the principal direction. This is exactly the role the belief parameter α  plays in Eq. (1a). Given the fact that 
α specifically considers the gradient similarity between the target pixel and the principal direction, multiplying 
α by the non-uniformity value would plausibly yield a weighted belief on how likely the class � is truly gestalt. 
Because 0 ≤ Ht

(

x, y
)

/HBn
max ≤ 1 and 0 ≤ α ≤ 1 , pt always falls in the range of [0,1]. If p

(

x, y|�
)

 is large, it means 
the class � is more “likely” truly a gestalt class, and the probability of the target pixel being located on a gestalt 
contour should be high. Thus, parameter pt serves as a probabilistic measurement of how likely the target pixel 
(

x, y
)

∈ � . Likewise, it can be easily shown that 0 ≤ pt ≤ 1.
Figure 6b shows a converged mask centered at a target pixel (enclosed by a square) with a gradient orienta-

tion represented by the symbol (↑). Among the total 18 pixels, only three of them are ↑, yielding htT
(

x, y
)

= 3 
and htmax

(

x, y
)

= 15 , hence α = 0.2 . In contrast, Fig. 6c shows a converged mask centered at a target pixel with 
direction → , thus htT

(

x, y
)

= htmax

(

x, y
)

 = 15, yielding the highest similarity α = 1 . Interestingly, Fig. 6b,c have 
the same histogram distribution, yet their converged masks look quite different. For the target pixel in Fig. 6c, 
p = 0.885, which is a lot greater than that (0.178) in Fig. 6b. These computing results are consistent with human 
perception. They clearly show, by taking the target pixel as CRF and its surrounding pixels as NCRF respectively, 
that the parameter α can effectively suppress the impact of self-inhibition10, even given the same local distribu-
tions in the gradient orientations.

The significance of large p values in Fig. 6c,d is that given the target pixel 
(

x, y
)

∈ � , the chance of observing 
such orientation distributions should be high. Conversely, if a target pixel 

(

x, y
)

∈ � , then it is very unlikely to 
observe orientation distributions as shown in Fig. 6a,b. Therefore, based on the above simple calculations, a mask 

(8)pt
(

x, y|�
)

= 1−
Ht

(

x, y
)

HBn
max

(9)pt = 1−

{

H
t
Ef

(

x, y
)

HBn
max

}

= 1−

{

H
(

x, y
)

+H
t
bias

(

x, y
)

HBn
max

}

,

(10)H
t
bias

(

x, y
)

= (1− α)∗
[

H
Bn
max −H

t
(

x, y
)]



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12309  | https://doi.org/10.1038/s41598-022-16040-6

www.nature.com/scientificreports/

deformed according to Eqs. (4) and (5) indeed is effective for evaluating the likelihood of observing a gestalt pixel. 
Although the target pixel in Fig. 6b satisfies the proximity law, i.e., the tendency to group pixels (covered by the 
same converged mask) into a meaningful identity, its small α indicates the target pixel is rather dissimilar to the 
principal direction. Contrasting to Fig. 6b, the target pixel in Fig. 6c satisfies requirements of both proximity 
and similarity, and it has a large p value, in response, the mask deformed into a more elongated shape than that 
in Fig. 6b. In short, comparing Fig. 6b with Fig. 6c justifies our claim that the direction-aware mask can exploit 
both local similarity (via α ) and spatial proximity (via the non-uniformity).

Pixel classification using Bayes rule. In this work, the binary classification predictive problem is framed 
as a conditional probability model. Because an object contour normally contains a set of edges having high 
gradient magnitude, gN can be taken as the prior probability distribution for � . With the convergent likelihood 
for the target pixel 

(

x, y
)

 being located on a perceptual contour, pc
(

x, y|�
)

 is the probability of observing the 
event hc

(

x, y
)

 given the condition that the target pixel 
(

x, y
)

∈ � . Also, pc is now formally written as pc
(

x, y|�
)

, 
namely the likelihood for the target pixel 

(

x, y
)

 being located on a non-perceptual contour. According to Bayes 
theorem, the posterior probabilities p

(

�|x, y
)

 and p
(

�|x, y
)

 are approximated respectively as in Eq. (11a) and 
(11b), respectively.

The decision on whether the target edge pixel is on a gestalt edge can be made in various ways, e.g., if 
p
(

�|x, y
)

> p
(

�|x, y
)

 , the target pixel is a gestalt edge. Here, we use the following rule: if p
(

�|x, y
)

≧k , 
0.4 ≤ k ≤ 0.9 , then the target pixel is classified as a gestalt edge. Moreover, we can mark any pixels ( x′, y′ ) 
covered by the converged mask as gestalt edges, too, provided they satisfy the condition ht

(

x′, y′
)

= ht
(

x, y
)

 , 
i.e., the two points ( x′, y′ ) and ( x, y ) are aligned on a line or curve, resulting in good agreement with the gestalt 
law of continuity, As such, a certain portion of edge pixels in CEP may be simply skipped by the EM algorithm 
due to such automatic labeling. In this context, the principal direction htmax acts as a cue for instantly grouping 
proximal pixels into the same contour. Empirical test on datasets of RUG 10 and  BSDS8 shows that roughly 15% 
of the total pixels in CEP fall into this category. This time-saving property makes our method different  from10 
where the tangent vector for each pixel needs to be separately calculated. Note that the parameter k corresponds 
to the confidence threshold used in plotting the ROC curve for evaluating the performance of a general classifier. 
After all pixels in CEP have been classified, they together form the final contours.
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(
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(
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×

(
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(
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(
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(
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Figure 7.  (a) A complex nature image. (b) Contours extracted by LSD. (c) Contours extracted by our method 
using Canny’s CEP. (d) CEP generated by Canny detector ( Ht = 0.2) . (e) CEP generated by (Gabor + Canny). (f) 
Contours by our method using CEP of (e).
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Results
Extensive experiments were conducted, qualitative and quantitative characterizations thereof are provided to 
verify the effectiveness of our method. Unless otherwise specified, ( Ht , k) = (0.2, 0.5). Bn  is set to one-fourth the 
sampling mask. All experiments were coded with Matlab and executed by Intel i7 8700 CPU and 32 GB RAM. 
Although the proposed deformable mask operates analogously to the convolution operation employed in Canny 
detector in that sense that our mask also processes pixels of CEP one by one, it does not scan pixels sequentially all 
over the image plane due to the random dynamics of EM-algorithm. Besides, the total number of pixels of which 
is not fixed, so the convolution theorem unfortunately cannot apply here to reduce the computation complexity 
from O(n2) to n ∗ log(O(n)) , where n is the 2D image size.

Preserving smoothly varying contours. Using Fig. 7a as the test image, Fig. 7b,c show detection results 
of  LSD22 and ours, respectively. Clearly, our method can better preserve smoothly varying or curved contours. 
the method produced many straight and disconnected stripes contours on the Zebra’s back. Note our method 
is highly flexible in the sense that it is not limited to the use of Canny as the CEP generator. It is interesting to 
see how our method performs when using other CEP generators. Fig. 7f is the detection result from using the 
combined outputs of Canny and Gabor wavelet, the two images of which are shown in Fig. 7d,e for comparison. 
Clearly, much more smoothly varying(curved) contours can be preserved than those by any of Fig. 7b–e. To see 
the effect of prefilters on the performance of our method, Fig. 8c through Fig. 8e pictorially show the detection 
results of using Gaussian  filter38, adaptive Gaussian  filter39, and median filter as the prefilter, respectively. By 
comparing with the ground truth, we see that the Gaussian filter has the best qualitative performance, especially 
in preserving the true edges in many parts of the golf cart, such as tires, steering wheel, and roof support poles. 
However, unlike in Fig. 7, it is difficult to give a quantitative and objective judgment on which detection result is 
the best in terms of the entire picture. Thus, we need more reliable metrics to quantitatively measure the quality 
of detection results, i.e., quantifying the (dis)similarity between detected pixels (DP) and ground truth (GT).

Performance metrics. Three widely used metrics are explained as follows. Firstly, the Pratt’s FoM (figure 
of merit) is defined as

where d
(

x, y
)

 represents a distance transform measure, and the scale parameter d0 controls the sensitivity of FoM 
to differences between GT and DP. Although FoM does not require exact spatial matching between the detected 
pixels (DP) and those of GT, it provides no information about the origin of the dissimilarity: false positives 
(FP) and false negatives (FN). To solve this problem, another  approach41 is to use EQ (edge quality) and MQ 
(map quality), where EQ = n{GT ∩ DP}/n{DP} and MQ = n{GT ∩ DP}/{n{GT} + n{FP}} . Thus, EQ and MQ 
measure the fraction of true positives TP = GT ∩ DP with respect to the number of all detected pixels and the 
number of {GT+ FP} , respectively. EQ corresponds to the Precision rate. Also, if MQ is slightly modified into

1

max(n{DP}; n{GT})

∑

(x,y)∈DP.

1

1+
[

d(x,y)
d0

]2
,

(12)MQ =

n{TP}

n{TP} + 0.5× (n{FP} + n{FN})

Figure 8.  (a) Input image. (b) Ground Truth (c) Gaussian prefilter, (MQ, EQ, FoM) = (0.87, 0.84, 0.80). (d) 
Adaptive gaussian prefilter as prefilter, (MQ, EQ, FoM) = 0.86, 0.82, 0.78). (e) Median prefilter, (MQ, EQ, 
FoM) = (0.85, 0.85, 0.65).

Table 1.  Performance comparisons of different methods, d0=1.

Ours 8 12 Canny 11 10

MQ 0.66 0.61 0.59 0.55 0.38 0.33

EQ 0.75 0.70 0.70 0.62 0.35 0.32

FoM 0.64 0.61 0.60 0.54 0.39 0.33
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then Eq. (12) become the well-known F1-score that takes both FP and FN into account in evaluating classi-
fiers. Either way, because the missed pixels FN are also counted, MQ is used to amend the drawback of EQ in 
measuring the quality of edges produced. To see this, assume that the detected pixels DP only comprises a very 
small number of both wrong and correct edges, EQ will measure a false ratio of one. However, due to a possible 
displacement error δ of the hand-sketch contours in GT with respect to their exact positions in the input image, 
the set TP can be empty even in the total absence of false positive and false negative. Therefore, in practice, one 
would simply replace TP with pixels of DP as long as whose distance from GT is no greater than 5 pixels, i.e., the 
scale parameter d0 = 1, 2,…5. As in FoM, the parameter d0 controls the sensitivity of EQ and MQ to the difference 
between GT and DP. A larger value of d0 means a greater tolerance of difference between GT and DC. Comparing 
the values of (MQ, EQ, FoM) of Fig. 8b–d shows that using a Gaussian prefilter yields the best detection result. 
Except for rare cases (e.g., Figs. 13 and 14), our study showed that using a Gaussian prefilter generally produces 
better detection contours than otherwise.

Test on open dataset. The Contour Image Database RUG 10 comprising 40 grey images is ideally suf-
ficient for evaluating human perceived contours. We compared our method with  Grigorescu10,  Papari11, Edge 
 Drawing12, and Canny detector. All these five detectors exploit gradient information for various purposes. With 
d0 = 1 (the most strict tolerance), Table 1 lists the averaged MQ, EQ, and FoM over the 40 images. Our method 
not only outperforms others but achieved the most balanced performance (i.e., least difference between MQ and 
EQ). Here, MQ corresponds to the ODS (rather than OIS.) F-score, with ODS (optimal dataset scale) employ-
ing fixed thresholds for all images in a dataset, whereas OIS (optimal image scale) selecting a set of optimal 
thresholds for each image. Analysis based on definitions of MQ and EQ provides some interesting observations. 
Firstly, if MQ ≈ EQ, then n(FP)≈ n(FN), which is desired property, Because if MQ ≈ EQ, then it can be proved 
that when MQ≧0.5, n(TP)≈ n(FP)≈ n(FN), with n(DP)= n(TP)+ n(FP), DP must be at least half coinciding 
with GT Thus, the conditions of MQ ≈ EQ and MQ > 0.5 ensure at least half of GT present in the output quality. 
We called this the Half-GT point. Secondly, the inferior EQ performance in Canny detector indicates it tends to 
produce much more falsely detected pixels (FP) than missed pixels (FN), i.e., FP >> FN Thirdly, the better MQ 
performance over the Canny detector reveals that our method indeed can screen off the falsely detected pixels 
(FP) generated by Canny detector.

By varying Ht from 0.1 to 0.9, Fig. 9a–c show the averaged values of MQ, EQ, and FoM for k = 0.5, 0.6, 0.7 , 
respectively. The lightly colored mask in Fig. 9b indicates a working zone, the center of which is the Half-GT 

Figure 9.  Performance indicators for (a)k = 0.4 , (b)k = 0.5 , (c)k = 0.6 , (d)Ht = 0.2.
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point. Outside the colored mask, |MQ− EQ| is greater than 0.2, it means either the set TP contains too few pixels 
or FP and FN are not neglectable, and the detection result should not be taken seriously. This rule-of-thumb is 
useful in judging the quality of detection results. For example, given Ht > 0.3 and k > 0.5 , EQ increases rapidly 
with MQ and FoM dropping quickly. This is because if Ht is getting larger, then more and more high-frequency 
pixels would be strongly smoothed out by Canny detector, leaving very few pixels in CEP and making the high 
EQ even less informative. With Ht fixed at 0.2, Fig. 9d shows the averaged (MQ, EQ, FoM) for k varying from 0.1 
to 0.9. We see that the Half-GT point was reached at k = 0.5 . This is significant, as the setting of k = 0.5 coincides 
with the optimality requirement in Bayes rule: namely, if pc

(

�x, y
)

≧0.5 , the decision favors the class � , and the 
error risk p

(

error|x, y
)

 is readily minimized as min
[

pC
(

�|x, y
)

, pC
(

x, y|�
)]

 . With Ht properly set, if a too large 
k is used, then Eq. (11) will falsely classify excessive pixels as the class �(i.e. FN increases rapidly), resulting in 
a large discrepancy between EQ and MQ. Figure 10 pictorially compares the results of applying our method to 
Fig. 8a using k = 0.5 and k = 0.9 , respectively. Close-ups are provided, we see that k = 0.9 yields a high EQ and 
a much smaller MQ. To further characterize, we define a parameter of screening rate

Figure 10.  (a) k = 0.5, (MQ, EQ, FoM) = ( 0.87, 0.84, 0.80). (b) Close-up for the encircled area in (a). (c) k = 
0.9, (MQ, EQ, FoM) = (0.55, 0.87, 0.45). (d) Close-up for the encircled area in (c).

Figure 11.  PR Curves of our method using initial mask size of 7*7 and 5*5. Yellow curve is for Canny detector.

Table 2.  Performance of using Median prefilter (RUG dataset), k = 0.5.

MQ EQ FoM Average sR Card(CEP)

Canny (Ht = 0.3) 0.61 0.83 0.58 23% 7116

Canny (Ht = 0.2) 0.66 0.75 0.64 39% 13,386

Canny (Ht = 0.1) 0.62 0.59 0.53 49% 26,160
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sR% represents the percentage of CEP that were originally detected by Canny detector as TP, but identified 
as FP by our method and would be removed. Using RUG as the test dataset, Fig. 11 depicts the PR curves for 
our methods and Canny detector. Also shown is the corresponding sR% for each different combination of (P, R), 
with the average 31% in screening rate, justifying the effectiveness of our method. These results show that our 
method performs nearly the same when using initial mask size of 5*5 or 7*7.

In Table 2, the total number of edge pixels in CEP increases almost three times by decreasing Ht from 0.3 to 
0.1, and sR% goes up from 81 to 91%. Clearly, the total computation time required to process an input image 

(13)sR =

n(CEP − DT)

n(CEP)
%

Figure 12.  (a) Input image corrupted by Gaussian noise. (b) GT. (c) CEP generated by Canny detector 
( Ht = 0.01) , used as candidate pixels for (d–f), (d) Without prefilter, (MQ, EQ, FoM, sR) = (0.92, 0.85, 0.81, 
74%). (e) Gaussian filter as prefilter, (MQ, EQ, FoM, sR) = ( 0.92, 0.85, 0.81, 74%). (f) Median filter as prefilter, 
(MQ, EQ, FoM, sR) = (0.72, 0.81, 0.81, 72%).

Figure 13.  (a) Image corrupted by Gaussian noise(variance = 0.01). (b) Gaussian prefilter applied to (a), (MQ, 
EQ, FoM, sR) = (0.78, 0.92, 0.92, sR = 22%). (c) Median prefilter applied to (a), (MQ, EQ, FoM, sR) = (0.73, 0.91, 
0.83, 16%). (d) image corrupted by impulsive noise (10%). (e) Gaussian prefilter applied to (d), (MQ, EQ, FoM, 
sR) = (0.64, 0.56, 0.56, 51%). (f) Median prefilter applied to (d), (MQ, EQ, FoM, sR) = (0.74, 0.90, 0.85, 10%).
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varies with the value of Ht . A greater Ht usually leads to fewer candidate pixels and less computation time, but it 
may adversely result in excessive FNs. Considering the recent rapid advancement in parallel computing hardware 
such as GPU, it is the computation time per pixel that really concerns us. Currently, using Matlab code executed 
in i7-8700 CPU, it takes our method 0.3 ms to process a pixel. In terms of computation load profile, 70% of com-
puting resource was consumed by the iterative EM algorithm, and the rest 30% is taken up the prefilter, training 
data preparation, and Canny detection.

Robustness to CEP failure, noises, and interferences. One may wonder how our method performs if 
the CEP generator fails. We intentionally set Ht to nearly zero to simulate the poor thresholding in Canny detec-
tor. Using Fig. 12a as the test input image, Fig. 12b,c show the GT and excessive fragments produced by such a 
crippled CEP generator, respectively. Figure 12d–f show the results of using no prefilter, Gaussian prefilter, and 
median prefilter, respectively. They all achieved MQ > 0.72 and sR > 70%, indicating that our method has strong 
discriminating power, despite that the CEP contains nearly the Sobel output. They also justify that our method is 
robust to system faults such as a failure prefilter and/or non-functioning CEP generators.

Next, we added Gaussian and impulsive noises to the image of Fig. 12a and turned it into the test input 
images shown in Fig. 13a,d, respectively. For Fig. 13d, the results of using Gaussian prefilter and median prefilter 
are shown in Fig. 13b,c, respectively. For Fig. 13d, the corresponding detection results are shown in Fig. 13e,f, 
respectively. Based on three metrics, our method generally can preserve salient contours of objects in the presence 
of either gaussian or impulsive noises. Still, the result of Fig. 13b is better than that of Fig. 13c, and the result of 
Fig. 13e is inferior to that of Fig. 13f. This says, in order to obtain the best output contour, a right choice of the 
prefilter helps deal with a particular kind of noise. In contrast to Fig. 13a where the bird’s body contains lots of 
noises and textures, they can be effectively removed by our method, as shown in Fig. 13f.

A more challenging test is shown in Fig. 14a, where a car is running under very bad weather. The optimal 
parameter setting ( k = 0.5,Ht = 0.2 ) was used. Figure 14c,d show the detection results when tested with Gauss-
ian and median prefilters, respectively. As the raindrops are more like impulsive noises, the median prefilter 
yields a better detection result. Our method is robust as if the rains do not cause severe interferences, contours 
of the car, street light poles, and bridge were all well preserved. For comparison, the contour extraction results 
of RCF, HED are shown in Fig. 14e,f, respectively. As can be seen, there is a widening tendency in the width of 
edges generated by deep learning methods of HED and RCF, such thickening phenomenon will not happen in 
an edge-oriented approach like ours. In some applications such as medical image diagnostic where edge locat-
ing precision may be required to single pixel scale, such coarse contours output certainly is not desirable. Also, 

Figure 14.  (a) Input image obscured by rains. (b) GT (contours perceived by human). (c) Gaussian prefilter, 
(MQ, EQ, FoM) = (0.67, 0.60, 0.60). (d) our method, (MQ, EQ, FoM) = (0.69, 0.89, 0.53). (e) RCF, (MQ, EQ, 
FoM) = (0.60, 0.50, 0.50). (f) HED, (MQ, EQ, FoM) = (0.49, 0.48, 0.48).

Table 3.  Performance Comparison using BSDS500 dataset, d0=1.

Ours k = 0.5 Canny Ht = 0.2 RCF HED

MQ 0.76 0.57 0.53 0.62

EQ 0.69 0.44 0.61 0.59

FoM 0.61 0.38 0.53 0.57
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low-contrast objects, e.g. the 3rd , 4th, and 5th light poles were not preserved well by RCF, in comparison to ours 
(red arrows in Fig. 14d). The right half portion and light poles were completely missing in the output of HED. 
Also, in terms of (MQ, EQ, FoM), our method achieved (0.69, 0.89, 0.53), which outperforms RCF’s (0.60, 0.50, 
0.50) and HED’s (0.49, 0.48, 0.48). With d0 = 1, Table 3 compares the performance of HED, RCF, Canny detector, 
and our method using  BSDS5008 which is a large benchmark dataset for evaluating object segmentation. Note 
that due to the nature of image-to-image transform, output results of HED and RCF are inherently grey images 
(not binary images as normally seen in other contour detectors), we have to convert them into binary images 
using Canny detector before calculating the values of (MQ, EQ, FoM).

Discussions
Some observation highlights of the presented experimental results are summarized as follows. Our method 
requires no tedious parametric settings, a simple combination ( k = 0.5, Ht = 0.2) generally yields quality contours 
with MQ > 0.5 and |MQ− EQ| < 0.2 . Also, we have shown the setting of k = 0.5 coincides with the optimal-
ity requirement in the Bayes rule. All these claims have been justified by the experimental results, showing our 
method outperforms other gradient-based detectors. Quantitative and qualitative characterizations on EQ/MQ/
FoM indicators have helped devise criteria for performing objective judgment on the validity of pixelwise contour 
extraction results. Our method requires no tedious parametric settings, with τ being set to median or mean of 
elements in the quantized matrix θ , a simple combination ( Lt=0 = 7, Wt=0 = 7, k = 0.5, Ht = 0.2) generally yields 
quality contours with MQ > 0.5 and |MQ− EQ| < 0.2 . Also, we have shown the setting of k = 0.5 coincides 
with the optimality requirement in the Bayes rule.

The proposed bio-inspired method is robust even in case of non-functioning CEP generators and failures 
of prefilters, and it is resilient to noises and textures which can be suppressed by: (1) the prefilter, (2) the NMS 
imposed on the quantized orientation data in θ τ and θ τ , or (3) the deformable mask that helps discriminate a 
target pixel from neighboring pixels that have dissimilar gradient orientations, which can be clearly seen by com-
paring Fig. 6b,c, wherein the two target pixels (red box) in them are located in the same local area and hence has 
the same non-uniformity. But after the modulation of the small value of α in Fig. 6b, the resulting likelihood is 

Figure 15.  Failure case (a) Test image (b) GT(ground truth) (c) RCF, (MQ, EQ, FoM) = (0.09, 0.05, 0.18). (d) 
HED, (MQ, EQ, FoM) = (0.08, 0.04, 0.16). (e) Canny with Ht = 0.1 , (MQ, EQ, FoM) = (0.05, 0.02, 0.06). (f) our 
method, (MQ, EQ, FoM) = (0.07, 0.04, 0.09).
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small, whereas the large value of α in Fig. 6c results in a high likelihood. That is why we call α as the belief degree 
on the principal direction. Figure 12f and Fig. 13f verify this superior ability in suppression noise and texture. 
In addition, from Eq. (1), we see both α and non-uniformity are solely derived from angle data, the likelihood p 
is irrelevant to the gradient magnitude, thus enabling our method to effectively detect low-contrast contours as 
well. This also has been confirmed by the results in Fig. 14.

It is interesting to see what conditions under which the proposed method would fail to produce a gestalt 
object contour? We tested a special nature image of Fig. 15a comprising heavy interferences of rainfalls and 
an object of man with basket atop the head. Fig. 15b gives the gestalt object contour perceived by human eyes 
(GT). The results of RCF, HED, Canny detector, and our method are shown in Fig. 15c–f, respectively. All the 
four methods failed, to somewhat different degrees, in this test image. None of them can get rid of the extreme 
interferences. The heavy rainfalls, which are all over the image plane, contain gradient features that are too strong 
to be suppressed by our method. In the case of our method, the result in Fig. 15f came no surprise, and is due to 
the salient orientations inherent with the streamline-like rainfalls. But it is virtually impossible to explain why 
both the region-based models of HED and RCF erroneously preserved those rainfall textures inside the target 
object, as they were trained to learn the ground truth in Fig. 15b. To see the labeling bias problem, we also tested 
the zebra picture of Figs.7, 16b,c show the contour detection results of RCF and HED, respectively. The most 
distinctive difference between their resulting contours from ours in Fig. 7c or Fig. 7f are the strips components 
on the zebra’s body. Many strips were removed by RCF and HED, but nearly all of them were preserved by our 
method. As seen in Fig. 14e,f, performances of RCF and HED in terms of MQ, EQ, and FOM are not pretty due 
to the widening contours. Although the labeler of BSDS-500 draw the picture of Fig. 16a containing no strips 
as GT, we believe many people would disagree with that. In real life, human’s eyes will not let go those strips as 
they do to the grasses on the ground. Ironically, zebras evolved to have strips for blending into the environment 
to become stealthy to their predators.

Note that although our method in its present form is executed at pixel-level serially, that doesn’t mean the 
EM training process cannot be done in other ways. In fact, no data dependency is required in any of our algo-
rithmic steps in Fig. 4. In this regard, it would be interesting to integrate our method with CNN paradigms such 
as  HED13 or  RCF14, so that features of pixel-level and higher levels can be learned more effectively and faster. 
This idea is inspired by the findings  of15, who reported that features in the second convolution layer (Conv2) 
contribute the most, and the local edge information in low-level features and the object contour information in 
higher-level features are both necessary for achieving high performance in contour extraction tasks. Thus, by 
placing our converged likelihoods at Conv2 to act as a pre-trained probability map, the lengthy training time 
problem normally encountered in deep learning nets should be greatly alleviated.

Finally, in many vision-related applications, it is desired to have closed  contours42–44. However, no state-of-
the-art methods, including those mentioned in his study, can ensure highly (if not completely) closed bounding 
contours from a nature scene image. Thus, another future work can be directed to the key challenge in contour 
closure, i.e., connecting a set of fragmented contours into a cycle that separates an object from its background. 
In this regard, the output edge image P, which is generated by applying the proposed method to CEP, can readily 
serve as a good start for the connection task. Because P is a set of gestalt edges, we can prepare a blank matrix 
C having the same size of P to store information of the principal direction and the shape of the converged mask 
for each pixel in CEP. Then, for each gestalt edge, retrieve its corresponding converged mask and check if there 
are any disconnected gestalt edges that share the same (or similar enough) information of principal direction 
and shape with the target edge, then they should form contiguous components of the same contour. In the case 
of Fig. 2b, where the red circle C-D represents a disconnected region (wherein F denotes an edge point falsely 
detected) between two subsets of edges forming the same contour, if the convergent masks of C and D gestalt 
edges overlap and share the same orientation in their principal direction, they should be connected. In addition, 
the more elongated their masks are, the more likely they belong to the same contour.

Data availability
The datasets generated during and/or analysed during the current study are available in the repository: RuG 
dataset: https:// www. cs. rug. nl/ ~imagi ng/ datab ases/ conto ur_ datab ase/ conto ur_ datab ase. html; BSDS500:https:// 
www2. eecs. berke ley. edu/ Resea rch/ Proje cts/ CS/ vision/ group ing/ resou rces. html.

Figure 16.  (a) GT  form8. (b) RCF, (MQ, EQ, FoM) = (0.63, 0.46, 0.36). (c) HED, (MQ, EQ, FoM) = (0.65, 0.48, 
0.38).

https://www.cs.rug.nl/~imaging/databases/contour_database/contour_database.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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