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ABSTRACT
Bacteria use chemotaxis to move to favourable ecological niches. For many pathogenic bacteria, chemotaxis is required for full 
virulence, particularly for the initiation of host colonisation. There do not appear to be limits to the type of compounds that 
attract bacteria, and we are just beginning to understand how chemotaxis adapts them to their lifestyles. Quantitative capillary 
assays for chemotaxis show that P. aeruginosa is strongly attracted to serotonin, dopamine, epinephrine and norepinephrine. 
Chemotaxis to these compounds is greatly decreased in a mutant lacking the TlpQ chemoreceptor, and complementation of this 
mutant with a plasmid harbouring the tlpQ gene restores wild- type- like chemotaxis. Microcalorimetric titrations of the TlpQ 
sensor domain with these four compounds indicate that they bind directly to TlpQ. All four compounds are hormones and neu-
rotransmitters that control a variety of processes and are also important signal molecules involved in the virulence of P. aerugi-
nosa. They modulate motility, biofilm formation, the production of virulence factors and serve as siderophores that chelate iron. 
Additionally, this is the first report of bacterial chemotaxis to serotonin. This study provides an incentive for research to define 
the contribution of chemotaxis to these host signalling molecules to the virulence of P. aeruginosa.

1   |   Introduction

Bacteria use chemotaxis to move to sites that are favourable 
for growth and survival. A chemotactic response is typically 
initiated by the binding of a chemoeffector to a chemoreceptor, 
stimulating chemosensory pathways and ultimately leading to 
chemotaxis (Parkinson et al. 2015). There do not appear to be 
any limits to the chemical properties or structure of chemoeffec-
tors (Matilla et al. 2022a, 2022b). The chemosensory capacities 
of a bacterium are a reflection of its lifestyle (Colin et al. 2021). 
As the chemoeffectors recognised by most chemoreceptors 
are unknown, we are only beginning to understand the link 

between chemosensory repertoire, physiology and lifestyle. For 
pathogens with very different lifestyles, chemotaxis is often es-
sential for full virulence, and particularly for the initiation of 
host colonisation (Matilla and Krell 2018). Pseudomonas aeru-
ginosa is among the most serious human pathogens. It kills 
about half a million people annually (GBD 2019 Antimicrobial 
Resistance Collaborators 2022). The genome of the P. aeruginosa 
strain PAO1 encodes 26 predicted chemoreceptors, and the cor-
responding chemoeffectors have been identified for about half 
of them (Krell and Matilla  2024). Chemotaxis is required for 
the full virulence of P. aeruginosa (Schwarzer et al. 2016; Sheng 
et al. 2019).
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The catecholamines dopamine, epinephrine and norepineph-
rine, and the indoleamine serotonin are signal molecules that 
act as hormones and neurotransmitters to control a variety 
of cellular processes in humans and animals (Savaliya and 
Goerge  2020). They also exert signalling functions in plants 
(Kulma and Szopa  2007) and bacteria (Boujnane et  al.  2024), 
and they play major roles in inter- kingdom signalling (Boukerb 
et  al.  2021). Multiple studies show that these four compounds 
are central signal molecules in P. aeruginosa. Dopamine (Xiang 
et  al.  2024) and serotonin (Knecht et  al.  2016) act as exoge-
nous quorum- sensing molecules that regulate the production 
of a wide range of virulence factors, motility and biofilm for-
mation. Epinephrine and norepinephrine increase pyoverdine 

and pyocyanine production (Medina Lopez et al. 2022) as well 
as adhesion and biofilm formation (Cambronel et  al.  2019). 
Furthermore, these four compounds serve P. aeruginosa as sid-
erophores (Perraud et al. 2022). Experimentation using different 
animal models shows that the four molecules modulate P. aeru-
ginosa virulence (Knecht et al. 2016; Cambronel et al. 2019; Li 
et al. 2020; Ma et al. 2020).

2   |   Results and Discussion

Considering the central role of these four compounds in modu-
lating virulence, we wanted to establish whether P. aeruginosa 

FIGURE 1    |    Chemotactic responses to dopamine, epinephrine, serotonin and norepinephrine of Pseudomonas aeruginosa PAO1. (a) Quantitative 
capillary chemotaxis assays of the wild- type strain to different chemoeffector concentrations. Data were corrected for the number of bacteria that 
swam into buffer- containing capillaries (3107 ± 821). (b) Responses to 5 mM of these four neurotransmitters by the wild- type strain, the ΔtlpQ mu-
tant and the ΔtlpQ mutant complemented with the ptlpQ plasmid. Data were corrected for the number of bacteria that swam into buffer- containing 
capillaries (4071 ± 1536 for wt; 4143 ± 604 for ΔtlpQ and 2071 ± 371 for ΔtlpQ- ptlpQ). Data are the means and standard deviations from at least three 
biological replicates conducted in triplicate. *Student's t- test p < 0.01. The construction of the tlpQ deletion mutant and the plasmid ptlpQ for mutant 
complementation have been reported in (Corral- Lugo et al. 2018) and (Kim et al. 2007), respectively.
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performs chemotaxis to these compounds. To this end, we con-
ducted quantitative capillary chemotaxis assays using strain 
PAO1 that were performed as reported in (Matilla et al. 2022a, 
2022b), with the exception that assays were conducted under 
dim light conditions. In this assay, microcapillaries filled with 
chemoeffector solutions are submerged at their open end into 
a bacterial suspension. After 30 min, the microcapillaries are 
emptied and the cells that swan into the capillary are quanti-
fied by plating serial dilutions. These assays revealed strong 
chemoattractant responses for all compounds (Figure 1a).

The assay used is a reference method to detect and quantify 
chemotactic responses. Responses with more than 50,000 
cells per capillary can be considered strong. The threshold for 
chemotaxis was at capillary concentrations of 50 μM for dopa-
mine and epinephrine and 500 μM for serotonin and norepi-
nephrine (Figure 1a). The maximum responses were seen at 
a capillary concentration of 5 mM and ranged from 65,000 to 
200,000 cells per capillary. These responses are similar to those 
seen with other chemoattractants like nitrate (Martín- Mora 
et al. 2019), and superior to those seen with malate (Martín- 
Mora et al. 2018) or α- ketoglutarate (Martín- Mora et al. 2016). 

P. aeruginosa is a universal pathogen that infects almost all 
human tissues (Krell and Matilla  2024). Catecholamine/in-
doleamine concentrations in the human body are in the che-
motactic response range. For example, dopamine is found to 
up to 100 mM in the carotid body, 1 mM in the adrenal gland 
and dorsal striatum, or 100 μM in the kidney and colon (Matt 
and Gaskill 2020). These are mean tissue concentrations, and 
local concentrations, such as in the synapsis, are likely to be 
higher. Furthermore, chemotaxis thresholds derived are based 
on the capillary concentrations. However, the real thresholds 
will be lower since this assay monitors bacteria that respond to 
compounds that diffuse from the capillary into the medium. 
Whereas bacterial chemotaxis to epinephrine, norepineph-
rine and dopamine has been observed previously (Pasupuleti 
et al. 2014; Lopes and Sourjik 2018), this is the first report of 
chemotaxis to serotonin (Brunet et al. 2025).

To identify the chemoreceptor(s) that detect these four mol-
ecules, we conducted chemotaxis assays using a quadruple 
mutant in the pctA, pctB, pctC and tlpQ chemoreceptor genes. 
As shown in Figure S1, chemotactic responses to all four com-
pounds were lower than in the wild- type strain. Since PctA, 

FIGURE 2    |    Microcalorimetric titrations of dopamine, epinephrine, serotonin and norepinephrine to the TlpQ- LBD. (a) Titration of 80 μM TlpQ- 
LBD with aliquots of 10 mM dopamine. (b) Titration of 40 μM TlpQ- LBD with aliquots of 10 mM epinephrine. (c) Competition assays: Titration of 
18 μM TlpQ- LBD with aliquots of 250 μM spermidine (Spe) in the absence and presence of 10 mM serotonin (Ser) or norepinephrine (Noe). Protein 
and ligand solutions were in 3 mM Tris, 3 mM PIPES, 3 mM MES, 150 mM NaCl, 10% (v/v) glycerol, pH 7.0. Experiments were conducted on a VP- 
microcalorimeter (Microcal, Amherst, MA, USA) at 25°C (for dopamine) and at 10°C (for remaining compounds). Upper panels: Raw titration data. 
Lower panels: Integrated, concentration- normalised and dilution- heat- corrected raw data fitted with the ‘one- binding- site’ model of the MicroCal 
version of ORIGIN (Microcal, Amherst, MA, USA). The corresponding binding parameters are shown in Table S1. (d) Structure of the TlpQ ligands 
identified.
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PctB and PctC are known to be chemoreceptors that recognise 
primarily amino acids (McKellar et al. 2015; Gavira et al. 2020), 
we performed chemotaxis assays using a tlpQ mutant. TlpQ 
is a chemoreceptor that binds and mediates chemoattraction 
to a number of polyamines, like spermidine, cadaverine and 
putrescine and histidine (Corral- Lugo et al. 2018). Responses 
to all four molecules were significantly decreased, suggest-
ing that TlpQ is their primary chemoreceptor (Figure  1b). 
Complementation of the mutant with a plasmid harbouring 
the tlpQ gene resulted in wild- type- like chemotaxis to all four 
compounds (Figure 1b). Control experiments showed that the 
responses of the wild- type strain, the tlpQ mutant and the 
complemented tlpQ mutant to casamino acids are comparable 
(Figure S2).

Chemoreceptors can be activated by the binding of chemoeffec-
tors or chemoeffector–loaded solute binding proteins to the che-
moreceptor ligand binding domain (LBD) (Matilla et al. 2021). 
To determine the mode of TlpQ activation, we purified the 
TlpQ- LBD as reported in (Corral- Lugo et al. 2018). The purified 
protein was then subjected to Isothermal Titration Calorimetry 
binding studies with these four compounds. In these experi-
ments, binding heats are measured that result from the injec-
tion of compound aliquots into the protein. Data analyses permit 
the calculation of the complete set of thermodynamic binding 
parameters, including the dissociation constant (KD). Whereas 
the titration of buffer with dopamine resulted in small and uni-
form peaks, representing dilution heats, titration of TlpQ- LBD 
resulted in exothermic heat changes that diminished as protein 
saturation advanced (Figure 2a).

The dissociation constant for dopamine was 137 μM. Titration 
with epinephrine also showed binding (KD = 363 μM, 
Figure  2b). Initial titrations with serotonin and norepineph-
rine gave indications of binding, but with an affinity lower 
than that for dopamine and epinephrine. The interaction of 
serotonin and norepinephrine with the TlpQ- LBD could be 
better visualised using competition assays. Previous studies 
have shown that TlpQ- LBD also binds polyamines like sper-
midine (Corral- Lugo et  al.  2018). The titration of TlpQ- LBD 
with spermidine resulted in a KD of 120 nM (Figure 2c). When 
the TlpQ- LBD was titrated with spermidine in the presence of 
10 mM serotonin or norepinephrine, a significant reduction in 
binding was observed (Figure 2c), with lower changes in bind-
ing enthalpy (ΔHapp) and increased dissociation constants 
(KDapp) in the presence of either serotonin or norepinephrine 
compared to titration without competitor. Thus, serotonin and 
norepinephrine compete with spermidine for binding to the 
TlpQ- LBD. Dissociation constants of above 1 mM were esti-
mated for serotonin and norepinephrine. We conclude that 
TlpQ is activated by direct binding of dopamine, epineph-
rine, serotonin and norepinephrine. Our study also shows 
that the sensing mechanisms of catecholamine/indoleamine 
chemotaxis in P. aeruginosa and E. coli are different. Whereas 
in P. aeruginosa these compounds bind directly to the TlpQ- 
LBD that belongs to the dCache family of sensor domains, 
E. coli has no chemoreceptors that contain a dCache domain 
(Parkinson et  al.  2015). Data indicate that in E. coli these 
compounds are sensed by the Tsr and Tar chemoreceptors 
(Pasupuleti et al. 2018) (Lopes and Sourjik 2018) that possess 
4- helix bundle type LBDs.

This study thus forms the basis for exploring the effect of che-
motaxis to catecholamines/indoleamines on P. aeruginosa vir-
ulence. It also suggests that other motile bacterial pathogens 
should be tested for chemotaxis to these compounds.
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