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Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs
the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in
which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy
with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin
kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former
is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-
dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring
vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to
explore the propulsionmechanism.We also conduct a parametric study to understand how the vortex topology and hydrodynamic
characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this
complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative
hydrodynamic analysis.

1. Introduction

In recent decades, the bionic propulsion systems that
employmechanisms obtained from fish swimming have been
increasingly applied in the propulsion of underwater vehicles
[1–4]. The swimming categories of fish are typically named
after the body and/or caudal fin (BCF) swimmingmodes and
median and/or paired fin (MPF) swimmingmodes [5, 6]. Due
to the relatively simple design and high propulsive perfor-
mance, oscillating caudal fin has become the most popular
biomimetic propulsion system [7–11]. However in nature,
pectoral fins are used mostly in thrust production, maneu-
vering, reversing, and rapid stop, and unsuspected diversity
has been revealed in the musculoskeletal morphology of the
pectoral fin structure and this diversity has clear functional
implications [12]. The rapid development of underwater
vehicle industry has motivated some investigations on the
propulsion mechanism of the pectoral fin. For instance, the
flapping foil, as a simplified model of the pectoral fin, has
been the focus of considerable theoretical, experimental,

and numerical works. It has been shown that, for a two-
dimensional foil, optimal thrust condition coincides with
the formation of a well-organized inverse Kármán vortex
street [13–17]. The studies on finite-aspect-ratio flapping
foils [18–22] indicate that the wake of a three-dimensional
foil is dominated by two sets of vortex rings that convect
downstream at oblique angles to the wake centerline.

The above studies on flapping foils clearly show that
observations drawn from two-dimensional foils do not sim-
ply carry over to lower aspect-ratio three-dimensional ones.
As we know, the shape of a pectoral fin is more complex
than that of a flapping foil, and according to the studies
by Gibb et al. [23] and Westneat and Walker [24], pectoral
fins usually perform a compound rotational motion. Since a
pectoral fin represents a significantlymore complex situation,
it is expected that the wake evolution can change dramatically
between an ideal flapping foil and a more realistic pectoral
fin. The experimental investigations of Lauder et al. [25,
26] on the bluegill sunfish pectoral fin have shown the
presence of a distinct leading-edge vortex on the fin dorsal
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edge during abduction, and their particle image velocimetry
measurements at selected planes also reveal that the fin wake
has a highly complex structure. The study of Ramamurti
et al. [27] on the digitized pectoral fin of bird wrasse also
indicates the emergence of a large leading-edge vortex and
the shedding of a pair of counterrotating vortices at the
end of the upstroke. The simulations on the bluegill sunfish
pectoral fin [28, 29] have found that a number of distinct
vortex structures are produced by the fin stroke, and they are
subject to mutual induction effects, leading to deformation
of the vortex filaments and creation of the highly complex
conglomeration of vortices.

On the other hand, in order to develop a biomimetic
propulsive system which provides performance comparable
to the fish fin, some investigations on pectoral fins have been
devoted to the hydrodynamic performance of the labriform
swimming mode [2, 30–32] and the development of the
mechanical pectoral fin. These studies are focused on the
pectoral fin with a combination of locomotion formulated by
several rotational motions in a constant velocity free stream.
The fin performance within certain range of parameters is
tested experimentally or computed numerically and the effect
of kinematic parameters on hydrodynamic characteristics is
discussed.

At present, the number of studies which have systemati-
cally investigated the three-dimensional vortex wake dynam-
ics and tried to carefully explore the propulsion mechanism
underlying the generation of forces during the pectoral
fin stroke is limited. Since kinematic studies indicate that
pectoral fin motions depend on the fish and its travel speed
[33, 34], the wake structure and propulsion mechanism of
pectoral fins employed by different kinds of fishes probably
vary significantly. Are the fluid dynamics obtained from
the aforementioned pectoral fins of bluegill sunfish or bird
wrasse applicable to the pectoral fins of other kinds of fishes?
Comparative analysis across species of fishes is the next
logical step towards understanding the generality of research
results of fish pectoral fins and this will require studying
hydrodynamic characteristics and wake evolution of pectoral
fins used by many kinds of fishes, elaborately. The current
work is centered on the fluid dynamics of the pectoral fin of
black bass (Micropterus salmoides) and provides new insight
in this particular field. Black bass is selected for the present
study because its pectoral fin is large enough to observe by
a video camera and this kind of fish is easy to breed in an
aquarium. Furthermore, the bass has been described as a
generalist blessed with the functions of accelerators, cruisers,
and maneuvers in the study of Webb [35, 36], and it is one of
the typical fish using the labriform swimming mode which is
the focus of this paper and a number of previous researches
[2, 30, 37].

For simulating flows with complex moving boundaries,
the choice of an accurate, efficient numerical method with
high fidelity is quite significant. The IB method [38, 39]
discretizes the flow governing equations on a fixed Eulerian
grid, while the IB is explicitly tracked as a curved surface in
a Lagrangian approach.This method retains the advantage of
explicit interface information from the Lagrangian method
and the simplicity of the fluidmotion description inCartesian

coordinates and makes grid generation greatly simplified.
Thus, the IB method has obvious advantages over the con-
ventional body-fittedmethod in biomimetic flow simulations
with highly mobile boundaries and complex geometries, as
shownby the study ofKazakidi et al. [40]where a result-based
comparison between IB and body-fittedmethods is provided.
In our work, based on the basic idea of the IB method and
advancedCFD techniques, an improved ghost-cell IBmethod
is proposed. Our current numerical method possesses the
following characteristics:

(1) Although various reconstruction algorithms have
been proposed to enforce the desired boundary
conditions, their robustness and efficiency have not
been adequately addressed in most IB studies. Herein
a simple, fast, and stable reconstruction scheme is
developed and it is robust enough to deal with a
variety of situations.

(2) For moving boundary problems, one case encoun-
tered is that a node which is in the solid emerges into
the fluid with the time advancement due to boundary
motion. We have proposed a new numerical strat-
egy based on the modified Shepard interpolation of
Thacker et al. [41] to treat this.

In this paper, we set up a fin computational model
approximating the pectoral fin kinematics of black bass.
Based on the developed IB method, firstly we focus on
exploring the propulsion mechanism of the complex-shaped
low-aspect-ratio fin. The connection between the fin kine-
matics, wake dynamics, and force production is analyzed
in great detail so as to determine the complex flow physics
that is key for the propulsive performance. Furthermore, the
wake flow field of the fin is also compared with available
results on three-dimensional flapping foils to reveal the wake
feature of the fin with superior hydrodynamic performance.
Following this, since the fin performance strongly depends on
kinematic parameters, our interest is centered on the effects
of phase angle and Strouhal number on the hydrodynamic
performance and wake structure. This allows us to address
the practical question of how the fin performance varies with
key parameters and to understand the fundamental mech-
anism of the variation. Finally, based on our simulations,
we comment on the overall fluid dynamics of the fin and
corresponding implications for engineering designs of bionic
pectoral fin propulsors.

2. Computational Model

Based on the observation for the pectoral fin of black bass
[32, 37], the fin model employed in the current computations
is depicted in Figure 1 with a maximum chord length 𝐶 of
0.155m, which is chosen as the length scale for the current
flow, and an aspect ratio of about 1.21. The fin model is 6.2
times larger than the pectoral fin of the observed black bass
[32, 37]. Kinematically, labriform swimming is a combination
of an anteroposterior (forth-and-back) rowing motion, a
dorsoventral (up-and-down) flapping motion, and a feather-
ing motion that denotes a twisting motion of the fin pitching
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Figure 1: Pectoral finmodel of a black bass.𝐶 is themaximumchord
length.

[42]. Although, in certain situations, a fish may exhibit pure
rowing motion (which is also called drag-based swimming)
or pure flapping motion (lift-based swimming) [43, 44], in
general fish rarely perform pure flapping or rowing move-
ments, and instead, inmost cases a coupled rotationalmotion
is used [23, 24]. Blake [45] has shown that fish which are
propelled by drag-based labriform swimmingmode aremore
probably to have triangular pectoral fins than rectangular
or square ones. Theoretical models have predicted that fish
which employ drag-based labriform propulsion should have
wedge-shaped pectoral fins with relatively blunt distal edges
[46]. Referring to above two studies on the effect of pectoral
fin shape, black bass can be considered as one of the typical
fish using drag-based labriform propulsion in terms of its
pectoral fin shape (Figure 1), and the experimental analysis
of the pectoral fin of black bass by Kato and Furushima [47]
has also demonstrated this. Therefore, we focus on drag-
based labriform swimming mode of the black bass pectoral
fin, which consists here of a rowing motion and a feathering
motion.

The rowing angle 𝜙
𝑅
is defined as the rotation angle

around the 𝑍-axis, as shown in Figure 2(a), whereby the
𝑋-𝑌-𝑍 coordinate system is transformed into the 𝑋-𝑌-𝑍
coordinate system and the uniform inflow velocity 𝑈, the
velocity scale for the current flow, is oriented with the
arrow along the negative 𝑋-direction. The feathering angle
𝜙FE is defined as the rotation angle around the 𝑌-axis, as
displayed in Figure 2(b), whereby the 𝑋-𝑌-𝑍 coordinate
system is transformed into the𝑋-𝑌-𝑍 coordinate system.
Numerical simulations are carried out with cosinusoidal
kinematic mode being applied for rowing and feathering
motions, in accordance with the experimental observation
and analysis of the bass pectoral fin [47]. The rowing motion
of the fin is defined as

𝜙
𝑅
= 𝜙RC − 𝜙RA ⋅ cos (𝜔fin𝑡) , (1)

where 𝜙RC is the average angle of the rowing motion, 𝜙RA is
the rowing amplitude, and 𝜔fin is the angular frequency of
the fin. If we use 𝑓 to represent the motion frequency of the
fin which is chosen as the time scale for the current flow, the
relationship between 𝜔fin and 𝑓 is 𝜔fin = 2𝜋𝑓.
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Figure 2: Coordinate system and definitions of rotation angles.
(a) Schematic describing the rowing angle around the 𝑍-axis. (b)
Schematic showing the feathering angle around the 𝑌-axis.

The feathering motion of the pectoral fin is then defined
as

𝜙FE = 𝜙FEC − 𝜙FEA ⋅ cos (𝜔fin𝑡 + Δ𝜙FE) , (2)

where 𝜙FEC is the average angle of the feathering motion,
𝜙FEA is the feathering amplitude, and Δ𝜙FE is the phase angle
between rowing and feathering (hereinafter referred to as
phase angle).

Although the pectoral fin kinematics have not been
measured in detail by relevant equipment (e.g., high-speed
cameras), the present study on labriform swimming mode
retains the complex shape of the black bass pectoral fin and
adopts the formulated kinematical description with rational-
ity and representativeness shown by previous investigations
on pectoral fins [32, 37, 47]. Therefore, it is expected that
some significative insights would be gained into the wake
vortices and hydrodynamics of the fin, thereby guiding us
towards biomimetic pectoral fin propulsors with excellent
performance.The study on the fin digitized using high-speed,
high-resolution videos from a black bass pectoral fin will be
presented in a separate paper.
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Referring to the coordinate system, in the current work,
the thrust and lift coefficients are defined as

𝐶
𝑇
=

𝐹
𝑋

0.5𝜌𝑈2𝑆
,

𝐶
𝐿
=

−𝐹
𝑍

0.5𝜌𝑈2𝑆
,

(3)

where 𝜌 is the fluid density, 𝑆 is the planform projected area
of the fin, 𝐹

𝑋
is the thrust, and −𝐹

𝑍
is the lift (the 𝑍-axis is

downward). Correspondingly, the time-averaged thrust and
lift coefficients are expressed as

𝐶
𝑇𝐴
=

1

𝑚𝑇
∫
𝑚𝑇

𝐶
𝑇
𝑑𝑡,

𝐶
𝐿𝐴
=

1

𝑚𝑇
∫
𝑚𝑇

𝐶
𝐿
𝑑𝑡,

(4)

where 𝑇 is the motion period of the fin and𝑚 is the number
of cycles over which the mean is computed.

The propulsive efficiency of the fin is given by

𝜂 =
𝑃out

𝑃in
, (5)

where 𝑃out is the average power output during one cycle and
𝑃in is the average power input over one period. We compute
them as follows [29]:

𝑃out = 𝐹𝑥𝑈,

𝑃in = −
1

𝑚𝑇
∫
𝑚𝑇

∫
𝐴fin

(�⃗� ⋅ �⃗�) 𝑑𝐴𝑑𝑡,

(6)

where 𝐹
𝑥
is the cycle-averaged thrust, 𝐴fin denotes the fin

surface, �⃗� is the local surface force, and �⃗� is the local velocity
of the fin surface.

In the current study, the angular velocity �⃗� =

(𝜔
𝑋
, 𝜔
𝑌
, 𝜔
𝑍
) in the 𝑋-𝑌-𝑍 coordinate system is expressed

using the angular velocity components of the rowing and

feathering motions,
∙

𝜙
𝑅
and
∙

𝜙FE, as

[
[

[

𝜔
𝑋

𝜔
𝑌

𝜔
𝑍

]
]

]

=

[
[
[
[
[
[

[

−

∙

𝜙FE sin𝜙𝑅
∙

𝜙FE cos𝜙𝑅
∙

𝜙
𝑅

]
]
]
]
]
]

]

. (7)

The motion of the fin is determined by the resultant
angular velocity. Eight phases during one period (every 𝑇/8)
are shown in Figure 3 via plots using three views of the
fin stroke cycle. The left and middle columns present the
side and back view, respectively. The right column shows
the three-dimensional view of the fin and an ideal fish body
in fixed position. Clearly to see is that (1) this fin performs
the labriform swimming that consists here of two rotational
motions around moving axes, rather than pure rowing
motion or feathering motion, (2) at early stage, the fin flaps

backward quickly, and (3) the area normal to the incoming
flow is adjusted by the feathering motion. The connection
between these fin characteristics, vortex dynamics, and force
production will be presented in detail below.

In terms of the length scale 𝐶, velocity scale 𝑈, and time
scale 𝑓 for the current flow, two nondimensional parameters
for the fin, Strouhal number (St) and Reynolds number (Re),
are defined as 𝑓𝐶/𝑈 and 𝐶𝑈/], respectively.

3. Numerical Methods

3.1. Governing Equations and Numerical Procedure. The
fluid motion is governed by three-dimensional unsteady,
incompressible Navier-Stokes equations as

∫
CS
𝜌�⃗� ⋅ �⃗� 𝑑𝑆 = 0,

𝜕

𝜕𝑡
∫
CV
𝜌�⃗� 𝑑𝑉 + ∫

CS
𝜌�⃗� (�⃗� ⋅ �⃗�) 𝑑𝑆

= −∫
CS
𝑝�⃗� 𝑑𝑆 + ∫

CS
𝜇∇�⃗� ⋅ �⃗� 𝑑𝑆,

(8)

where �⃗� is the fluid velocity, 𝑝 is the pressure, 𝜌 is the
fluid density, and 𝜇 is the dynamic viscosity. The above
equations are discretized using a cell-centered arrangement
of the primitive variables (�⃗�, 𝑝). CVandCSdenote the control
volume and control surface, respectively, and �⃗� is the unit
vector normal to the control surface.

The proposed IB method will be presented in the frame-
work of a finite-volume, fractional-step, Navier-Stokes solver
for incompressible flow. Both convective and diffusive terms
are advanced implicitly in time using a Crank-Nicolson
scheme [48] which eliminates the numerical stability con-
straint, and all spatial derivatives are discretized using central
differences [48]. In the following section we will focus on the
treatment of complex moving boundaries.

3.2. Immersed Boundary Treatment. A multidimensional
ghost-cell methodology is employed to incorporate the effect
of the IB on the flow. Referring to the review paper by Mittal
and Iaccarino [39], this method falls into the category of
“discrete forcing” IB methods. Most researches on bioin-
spired flow configurations involve complex geometries and
kinematics, so the developed method is aimed at simulating
flows around arbitrarily complex moving boundaries. Hence,
an unstructured mesh with triangular elements is used to
represent the surface of the IB, and the choice also makes
interpolation along the normal direction readily computed,
which is beneficial to the subsequent reconstruction algo-
rithm of boundary condition. The surface of the pectoral fin
represented by surface triangulation is shown in Figure 4(a).
The unstructured surface grid of the fin is then “immersed”
into the Cartesian volume mesh of the flow field, as depicted
in Figure 4(b).

3.2.1. Reconstruction Scheme of Boundary Condition. This
numerical method proceeds by identifying so-called “ghost-
cells” of which nodes are inside the solid but have at least one
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Figure 3: Continued.
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Figure 3: Motion of the pectoral fin during the fin stroke cycle from side (left) view, back (middle) view, and three-dimensional (right) view
with ideal black bass body in fixed position. In side views, contours depict distance from the body, and in back views, contours reflect distance
along the body. The fish body in the three-dimensional view is only shown for context and not included in simulations.

neighbor in the fluid. We express the local flow variable 𝜑
in terms of a polynomial and employ it to derive the value
at the ghost cell. Although polynomials of higher degree are
expected to be more accurate, the use of them leads to the
easier occurrence of numerical instability and boundedness
problems [49]. Higher-order approximations also involve an
excessively large interpolation stencil that increases the com-
plexity of numerical algorithms [48]. Additionally, in the light
of previous studies [50, 51], employing an approximation of
one order lower accuracy at the boundary does not reduce the
overall accuracy of the whole numerical method. Moreover
in the IB methods of Fadlun [52], Yang and Balaras [53],
and Liao et al. [54], the linear flow reconstruction has been
used and therein a number of validation tests are provided.
In order to minimize the probability of numerical instability
and save computational time, a linear reconstruction scheme
is adopted.

As shown in Figure 5, a normal line segment is extended
from the node of ghost cells into the fluid to an image point

𝐼 such that the interface intersection point 𝑂 is midway
between the ghost node 𝐺 and the image point. The point 𝑂
is the point at which the boundary condition is to be satisfied.
The local flow variable 𝜑 around the point 𝐼 is approximated
by the following interpolation polynomial:

𝜑 = 𝑏
1
+ 𝑏
2
𝑥 + 𝑏
3
𝑦 + 𝑏
4
𝑧, (9)

where 𝑏
𝑗
, 𝑗 = 1, 2, 3, 4, denote the polynomial coefficients.

The interpolated variable value at the point 𝐼has the following
form:

𝜑
𝐼
=

4

∑

𝑗=1

𝛼
𝑗
𝜑
𝑗
, (10)

where 𝜑
𝑗
is one of the four data points and 𝛼

𝑗
is the

corresponding weight associated with the interpolation poly-
nomial. The interface intersection point and three of the
eight nodes surrounding the image point are used as the
interpolation data points to determine these weights.
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Figure 4: Grid distribution. (a) Surface mesh with triangular elements used to represent the pectoral fin. (b) Cartesian grid of the flow field
with IB drawn in green.
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Figure 5: Schematic showing ghost-cell methodology employed in the current solver. The inset represents an enough special case where
point 3 is the ghost node 𝐺 under consideration and points 4, 5, 6, 7, and 8 are other ghost nodes, and at this time four data points needed in
the interpolation may consist of the point 𝑂 and points 1, 2, and 6.

Following this, along the normal line segment, by a linear
interpolation and a central-difference approximation which
incorporate the Dirichlet condition (for the velocity) and
the Neumann condition (for the pressure), respectively, the
following formulae are obtained:

𝜑
𝐼
+ 𝜑
𝐺
= 2𝜑
𝑂

𝜑
𝐼
− 𝜑
𝐺

Δ𝑙
= (

𝜕𝜑

𝜕�̂�
)

𝑂

,

(11)

where Δ𝑙 is the length of the normal line segment. Equations
(10)-(11) complete the numerical description for the ghost
cell and they are solved in a fully coupled manner with the
governing equations (8) for the neighboring fluid cells.

Having accomplished the simple, fast, and stable recon-
struction procedure, we now move on to discuss the capabil-
ity for our IB method to deal with special situations probably
encountered. For instance, a case may be encountered where
one of the eight nodes surrounding the image point is the
node of the ghost cell itself (see the left ghost cell in Figure 5).
This case does not cause any additional problems since three
of other seven nodes along with the interface intersection
point can be chosen as the interpolation stencil.

It may also be the situation that the eight nodes surround-
ing the image point for a given ghost cell contain nodes of
other ghost cells (see the right ghost cell in Figure 5). In
this situation, if the number of the fluid nodes𝑁 among the
eight nodes surrounding the image point is greater than or
equal to three, three of the 𝑁 fluid nodes along with the
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Figure 6: Schematic describing the appearance of fresh cells due to
boundary motion.

interface intersection point can be chosen as the interpolation
stencil. If not, the interpolation stencil consists of the 𝑁
fluid nodes, the interface intersection point, and 3 − 𝑁 other
ghost nodes. Although this does imply that some of the
ghost node values are coupled to each other, it does not lead
to any consistency issues since the equation for the ghost
cell is solved in a fully coupled manner with the governing
equations for the surrounding fluid cells along with the
equations for other ghost cells. Based on the above analysis,
the proposed reconstruction scheme is robust enough to
tackle a variety of situations.

3.2.2. Boundary Motion. In the moving boundary case, we
need to move the IB from its current location to the new
location at every time step. This is achieved by moving the
nodes of the surface triangles with a known velocity.Thus we
use the following formula to update the position of a surface
element vertex:

�⃗�
𝑛+1

= �⃗�
𝑛
+ V⃗𝑛+1Δ𝑡, (12)

where �⃗� is the position vector of the vertex and V⃗ is the vertex
velocity.

One problem associated with moving boundaries is the
so-called “fresh cell” issue [53, 55]. This refers to the case
where a cell that is in the solid emerges into the fluid at
the next time step (or, vice versa) due to boundary motion.
Plotted in Figure 6 is the emergence of two fresh cells caused
by boundary motion from time level 𝑛 to 𝑛 + 1. When the
time advancement is carried out for a fresh cell, some of
the required values or derivatives from the previous time
step are not physical because of the fact that the boundary
changes locations. For the explicit or semi-implicit time-
stepping schemes, due to the CFL restriction, the boundary
cannot move by more than one cell deep in each time step. In
this situation, Yang and Balaras [53] have employed a field-
extension methodology, and a procedure of constructing the
interpolation stencil by use of the normal probe has been
proposed by Mittal et al. [55]. However, when the implicit
time-stepping scheme is employed or the IB is moving

Shepard 
interpolator

G

O

I

Fluid cell
Ghost cell
Solid cell

Figure 7: Schematic showing the proposed numerical treatment
method. Herein all the data points employed for constructing the
Shepard interpolator are marked by the dashed sector rings.

with large amplitude, the layer of fresh cells may be more
than one grid cell. For biomimetic flow simulations with
complex moving boundaries, these cases may be involved,
and therefore we need to develop a methodology suitable
for implicit large time-stepping schemes and large amplitude
movements in terms of the “fresh-cell” problem. In the
current solver, based on the modified Shepard interpolation
[41], a new numerical strategy is proposed.

Once the flow computation for the current time step is
performed, the following numerical treatment is carried out
to facilitate the time advancement for fresh cells at the next
time step. As shown in Figure 7, firstly, two layers of data
points are employed to construct the Shepard interpolator.
The first layer consists of interface intersection points on
the IB where the velocities are determined by the prescribed
labriform swimming. The second layer is made up of ghost
cells inside the body of which the velocities are computed by
the flow reconstruction scheme as presented in Section 3.2.1.
Then we check the cells inside the body and identify those
which would become fresh cells at the next time step. Finally,
the constructed Shepard interpolator is used repeatedly for
all these cells identified to obtain the required values or
derivatives to resolve the time-advancement difficulty for
fresh cells at the next time step. For the mathematical details
of the modified Shepard interpolation, the reader is referred
to the work ofThacker et al. [41]. Since the Shepard algorithm
is independent of the mesh topology and very fit for scattered
data interpolation, the proposed numerical strategy is robust
enough to deal with a variety of situations, even if adopting
large time step size and the IB moving with large amplitude.
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4. Results and Discussion

4.1. Validation and Assessment of the Numerical Method

4.1.1. Grid and Domain Independence Studies. Firstly, we
present the nominal grid adopted in the current simulations.
17996 elements are used for the surface triangulation of the
fin geometry and 8.83 million elements are employed for
the background fixed Cartesian grid. The dimensions of the
domain are 10𝐶(𝑋)× 11𝐶(𝑌)× 11𝐶(𝑍). The element spacing
sizes at the inner region are Δ𝑋 = 0.43%𝐶, Δ𝑌 = 1.5%𝐶,
and Δ𝑍 = 0.43%𝐶, respectively, and the region embodies
a 306(𝑋) × 82(𝑌) × 234(𝑍) (5.87 million elements) grid.
The grid used at the inner region is uniform, and beyond
the region, the mesh is rapidly stretched in the 𝑌- and 𝑍-
directions. In the 𝑋-direction, the grid stretching is rapid in
the upstream region of the fin. However in the near wake
region, the stretching ratio of the mesh is kept below 5% so
as to keep relatively high streamwise resolution.

We have carried out comprehensive studies to assess the
sensitivity of the numerical solution to the element spacing
and domain size. Grid refinement studies are conducted by
setting the element number as one and half times the original
one in all three coordinate directions in the inner region, with
the overall background element number of about 26.5million
and the doubled fin surface grid. Domain independence
studies are conducted by doubling the domain size in all
three coordinate directions with the whole element number
of about 17.1 million.

Simulation results of the temporal variation of the thrust
coefficient during the last three periods (𝑡 = 4𝑇–7𝑇) are
shown in Figure 8(a), where a stable periodic state has
been achieved and we observe a close result among the
nominal grid, the finer grid, and the domain enlargement
grid. Thus the nominal grid is employed for the whole
following simulations of flow past the fin to ensure accuracy
and minimize the computational time and required memory.

4.1.2. Accuracy Tests and Verification of Capability to Deal
with “Fresh-Cell” Problem on Well-Known Examples. We use
the developed IB method to simulate flow past a sphere for
100 ≤ Re ≤ 1000.This is a well-known example that allows us
to test the accuracy of the IB approach for three-dimensional
flows. We adopt two grid densities: a nominal grid with 1003
grid elements and a finer grid with 2003. The drag coefficient
𝐶
𝐷
for different Reynolds numbers is calculated, as presented

in Figure 8(b). We compare the obtained 𝐶
𝐷
with the studies

of Fornberg [56] and Fadlun et al. [52] and find that the
sensitivity of the numerical solution to the grid has been
removed and the numerical results agree very well with these
previous investigations.

The second validation study is conducted on a trans-
versely oscillating cylinder in a free stream. The choice of
kinematic parameters in the canonical example reproduces
the conditions in the numerical simulations by Yang and
Balaras [53], and the specified motion of the cylinder is
formulated by

ℎ (𝑡) = 𝐴 cos (2𝜋𝑓
𝑒
𝑡) , (13)

where ℎ(𝑡) is the cross-stream location of the cylinder,𝐴 is the
oscillation amplitude, and 𝑓

𝑒
is the excitation frequency. The

oscillation period is divided into 350 time steps. Under the
same flow conditions we have quantitatively compared the
time-averaged drag coefficient 𝐶

𝐷𝐴
with the corresponding

values from the study byYang andBalaras [53], as displayed in
Figure 8(c), for 0.8 ≤ 𝑓

𝑒
/𝑓
0
≤ 1.2 (𝑓

0
—natural shedding fre-

quency). It can be seen that the present IB calculations match
the corresponding results from [53], thereby providing fur-
ther validation in the accuracy. To verify the capability to cope
with “fresh-cell” problem especially in the case of the layer of
fresh cells beingmore than one gird cell, we divide the oscilla-
tion period into 150 time steps. At this time the layer of fresh
cells can be about two cells deep in each time step due to the
oscillation amplitude of 0.2𝐷 (𝐷—the diameter of the cylin-
der) and element spacing around the cylinder of 0.0025𝐷.The
simulation results obtained by 150 time steps/period are also
shown in Figure 8(c), where our numerical results are still in
good agreement with Yang and Balaras’s data.

In order to check the ability to deal with the IB moving
with large amplitude, the third validation test is carried out on
a flapping foil with large heave amplitude. The foil employed
in the experiment of Techet et al. [57] features a NACA0012
cross section, with an average chord (𝐶

𝐴
) of 5.5 cm. We

compare our simulation results with the experimental data
of the foil with dimensionless heave amplitude of 1.5 which is
three times the value used in a number of previous studies
[21, 58, 59] on flapping foils. The grid size used in the
present simulation has a minimum spacing around the foil of
0.0015𝐶

𝐴
. The flapping period is divided into 500 time steps.

At this time the layer of fresh cells can be up to eight cells deep
in each time step based on these above choices. Figure 8(d)
shows the comparison between numerical and experimental
results of the time-averaged thrust coefficient 𝐶

𝑇𝐴
under the

same flow conditions.The simulation results of𝐶
𝑇𝐴

are found
to match well with those in the study of Techet et al. [57].

4.1.3. Validation Study on the Pectoral Fin with the Same
Geometry. In order to further validate the IB method used
in this study, we compare the computed thrust coefficient
during one period with published experimental and numer-
ical studies [2, 37, 60], as shown in Figure 9, where the
flow has attained a steady state through seven cycles in the
simulation. Since the experimental and numerical studies
used for comparison have used the same fin geometry as that
in the current work, the validation study is quite convictive.
Due to the fact that the fluid viscosity and the thickness
of the pectoral fin are considered, the IB method and CFD
simulation ofWang et al. [60] can calculate the hydrodynamic
performance of the pectoral fin in the real environment more
accurately than the potential theory method of Su et al. [2].
Moreover in comparison with numerical results of Wang
et al. [60], a smaller fluctuation can be observed in our
computed results, and the present simulation matches well
with experimental results of Kato [37].

4.2. Wake Structure and Propulsion Mechanism. The
objective in this section is to provide a comprehensive
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Figure 8: Validation and assessment of the numerical method. (a) Results of grid refinement and domain independence study for 𝜙RC = 30
∘,

𝜙FEC = −30
∘, 𝜙RA = 30

∘, 𝜙FEA = 30
∘, Δ𝜙FE = 90

∘, St = 0.55, and Re = 2500 case. (b) Comparison of computed drag coefficient on flow past a
sphere with previous studies. (c) Comparison of time-averaged drag coefficient for the oscillating cylinder in a free streamwith𝐴 = 0.2𝐷.The
solid line represents the results from [53] and the symbols are the data from our IBmethod using two different time step sizes. (d) Comparison
of time-averaged thrust coefficient for the flapping foil with experimental data from [57]. The Strouhal number is fixed at a value of 0.6 and
the maximum angle of attack is varied from 20

∘ to 45∘.

description of the wake structure and to discuss the
propulsion mechanism of the pectoral fin. Vortices in three-
dimensional simulations are identified by the 𝑄 criterion
[61]. A positive value of 𝑄 is a measure for any excess of
rotation rate with respect to the strain. Therefore, the flow
exhibits a swirling motion within a region where 𝑄 > 0
as shown by Chakraborty et al. [62]. Earlier researches on
flapping foils [63, 64] have indicated the significance of the
leading-edge vortices in the fin performance.The kinematics
and geometry of the pectoral fin are, however, more complex

than those of flapping foils, and the flow around the fin
should be dominated by more than one distinct and strong
vortex structure. Therefore, we need a detailed analysis to
obtain insight into the propulsion mechanism underlying
the force generation. For this analysis, we focus on the case
with 𝜙RC = 30

∘, 𝜙FEC = −30
∘, 𝜙RA = 30

∘, 𝜙FEA = 30
∘,

Δ𝜙FE = 90
∘, St = 0.55, and Re = 2500, and similar values

have been used in previous studies on the hydrodynamic
characteristics of pectoral fins [30, 65]. All the results
presented here and in the following sections have been
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Figure 9: Comparison of computed thrust coefficient with experi-
mental and numerical data.

obtained by simulating the fluid flow over seven motion
periods of the fin. When mean quantities are computed, we
have discarded the first four cycles and all instantaneous
quantities plots correspond to the fifth period, by which time
the flow field has achieved a time-periodicity state since the
variation in mean hydrodynamic force coefficients in the
following strokes is less than 1%.

Figure 10 shows the temporal variation of the thrust
and lift coefficients. The thrust peaks once in each period,
and so does the lift. Approximately, the pectoral fin mainly
provides the thrust in the first half cycle (power stroke), and
the lift in the second half cycle (recovery stroke). It should
be noted that the time-averaged value of 𝐶

𝐿
(7.87) is larger

than the time-averaged value of 𝐶
𝑇
(4.91). For comparison,

In Kato’s experiment [37] on a mechanical pectoral fin, the
mean thrust coefficient𝐶

𝑇𝐴
was about 1.41 times themean lift

coefficient 𝐶
𝐿𝐴

under the nominal experimental condition.
For a pectoral-fin propulsive system developed by Wang
et al. [32], the mean value was from 0.18 to 1.75 times in
𝐶
𝐿
compared to that of 𝐶

𝑇
for different combinations of

kinematic parameters. In a reality of underwater swimmers,
the produced lift force may be counteracted with the paired
pectoral fin, other fish fins, or body undulations. In a study on
modulating the behavior of the robotMadeleine propelled by
multiple appendages, four-flippered and two-flippered gaits
were used to achieve the starting, cruising, and stopping by
the fore-aft and port-starboard interactions [66]. Sfakiotakis
et al. [67], who investigated the swimming of a multiarm
robot, found that forward propulsion along an approximately
straight line might be generated by synchronized sculling
movements of the arms, using various patterns of arm coor-
dination. Following this, in order to explore the propulsion
mechanism, we analyze the connection between the fin
kinematics, vortex dynamics, and force production, which is
based on Figure 11. This figure presents the pectoral fin at
eight phases in one period (every 𝑇/8). For each phase, three
plots are shown in Figure 11. The left-hand-side plot presents
a perspective view of the wake vortex. The middle and
right-hand-side plots show contours on the downstream and
upstream surface of the fin that correspond to the pressure,

respectively. Also plotted are vectors on the fin that represent
the magnitude and direction of the local surface force.

Figure 11(a) presents the vortex structures, pressure dis-
tribution, and surface force at 𝑡/𝑇 = 0 that is the beginning
of a motion period. The dorsal edge vortex (DEV

1
), ventral

edge vortex (VEV
1
), and tip vortex (TV

1
), whichwere formed

during the recovery stroke of the previous cycle, have shed
from the fin. Moreover, we identify ring 𝑅

1
shed from the fin

during the power stroke of the previous cycle and 𝑅
2
shed

during the period before last. On the downstream surface, a
local high pressure region emerges at the fin tip due to the
shedding of the tip vortex. Vectors of the local surface force
show that the thrust is mostly produced near the fin tip.

In Figure 11(b), at the phase of 𝑡/𝑇 = 1/8, after the vortices
formed at the previous motion period have completely shed
from the fin, new attached vortices are formed at the edge
of the fin due to the rapid backward motion. The new dorsal
edge vortex (DEV), ventral edge vortex (VEV), and tip vortex
(TV) are connected together to constitute a vortex structure
which is reminiscent of a horseshoe-shape vortex, and this
leads to a large low pressure region in the outer half of the
upstream surface. Thus, there is a large pressure difference
between the downstream and upstream surface at the phase.
In addition, the fin surface is almost vertical to the inflow
so that the surface force is tilted in the thrust direction, as
shown by the force vectors. Hence, the thrust almost attains
the maximum at this phase with small negative lift (referring
to Figure 10).

From the phase of 𝑡/𝑇 = 1/8 to 𝑡/𝑇 = 1/4, with back-
ward motion of the fin, the attached vorticity is continually
accumulating.The shedding process of the dorsal edge vortex
(DEV) and tip vortex (TV) begins at about the phase of
𝑡/𝑇 = 1/4, as shown in Figure 11(c), and rings 𝑅

1
and 𝑅

2

are convecting downstream with some dissipation. Different
from the phase of 𝑡/𝑇 = 1/8, on the upstream surface, the
obvious low pressure region is only created near the ventral
edge. This is because the shedding process of the dorsal edge
vortex (DEV) and tip vortex (TV) has started, while the
ventral edge vortex (VEV) remains attached to the ventral
edge. However, the fin surface still remains good verticality
to the inflow at this phase and the shedding process of DEV
and TV has only just started, so considerable thrust is still
produced at this phase, while the lift is nearly zero (referring
to Figure 10).

The next phase of 𝑡/𝑇 = 3/8 is shown in Figure 11(d),
and the tip vortex (TV), partial dorsal edge vortex (DEV),
and partial ventral edge vortex (VEV) have shed from the
fin and this leads to a smaller low pressure region than that
of the previous phase. Moreover, the fin surface is at an
oblique angle to the inflow at this phase, which makes the
proportion of the pressure difference force assigned in the
thrust direction decrease.These are the reasons that the thrust
of 𝑡/𝑇 = 3/8 is much smaller than that of 𝑡/𝑇 = 1/4 (referring
to Figure 10(a)). Furthermore, ring 𝑅

2
has evolved into a

vortex structure which is reminiscent of a horseshoe-shape
vortex due to the viscous dissipation.

In Figure 11(e), at the phase of 𝑡/𝑇 = 1/2, the vortex struc-
ture that consists of the dorsal edge vortex (DEV), ventral
edge vortex (VEV), and tip vortex (TV) has completely shed
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Figure 10: Temporal variation of force coefficients.

from the fin, and the new tip vortex (TVW) is being created
at the fin tip.

Figure 11(f) corresponds to 𝑡/𝑇 = 5/8, and TVW is
connecting to the VEV + TV + DEV vortex structure shed at
the previous instant to form a vortex ring TVW+VEV + TV
+DEV.The new dorsal edge vortex (DEVW) and new ventral
edge vortex (VEVW) are produced, and they have opposite
direction against that of DEV and VEV. A low pressure
region appears near the dorsal edge on the downstream
surface under the influence of DEVW. According to the
spatial angle of the fin at this phase, the pressure difference is
assigned to generate lift force and negative thrust force. Since
the included angle between the fin surface and the inflow
decreases as compared to the previous phase, the proportion
of the pressure difference force assigned in the lift direction
becomes larger, leading to an increase in the lift.

The next phase shown in Figure 11(g) is at 𝑡/𝑇 =

3/4, and TVW is being stretched due to the axial induced
velocity of ring RW. With the forward motion of the fin,
the dorsal edge vorticity and ventral edge vorticity are
increasing continuously. Ring 𝑅

2
has become two separate

columnar vortices with the viscous dissipation. An obvious
low pressure region appears in the vicinity of the dorsal edge
on the downstream surface, which is clearly associated with
strengthening DEVW, and the local surface force vectors
show that there exists large pressure difference force. Due to
the spatial angle of the fin at this phase, the pressure difference
force is reoriented in the direction of lift, and the lift close to
the maximum is generated (referring to Figure 10(b)).

Figure 11(h) corresponds to 𝑡/𝑇 = 7/8, and DEVW,
VEVW, and TVW are being shed from the fin and these
vortices correspond to DEV

1
, VEV

1
, and TV

1
in Figure 11(a)

at the next cycle, respectively. Moreover, under the impact of
the axial induced velocity of ring RW that corresponds to ring
𝑅
1
in Figure 11(a) at the following period, VEVW and TVW

are being stretched.
Previous studies [21, 68] have shown that three-

dimensional flapping foils create wide divergent wakes
characterized by two oblique jets because of mutual vortex
induction mechanisms. In contrast to the intense, narrow
jets which are characteristic of superior hydrodynamic

performance, highly divergent foil wakes imply low levels of
thrust and propulsive efficiency of finite aspect-ratio foils.
However, above vortex dynamics analysis reveals a three-
dimensional dual-ring vortex structure of the pectoral fin
where the partial power-stroke vortex ring (𝑅

1
/RW) is linked

to the recovery-stroke ring (DEV
1
/DEVW + VEV

1
/VEVW

+ TV
1
/TVW) vertically. Thus, it is interesting to investigate

the wake field produced by the fin, and Figure 12(a) shows
one isosurface of the streamwise velocity 𝑈

𝑠
. This jet does

not seem to show any significant transverse expansion and
keeps rather compact. Figure 12(b) presents contours of the
streamwise velocity on one streamwise plane (plane shown in
Figure 12(a)).We can see that, in comparisonwith thewake of
a three-dimensional flapping foil, the wake of the fin has only
one region (as shown by dashed line) of concentrated stream-
wise momentum where streamwise velocity in the wake is
about 49% larger than that in the free stream. Therefore, the
wake of the fin is more compact and this can be considered
as a sign of the higher propulsive performance of the fin.

4.3. Effect of Key Parameters on Wake Topology and
Hydrodynamic Performance

4.3.1. Phase Angle. Previously, the effect of phase angle
between heaving/rolling and pitching for a flapping foil has
been well examined, and some interesting phenomena were
reported. von Ellenrieder et al. [19] have indicated that
the shedding timing of the leading-edge and trailing-edge
vortices is strongly affected by the phase angle. In the studies
of Polidoro [69] and Guglielmini and Blondeaux [17], it was
shown that the phase angle with the optimal foil performance
is 90∘. Read [70] has found that the variation in phase angle
can change the width of the foil wake. Since the phase angle is
an important parameter associated with the vortex structures
and hydrodynamic performance, in this section we address
the effect of phase angle on the complex-shaped low-aspect-
ratio fin.

Figure 13 shows the vortex structures for different phase
angles at the end of the motion cycle, when the fin stroke has
completed and a multitude of distinct vortex structures are
clearly seen. Herein our simulations cover a wide range of
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(b) 𝑡/𝑇 = 1/8
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Figure 11: Continued.
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(f) 𝑡/𝑇 = 5/8
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(g) 𝑡/𝑇 = 3/4
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(h) 𝑡/𝑇 = 7/8

Figure 11: Vortex structures, pressure distribution, and nondimensional surface force at selected phases in one period. The vortex structures
are identified using the 𝑄 criterion, with magnitude of isosurfaces as 0.5(𝑈/𝐶)2, and the direction of main vortices is represented by arrows.
The color scheme for pressure contours is such that red colors denote the highest pressure and blue the lowest pressure. The nondimensional
surface force is represented by vector length scale with a black arrow.
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Figure 12:Wake topology of the pectoral fin. (a) Perspective view of one isosurface of the streamwise velocity. (b) Streamwise velocity contour
plot on the streamwise plane indicated in (a). The dashed line in (b) shows the region of concentrated streamwise momentum excess in the
fin wake.

phase angles around the nominal value of 90∘. In particular,
we consider two cases with phase angles of 45∘ and 135∘
and these represent a −50% and +50% variation over the
nominal value of the phase angle. Similarities can be observed
in the vortex structures for all cases, although the tip vortex
(TVW) for Δ𝜙FE = 45

∘ is stronger than that for the Δ𝜙FE =
90
∘ and 135∘cases. Interestingly, the wake structure for the

lower-phase-angle case is wider and shorter as compared to
other two cases with phase angles of 90∘ and 135∘ and this
means that a wide divergent jet is created for the lower-phase-
angle case, which indicates low levels of thrust and propulsive
efficiency as discussed in Section 4.2. It is also noted that
for Δ𝜙FE = 135

∘ a columnar vortex (HV) can be seen to
be formed of helical vortex filaments that are reminiscent
of the tip vortex structure of a lifting wing [71], and in fact
21% more mean lift coefficient 𝐶

𝐿𝐴
is produced when the

phase angle is increased from 90
∘ to 135∘ based on the current

simulations. In the wake of a bluegill sunfish pectoral fin, the
helical structure of the abduction tip vortexwas also observed
in a study by Dong et al. [29].

The temporal variation of the thrust and lift coefficients
for different phase angles is presented in Figure 14. Inter-
estingly, although the Δ𝜙FE = 45

∘ and 135∘cases produce
slightly higher peak thrust, they do so with the 76% and 131%
lower trough value in comparison with the nominal case,
respectively. Furthermore, a smaller fluctuation in thrust is
observed for Δ𝜙FE = 90

∘. These suggest a larger mean thrust
for the nominal case. Note also that the time at which the
trough is found for Δ𝜙FE = 45

∘ is much earlier than for
two higher-phase-angle cases. This implies that the fin has
undergone a rapid transition from thrust to drag producing
behavior for the lower-phase-angle case, leading to the fin
being subjected to more drag effect in the stroke, and further
causing low level of mean thrust.We nowmove on to the plot
of the lift coefficient. It is of interest to observe an approximate
peak value of the lift for two lower-phase-angle cases, and

however the Δ𝜙FE = 135
∘ case has a remarkably higher peak

lift. This is associated with the aforementioned helical vortex
filaments similar to the tip vortex structure of a lifting wing
in the higher-phase-angle case. In fact 54% more peak lift is
reached as the phase angle is increased from 90

∘ to 135∘. As
compared to two higher-phase-angle cases, the Δ𝜙FE = 45

∘

case shows an obviously lower trough value, which implies
low level of mean lift. It should be noted that the nominal
case of 90∘ has a flatter peak and this suggests the steady
output and long duration of relatively high level of lift force.
Therefore, only 21% more mean lift is generated, as the phase
angle is raised from 90∘ to 135∘, although 54%more peak lift is
obtained.There is also a significant reduction in𝐶

𝐿𝐴
from7.87

to 4.58 as Δ𝜙FE is decreased from the nominal value to 45∘.
From the viewpoint of biomimetic fin propulsor, this kind
of relatively flat peak is beneficial to the mechanical design
since the fluctuant load which is withstood by the structure
reduces.

Figure 15 plots the variation of the time-averaged thrust
coefficient and propulsive efficiency with the phase angle,
where a noticeable result is revealed. The simulations show
that the highest thrust case with a thrust coefficient of 4.91,
the Δ𝜙FE = 90

∘ case, is also the most efficient case with a
propulsive efficiency of 44%. As the phase angle is reduced
to 45∘, there is a significant decrease in thrust coefficient
to 2.23 and the propulsive efficiency is greatly reduced to
15%.The lower-phase-angle case produces low levels of thrust
and propulsive efficiency, and this is remarkably linked to
the wide divergent jet at this phase angle. There is also
some reduction in thrust coefficient to 3.57 and propulsive
efficiency to 24% as the phase angle is increased to 135∘, but
this decrease is not as much as that observed at the lower
phase angle. Consequently, the present simulations indicate
that there is an optimal phase angle of 90∘ for this complex-
shaped pectoral fin.
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Figure 13: Vortex structures for different phase angles at 𝑡/𝑇 = 1.0. The vortex structures are identified using the𝑄 criterion, with magnitude
of isosurfaces as 0.5(𝑈/𝐶)2, and the direction of vortices is represented by arrows. For all these cases, 𝜙RC = 30

∘, 𝜙FEC = −30
∘, 𝜙RA = 30

∘,
𝜙FEA = 30

∘, St = 0.55, and Re = 2500.

4.3.2. Strouhal Number. In flapping-foil fluid dynamics and
aquatic swimming, the Strouhal number is usually taken
as a key parameter governing well-defined series of vortex
evolution and propulsive performance [21, 59, 72]. Moreover
formany kinds of fishes, the increase in swimming speedwith
their pectoral fins is achieved primarily by the variation in the
motion frequency of the fins [28, 73]. On the other hand, the
presence of an optimal range of the Strouhal number has been
well established for flapping foil and caudal fin propulsion
[68, 74, 75]. Herein we deal with the practical question of how
the hydrodynamic performance and wake structure of the fin
are expected to vary with change in Strouhal number and try
to establish optimal St for the current black bass pectoral fin.

In addition to simulations at St = 0.55 which have been
described so far, two additional cases are simulated with
Strouhal numbers of 0.25 and 0.85 around the nominal value
of 0.55. The wake vortices at the end of the motion period
for different Strouhal numbers are displayed in Figure 16. It
can be seen that the vortices become stronger as the Strouhal
number is increased, especially the recovery-stroke vortex
ring (DEVW + VEVW + TVW) near the fin. This makes
sense because an increase in Strouhal number implies an
increase in the fin stroke velocity relative to the surrounding
fluid velocity, thereby leading to the increase in the vortex
strength. It is interesting to note that the power-stroke vortex
ring (RW) detaches from the recovery-stroke ring for the
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Figure 15: Hydrodynamic performance as a function of phase angle.

lower-Strouhal-number case. Considering St as a ratio of
the time scale of the convection to the flapping time scale
of the fin, a decreasing St suggests an increasing flapping
time scale and this allows the power-stroke ring to convect
downstream farther during the labriform swimming of the fin
and detach from the recovery-stroke ring. Another important
observation is that, with the increase in Strouhal number,
the vortex rings in the wake (RW and previously shed ring)
become more oriented in the streamwise direction with
decreasing included angle between the 𝑋-axis and ring axis,
which increases the streamwise momentum of the jet.

Figure 17(a) presents the variation in the thrust coefficient
with time for different Strouhal numbers. Interestingly, all
the plots show the same phase in time; for example, the
location of the peak is reached at about 14% of the cycle
and the location of the trough is found at about 84% of
the stroke. It should be noted that the peak value becomes
remarkably larger with increasing Strouhal number. There

is a 97% increase in peak thrust, as the Strouhal number is
increased from the nominal value to 0.85, in contrast with
66% lower trough value. This implies the increase in the
mean thrust with Strouhal number. The variation in the lift
coefficient with time for different Strouhal numbers is shown
in Figure 17(b). Similar to the thrust behavior, for all cases
temporal variation of 𝐶

𝐿
shows the same phase; for example,

the time at which the trough occurs is about 6% of the period
and the time at which the peak appears is about 79% of the
cycle. It can be seen that the peak lift increases as the Strouhal
number is raised. It is however interesting to note that the
108% lower trough value is found, as St is increased from 0.55
to 0.85, in spite of a 69% increase in peak lift. This suggests
that the increase in the mean lift with Strouhal number is not
so obvious as the increase in 𝐶

𝑇𝐴
with St.

The variation of the time-averaged thrust coefficient and
propulsive efficiency with the Strouhal number is shown in
Figure 18. A finding is that, for the fin, with the increase in
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Figure 16: Vortex structures for different Strouhal numbers at 𝑡/𝑇 = 1.0.The vortex structures are identified using the𝑄 criterion and flooded
by vorticity magnitude. For all these cases, 𝜙RC = 30
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Figure 17: Temporal variation of force coefficients for different Strouhal numbers.

Strouhal number, the thrust increases monotonically. This is
associatedwith the strengthening of thewake vortices and the
orientation change of the vortex rings (referring to Figure 16),
leading to the increase in the jet streamwise momentum
which is directly proportional to the thrust produced by the
fin. Such a phenomenon has been well reported for two-
dimensional and three-dimensional flapping foils [22, 76–
78], and the present study clearly reveals that the complex-
shaped finwith labriform swimmingmode also shows similar
behavior. This is in consistency with the fact that many kinds

of fishes increase their swimming speed using larger thrust
produced by the increase in the fin motion frequency. How-
ever, the propulsive efficiency in Figure 18 attains a peak value
at a Strouhal number of about 0.55 first and then decreases
after that point. In particular, as St is increased from 0.25
to 0.55, there is a significant increase in efficiency from 22%
to 44%, which is remarkably linked to the increasing thrust.
Also a not precipitous reduction in efficiency to 32% is found,
as the Strouhal number is further increased to 0.85, due to the
more viscous cancellation of opposite signed vorticity with
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the emergence of complex interconnections among vortex
rings (referring to Figure 16).Thus, the present computations
indicate that there is an optimal Strouhal number range for
the low-aspect-ratio pectoral fin. The optimal St value of
about 0.55 is highly close to the 0.54 value predicted in
the previous study on the bluegill sunfish pectoral fin by
Bozkurttas et al. [28]. Also Hover et al. [74] have found
that, depending on the choice of kinematic parameters, the
optimal Strouhal numbers of a flapping foil can change from
0.3 to 0.6.

5. Conclusions

Numerical simulations are carried out to study the propulsion
mechanism and hydrodynamic performance for the pectoral
fin of a black bass during the labriform swimming. Simu-
lations of flow around the complex-shaped low-aspect-ratio
fin are achieved by the developed IB method, in which we
have proposed an efficient local flow reconstruction scheme
with enough robustness for tackling special cases probably
encountered for the fin cutting throughCartesianmesh of the
flow field. Moreover, a new numerical treatment with excel-
lent adaptability based on modified Shepard interpolation
is developed to deal with the role variation of the Eulerian
grid points near the IB caused by the fin motion. The good
agreement with reference results in the literatures shows that
the developed IB method can simulate the unsteady motion
of the complicated pectoral fin quite well.

In each cycle the prescribed fin kinematics consist of the
power stroke and the recovery stroke, and the computational
results indicate that the former is primarily employed to
provide the thrust while the latter is primarily employed to
provide the lift beneficial to the maneuverability. The vortex
dynamics analysis interestingly reveals that the fin wake is
dominated by a three-dimensional dual-ring vortex wake
structure where the partial power-stroke vortex ring is linked
to the recovery-stroke ring vertically. In particular, the power-
stroke ring is oriented obviously more downstream and is
responsible primarily for the thrust production of the black
bass pectoral fin. However, the recovery-stroke vortex ring is
oriented remarkablymore ventrally and serves to generate lift

force. Previous studies [21, 58] on finite-aspect-ratio flapping
foils have shown that the foil creates a vortex ring every
half-period and these rings are released in alternating order,
and finally the divergent foil wake is dominated by two sets
of inclined vortex rings. Consequently, the dual-ring vortex
wake structure linked vertically with distinct directions of
ring axesmeans that the pectoral fin of black bass has a highly
compact wake (referring to Figure 12 and corresponding
discussion) and produces a jet oriented more posteriorly and
ventrally, leading to the generation of more thrust and lift as
compared to an engineered flapping foil. Drucker and Lauder
[79] have found that the pectoral fin of bluegill sunfish creates
a single vortex ring every fin stroke at low forward speeds
and a pair of linked vortex rings (with one ring attached
to the fish body and only partially complete) at maximal
swimming speeds. The fully three-dimensional, volumetric
imaging [80] has revealed that the wake of the shark tail
is made up of one set of dual-linked vortex rings formed
per half-cycle. Thus despite the absence of the flexibility and
adjacent fish body, it seems that the predicted wake structure
does share some rudimentary features with real fish fins.
For the development of a biologically inspired robotic fin,
although we cannot fully replicate the exceedingly complex
structure and the whole kinematical minimal features of
actual pectoral fins, the above key features of vortex structures
should be embodied. Analysis on the connection between
the fin kinematics, vortex dynamics, and force production
shows that the high thrust generated during the power stroke
is driven by several distinct vortex structures attached to
the fin edge and the large area normal to the incoming
flow. However, the produced lift during the recovery stroke
is motivated by the increasingly strong dorsal edge vortex
and pressure difference force tilted in the lift direction.
Furthermore in contrast to a three-dimensional flapping
foil, the study on the wake field indicates that the fin wake
remains fairly compact and has only one area of intense
streamwise momentum, and this implies high levels of thrust
and propulsive efficiency.

We also conduct a parametric study to understand how
the propulsive characteristics of the pectoral fin change with
key governing parameters and to explore the vortex dynamics
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mechanism underlying the variation. The simulations show
that the case with a phase angle of 90∘ is of the highest
thrust and is the most efficient case. The lower-phase-angle
case creates wider and shorter wake that is responsible for
low levels of thrust and propulsive efficiency. However, the
columnar vortex with helical vortex filaments is formed
under the higher-phase-angle case and this supports more
produced lift. Therefore, the current investigation suggests
that the phase angle should be adjusted close to 90∘ when a
mechanical pectoral fin mimicking the labriform swimming
is developed, in order to obtain best propulsive performance
during steady forward locomotion, whereas for making use
of larger lift to maneuver, the fin motion should be actuated
with further increased phase angle.

With the increase in Strouhal number, the strength of
the vortex rings in the wake increases and these rings
become more oriented in the streamwise direction, leading
to increased thrust and further causing rapidly increasing
propulsive efficiency. Interestingly, the present results suggest
that a Strouhal number of 0.55 which is the nominal value in
this study makes the pectoral fin operated under the highest
efficiency. After that point a relatively slowly decreasing effi-
ciency is observed, which is associated with the more viscous
cancellation due to complex vortex interaction, and the fin
still has a considerable efficiency at relatively large Strouhal
numbers. To our knowledge, the presence of an optimal
interval of St has been well documented for flapping foil and
caudal fin propulsion, and the simulations show that such a
range does exist for the black bass pectoral fin. Thus, the fin
should be operatedwithin the optimal range of this parameter
when the biomimetic underwater vehicle propelled by it is
cruising, so as to maintain optimal propulsive efficiency and
increase endurance time and mileage. However for a starting
maneuver, the fin can swim at a relatively high Strouhal
number to provide larger thrust while keeping considerable
propulsive efficiency.

The work contributes to the understanding of the fluid
dynamics of biomimetic pectoral fin propulsion. However,
the flow associated with actual fish locomotion is more
diverse and complex than the flow over the pectoral fin
undergoing the labriform swimming considered here. Ideally,
simulations of flow around fish body with flexible fins are
desirable. This will be a subject of our future study.
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