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Abstract: Due to the unique two-dimensional structure and features of graphitic carbon nitride
(g-C3N4), such as high thermal stability and superior catalytic property, it is considered to be
a promising flame retardant nano-additive for polymers. Here, we reported a facile strategy to
prepare cobalt/phosphorus co-doped graphitic carbon nitride (Co/P-C3N4) by a simple and scalable
thermal decomposition method. The structure of Co/P-C3N4 was confirmed by scanning electron
microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The carbon
atoms in g-C3N4 were most likely substituted by phosphorous atoms. The thermal stability of
polylactide (PLA) composites was increased continuously with increasing the content of Co/P-C3N4.
In contrast to the g-C3N4, the Polylactide (PLA) composites containing Co/P-C3N4 exhibited better
flame retardant efficiency and smoke suppression. With the addition of 10 wt % Co/P-C3N4, the peak
heat release rate (PHRR), carbon dioxide (CO2) production (PCO2P) and carbon oxide (CO) production
(PCOP) values of PLA composites decreased by 22.4%, 16.2%, and 38.5%, respectively, compared
to those of pure PLA, although the tensile strength of PLA composites had a slightly decrease. The
char residues of Co/P-C3N4 composites had a more compact and continuous structure with few
cracks. These improvements are ascribed to the physical barrier effect, as well as catalytic effects of
Co/P-C3N4, which inhibit the rapid release of combustible gaseous products and suppression of toxic
gases, i.e., CO.

Keywords: polylactide; graphitic carbon nitride; flame retardancy; smoke suppression

1. Introduction

Polylactide (PLA) is a widespread biobased and biodegradable polyester. It has been widely utilized
in numerous fields, such as agriculture, packaging, automobile components and electronics [1–5], due to
its superior physical and mechanical properties. However, some disadvantages, like poor thermal
stability, weak mechanical strength and high flammability of PLA restrict its further applications.
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Recently, two-dimensional (2D) nanomaterials such as graphene and its derivatives [6], montmorillonite
(MMT) [7], and layered double hydroxide (LDH) [8,9], have been explored to improve the thermal
stability, fire performance, and mechanical properties of PLA matrix.

Graphitic carbon nitride (g-C3N4) is a 2D nanomaterial that has received considerable attention,
due to its thermal stability, chemical resistance and unique optical properties [10]. It can be large
scale prepared by rapid polymerization of cheap precursors, like cyanamide [11], melamine [12],
and dicyandiamide [13]. Nowadays, many researchers have attempted to utilize g-C3N4 or its
modifications as flame-retardant additives to enhance the flame retardancy of polymers [14]. Shi et al.
demonstrated that the g-C3N4/MWCNT hybrid layer on the surface of PS spheres could act as
“tortuous path” to reduce the permeation of heat [15]. The g-C3N4 nanosheets, in combination
with reduced graphene oxide, served as excellent barriers in the PS matrix and reduced pyrolysis
gaseous products during combustion [16]. Moreover, it has been demonstrated that the incorporation
of various traditional flame retardants, together with g-C3N4, could endow polymers with better
flame retardancy [17]. However, the poor thermal-oxidative stability and limited catalytic charring
capacity of g-C3N4 limit its applications in flame retardation of polymeric materials. Element doping is
considered as a convenient and effective method for adjusting the properties of g-C3N4 [18]. Different
elements, including boron, phosphorus, sulfur, and cobalt have been introduced into the g-C3N4

framework successfully [19,20]. It is widely accepted that phosphorus-containing additives contribute
to enhancing the flame retardancy of polymers [21,22]. Furthermore, it has been proved that the
presence of transition metal elements perform good catalytic oxidation of CO and organic volatiles
during combustion of polymers [23]. Therefore, it is reasonable to expect that the doped g-C3N4

with phosphorus and transition metal elements may possess good flame retardant performance for
polymers. To the best of our knowledge, the application of doped g-C3N4 in flame retardant polymer
materials with outstanding efficiency is still not reported.

In this work, cobalt/phosphorus co-doped g-C3N4 (Co/P-C3N4) was prepared by a simple
and scalable thermal decomposition method. Then the effects of the Co/P-C3N4 concentration on
thermal stability, fire safety and mechanical properties of PLA composites were studied. Meanwhile,
the mechanism for fire hazard reduction of PLA was also proposed.

2. Materials and Methods

2.1. Materials

Polylactide (PLA, Ingeo 4032D) was supplied by Natureworks (Minnetonka, MN, USA).
Hexachlorotriphosphazene (HCCP), melamine, and cobalt chloride (CoCl2) were purchased from J&K
(Shanghai, China).

2.2. Preparation of Pure and Doped Graphitic Carbon Nitride

The pure and cobalt/phosphorus co-doped g-C3N4 (Co/P-C3N4) was prepared by one-step thermal
decomposition method according to published work [24]. For pure graphitic carbon nitride (g-C3N4),
the melamine was sealed a covered crucible and transformed into the tube furnace (OTF-1200X, Kejing
Materials Technology Co, Hefei, China). A specimen was heated to 550 ◦C at a heating rate of 5 ◦C/min
in air atmosphere, and maintained at 550 ◦C for 4 h to complete the reaction. For phosphorus and
cobalt co-doped graphitic carbon nitride (Co/P-C3N4), the CoCl2·6H2O was first mixed with melamine
in the weight ratio of 5/90, and dried in an air-circulating oven before grounding. Then, the HCCP was
uniformly grounded and mixed with melamine and CoCl2. The weight ratio of HCCP and melamine
was fixed at 1:9. Finally the sample was calcined as the same heating procedures. The synthesis
diagram was shown in Scheme 1.
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Scheme 1. The synthesis route of Co/P-C3N4. 

2.3. Preparation of PLA-based Composites 

A desired amount of the obtained g-C3N4 or Co/P-C3N4 was mixed with PLA in an internal 
mixer (Plastic-Corder, Brabender, Duisburg, Germany). The samples were processed by setting at 
190 °C, 60 rpm for 8 min. Then, pure PLA and PLA composites were molded into standard 
specimens for further characterization by hot-compression (190 °C, 5 min). The samples were 
abbreviated as g-C3N4-X and Co/P-C3N4-X, respectively, where X stands for the weight ratio of 
flame retardant fillers in PLA composites. The formulations were listed in Table 1.  

Table 1. Formulations, LOI and UL-94 test results of PLA composites. 
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(wt %) 
Co/P-C3N4 

(wt %) 
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UL-94 test 
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t2 
(s) 

UL-94 
Rate Dripping 

Pure PLA 100 -- -- 19.5 > 50 -- NR Yes 
g-C3N4-2% 98 2 -- 20 21.3 10.2 V-2 Yes 

Co/P-C3N4-2% 98 -- 2 21 15.8 20.4 V-2 Yes 
Co/P -C3N4-5% 95 -- 5 22 14.7 13.3 V-2 Yes 

Co/P 
-C3N4-10% 90 -- 10 22.5 12.8 3.5 V-1 Yes 

2.4. Characterization 

The morphology of the Co/P-C3N4 was observed by field-emission scanning electron 
microscopy (FE-SEM, Quata 250, FEI, Waltham, MA, USA) with an energy-dispersive X-ray 
spectroscopy (EDX, Oxford Instrument, Abington, UK). Wide angle x-ray diffraction (XRD) 
patterns of the samples were recorded by using a X-Ray diffractometer (SmartLab, Rigaku, Tokyo, 
Japan) in the 2θ range of 10°–80° with a step of 0.02°. X-ray photoelectron spectroscopy (XPS, 5802 
spectrometer, Physical Electronics PHI, Kanagawa, Japan) was used to determine the elemental 
compositions and chemical state of different elements. The melting enthalpies and recrystallization 
enthalpies were traced by a differential scanning calorimetry (DSC, DSC-204F1, Netzsch, Selb, 
Germany). Samples were heated and cooled in temperatures ranging from 30 to 190 °C at a ramp 
rate of 10 °C/min under nitrogen flow. Thermogravimetric analysis (TGA) was carried out on a 
thermal gravimetric analyzer (TGA-209F3, Netzsch, Selb, Germany) from 30 to 700 °C at a ramp rate 
of 10 °C/min under nitrogen flow. Limited oxygen index (LOI) testing was conducted on an oxygen 
index instrument (HC-2, Jiangning Analytical Instrument, Nanjing, China). The dimensions of the 
specimens were 100 × 6.5 × 3.0 mm3. The vertical burning test was carried out on a self-designed 
UL-94 vertical flame chamber according to GB/T2408-2008 with sample sizes measuring 130 × 13 × 
3.0 mm3. Flammability properties were measured by a cone calorimeter (Fire Testing Technology, 
West Sussex, UK) according to the standard of ISO 5660. Samples (100 × 100 × 3 mm3) were tested 
under a heat flux of 35 kW/m2.  

Scheme 1. The synthesis route of Co/P-C3N4.

2.3. Preparation of PLA-Based Composites

A desired amount of the obtained g-C3N4 or Co/P-C3N4 was mixed with PLA in an internal
mixer (Plastic-Corder, Brabender, Duisburg, Germany). The samples were processed by setting at
190 ◦C, 60 rpm for 8 min. Then, pure PLA and PLA composites were molded into standard specimens
for further characterization by hot-compression (190 ◦C, 5 min). The samples were abbreviated as
g-C3N4-X and Co/P-C3N4-X, respectively, where X stands for the weight ratio of flame retardant fillers
in PLA composites. The formulations were listed in Table 1.

Table 1. Formulations, LOI and UL-94 test results of PLA composites.

Samples
PLA

(wt %)
g-C3N4
(wt %)

Co/P-C3N4
(wt %)

LOI (%)
UL-94 Test

t1 (s) t2 (s) UL-94 Rate Dripping

Pure PLA 100 – – 19.5 >50 – NR Yes
g-C3N4-2% 98 2 – 20 21.3 10.2 V-2 Yes

Co/P-C3N4-2% 98 – 2 21 15.8 20.4 V-2 Yes
Co/P-C3N4-5% 95 – 5 22 14.7 13.3 V-2 Yes
Co/P-C3N4-10% 90 – 10 22.5 12.8 3.5 V-1 Yes

2.4. Characterization

The morphology of the Co/P-C3N4 was observed by field-emission scanning electron microscopy
(FE-SEM, Quata 250, FEI, Waltham, MA, USA) with an energy-dispersive X-ray spectroscopy (EDX,
Oxford Instrument, Abington, UK). Wide angle x-ray diffraction (XRD) patterns of the samples
were recorded by using a X-Ray diffractometer (SmartLab, Rigaku, Tokyo, Japan) in the 2θ range
of 10◦–80◦ with a step of 0.02◦. X-ray photoelectron spectroscopy (XPS, 5802 spectrometer, Physical
Electronics PHI, Kanagawa, Japan) was used to determine the elemental compositions and chemical
state of different elements. The melting enthalpies and recrystallization enthalpies were traced
by a differential scanning calorimetry (DSC, DSC-204F1, Netzsch, Selb, Germany). Samples were
heated and cooled in temperatures ranging from 30 to 190 ◦C at a ramp rate of 10 ◦C/min under
nitrogen flow. Thermogravimetric analysis (TGA) was carried out on a thermal gravimetric analyzer
(TGA-209F3, Netzsch, Selb, Germany) from 30 to 700 ◦C at a ramp rate of 10 ◦C/min under nitrogen flow.
Limited oxygen index (LOI) testing was conducted on an oxygen index instrument (HC-2, Jiangning
Analytical Instrument, Nanjing, China). The dimensions of the specimens were 100 × 6.5 × 3.0 mm3.
The vertical burning test was carried out on a self-designed UL-94 vertical flame chamber according
to GB/T2408-2008 with sample sizes measuring 130 × 13 × 3.0 mm3. Flammability properties were
measured by a cone calorimeter (Fire Testing Technology, West Sussex, UK) according to the standard
of ISO 5660. Samples (100 × 100 × 3 mm3) were tested under a heat flux of 35 kW/m2.
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3. Results and Discussion

3.1. Characterization of Co/P-C3N4

Figure 1a. shows the SEM image of the as-synthesized Co/P-C3N4. It is noted that the Co/P-C3N4

exhibits an aggregated, rough, and plate-like particles consisting of lamellar structures. The XRD
patterns of the g-C3N4 and Co/P-C3N4 are presented in Figure 1b. It shows a strong diffraction peak at
27.7◦, which is assigned to the (002) interplane of g-C3N4 induced by stacking of conjugated aromatic
structures of thiotriazinone [25]. In addition, the peak located at 13.2◦ is ascribed to the diffraction
of (100) plane. With the doping of cobalt (Co) and phosphorus (P) elements, the intensity of the
diffraction peak at 43.1◦ and 57.4◦ decreases, suggesting that Co and P atoms have been doped into the
structure of g-C3N4 successfully. To compare the thermal stability of g-C3N4 and Co/P-C3N4, TGA was
performed under nitrogen atmosphere, as shown in Figure S1. It is obvious that the decomposition
curve of Co/P-C3N4 shifts to a higher temperature, as compared with that of pure g-C3N4. Moreover,
the residue at 800 ◦C for Co/P-C3N4 (6.68 wt %) is also higher than that of pure g-C3N4 (0.83 wt %).
These results indicate that Co/P-C3N4 has a better thermal stability.
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Figure 2a shows the XPS full survey spectra of g-C3N4 and Co/P-C3N4. It can be seen that there
are three main peaks in the spectra, corresponding to C 1s, N 1s, and O 1s, respectively. The atomic
percentage of carbon and nitrogen elements in Co/P-C3N4 decrease to 67.7 at.%, and 19.1 at.%,
respectively, due to the introduction of cobalt and phosphorus. The presence of oxygen in g-C3N4 is
due to the surface absorption and oxidation in air atmosphere, which is in good consistence with the
reported results [24]. In addition, the oxygen content in Co/P-C3N4 increases significantly, compared
with that of g-C3N4. It is conjectured that the Co/P element reacted with oxygen (O2) in air atmosphere
during the copolymerization reaction. The high resolution C 1s spectrum of g-C3N4 in Figure 2b shows
three obvious peaks at 284.8, 286.2, and 288.1 eV, which are attributed to graphitic carbon (C–C), carbon
in C–NH2 species, and carbon in the N-containing aromatic ring (N–C=N), respectively [26,27]. With the
doping of cobalt and phosphorus atoms, the N–C=N peak intensity for Co/P-C3N4 grows significantly,
while the C–C peak intensity decreases simultaneously. In addition, the peak attributed to C-NH2

bond disappears, indicating that the presence of Co and P atoms contributes to the polymerization of
graphitic carbon nitride. The high resolution N 1s spectrum of g-C3N4 in Figure 2c can be deconvoluted
into three peaks with the binding energy of 398.6, 399.2 and 400.6 eV. The main peak at 398.6 eV
is attributed to the aromatic nitrogen in triazine rings (C–N=C), while two weak peaks located at
399.4 eV and 400.7 eV refer to the sp2-hybridized N bonds, i.e., [C–N(–C)–C) and C–N(–H)–C] [28,29].
Moreover, the N 1s spectrum of Co/P-C3N4 exhibits three main deconvolution peaks at 398.4, 399.2
and 400.7 eV, showing a slight change after doping. The deconvoluted results of the N 1s spectra are
shown in Table S1. It is observed that the atomic percentage of C–N=C groups for Co/P-C3N4 increases
from 49.8% to 61.8%. As shown in Figure 2d, the signal peak centered at 132.7 eV in high resolution
P 2p spectrum is ascribed to the P–N bond, while a weak band at 134.0 eV refers to the P=O bond,
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which further confirm that the doped phosphorous atoms most likely substitute the carbon atoms in
Co/P-C3N4 [30,31]. The characteristic peaks at 782.5 eV and 799.0 eV for Co 2p spectrum in Figure 2d
correspond to Co 2p3/2 and Co 2p1/2, respectively [32]. The above XPS results confirm the presence of
Co and P elements, indicating the successful preparation of Co/P-C3N4.
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3.2. Morphology of PLA Composites

Figure 3 presents the SEM images of the fractured surfaces for PLA composites. It is noted that
pure PLA in Figure 3a has a smooth and no-crinkled surface, which is corresponding to the brittle
fracture [33]. The fractured surface of PLA composites containing Co/P-C3N4 (Figure 3b–d) becomes
rougher with increasing Co/P-C3N4. Furthermore, many tiny cavities could be found on the surfaces
in Figure 3c,d, indicating that the poor interfacial interaction between Co/P-C3N4 and PLA matrix with
a loading over a critical value.
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3.3. Crystallization Behavior of PLA Composites

The crystallization behavior of PLA composites was measured by DSC. Figure 4 depicts the first
cooling and second heating curves of PLA composites as a function of Co/P-C3N4 content. As shown
in Figure 4a, no crystallization peaks appear during the cooling process, which is caused by the rigid
segments in the PLA main chain [34]. As shown in Table 2, the glass transition temperature (Tg) of the
PLA composites are higher than that of pure PLA, which suggests that the introduction of Co/P-C3N4

hinders the movement of the PLA segments. The exothermic peaks observed between 100 and 130 ◦C
in Figure 4b are associated with the cold crystallization of PLA. In addition, it is noted that double
endothermic peaks appear around 170 ◦C in the Co/P-C3N4 composites, which are related to the melting
of PLA. Fukushima et al. reported that the melt-recrystallization phenomenon of PLA was ascribed to
different forms of crystals [35]. The low-melting peak (Tm1) relates to the β-crystal, which is an imperfect
crystal structure, while the high-melting peak (Tm2) is assigned to the most common polymorph
α-crystal of PLA. This result indicates that the addition of Co/P-C3N4 will restrict the mobility of PLA
chains, which is similar to other PLA-based composites [36]. The cold-crystallization enthalpy (∆Hcc)
of Co/P-C3N4-2% shows a little increase as compared with that of pure PLA. With further increasing
the content of Co/P-C3N4, ∆Hcc decreases significantly. Similarly, the melting enthalpies (∆Hm) exhibit
a decrease trend with the filler content. In addition, the crystallinity degree (χc) of PLA composites is
lower than that of pure PLA, indicating that Co/P-C3N4 has no nucleation effect on PLA matrix [37].
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Table 2. DSC data of PLA composites.

Samples Tg (◦C) Tcc (◦C) ∆Hcc (J/g) Tm1 (◦C) Tm2 (◦C) ∆Hm (J/g) χc (%)

Pure PLA 61.5 106.5 35.5 – 169.6 41.2 6.1
Co/P-C3N4-2% 62.1 116.5 36.0 165.6 169.7 38.9 3.2
Co/P-C3N4-5% 62.2 115.7 28.6 165.3 170.1 31.8 3.6

Co/P-C3N4-10% 62.3 114.7 27.3 165.1 170.0 31.3 4.6

3.4. Thermal Stability of PLA Composites

The thermal stability of PLA composites under nitrogen atmosphere were examined with the
detailed results shown in Figure 5 and Table 3. T10 represents the initial decomposition temperature
where 10% weight loss occurs, while Tmax refers to the temperature at the maximum mass loss rate.
As shown in Figure 5a, the T10 values are 338.1, 339.8 and 342.8 ◦C for Co/P-C3N4-2%, Co/P-C3N4-5%
and Co/P-C3N4-10%, respectively, which are all slightly higher than that of pure PLA (335.1 ◦C).
This phenomenon may be ascribed to the labyrinth effect of Co/P-C3N4 in the composites [38].
From Figure 5b, it is observed that pure PLA shows only one peak between 300 and 380 ◦C, which is
ascribed to the chain scission of PLA. Two decomposition peaks are observed for PLA composites.
The main peak in the temperature range of 300–400 ◦C is similar to pure PLA, while the small peak
between 500 and 650 ◦C corresponds to the decomposition of Co/P-C3N4. This is due to the thermal
decomposition of Co/P-C3N4 at a higher temperature. As shown in Table 3, pure PLA shows almost
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no char residues at 700 ◦C. whereas the char residues of PLA composites increase continuously with
increasing Co/P-C3N4 content, which are attributed to the catalytic charring capability of Co/P-C3N4.
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Table 3. TGA data of PLA composites.

Samples T10 (◦C) Tmax (◦C) Char Residue at 700 ◦C (wt %)

Pure PLA 335.6 364.9 0.03
Co/P-C3N4-2% 338.1 365.2 1.65
Co/P-C3N4-5% 339.8 364.9 1.78
Co/P-C3N4-10% 342.8 365.8 1.96

3.5. Fire Performance of PLA Composites

LOI and UL-94 vertical burning tests are widely utilized to assess the flame retardant performance
of polymers for specific engineering applications. The LOI and UL-94 test results for pure PLA and its
composites are presented in Table 1. Pure PLA has a lower LOI value of 19.5% and no rating in UL-94
test, indicating it is highly susceptible to flames. The LOI values of PLA composites exhibit a slightly
increase with the addition of Co/P-C3N4. Moreover, the presence of Co/P-C3N4 had a positive effect on
the UL-94 vertical burning tests. The samples of PLA composite containing 10 wt % Co/P-C3N4 exhibit
a reduced burning rate and pass V-1 rating, which is much better than those of pure PLA. However,
the dripping phenomenon of PLA is still persisted.

Cone calorimetry is one of the most comprehensive methods to measure the combustion
performance of polymer materials [39–41]. The heat release rate (HRR), total heat release (THR), carbon
dioxide (CO2) production rate (CO2P) and carbon monoxide (CO) production rate (COP) curves of
pure PLA and its composites are shown in Figure 6, and the corresponding data are listed in Table 4.
In Figure 6a, the peak of HRR (pHRR) of g-C3N4-2% reduces to 364.8 kW/m2 showing a slight decrease,
compared with that of pure PLA (394.3 kW/m2). This is due to the fact that g-C3N4 serves as a thermal
barrier to reduce rapid heat release during combustion [42]. In the case of Co/P-C3N4-2%, the pHRR
value decreases to 321.0 kW/m2, indicating that Co/P-C3N4 exhibits a better barrier effect than g-C3N4.
Moreover, a significant delay in time to ignition (TTI) is observed for PLA-Co/P-C3N4 composites.
Particularly, the maximum delay is observed for Co/P-C3N4-10% (~79 s). The THR curves of pure
PLA and PLA composites are presented in Figure 6b. It is evident that the THR of PLA composites
containing Co/P-C3N4 decreases continuously with the increase of Co/P-C3N4 content. For instance,
the THR value of Co/P-C3N4-10% decreases from 56.4 to 51.9 MJ/m2. Toxic gases and fumes are
regarded as larger threatens during fire accident [43]. The CO2 production rate (CO2P) curves of pure
PLA and its composites are depicted in Figure 6c. It is observed that the CO2P exhibits a similar
tendency to HRR value. The peak CO2 production rate (PCO2P) for Co/P-C3N4-10% decreases to
0.390 g/s, which is reduced by 16.2%, as compared to that of pure PLA. It is worthy to note that the peak
of CO production rate (PCOP) of g-C3N4-2% increases up to 504.7 ppm (Figure 6d). It is speculated
that the introduction of pure g-C3N4 isolates oxygen, resulting in the incomplete combustion of PLA
matrix. In comparison, the presence of Co/P-C3N4 can inhibit the production rate of CO. With the
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incorporation of 10 wt % Co/P-C3N4, the PCOP value reduces noticeably by 38.5% compared to pure
PLA (174.9 ppm). Co atoms can play a catalytic role during combustion and convert toxic gases such
as CO into non-toxic gases, which is very conducive to evacuation in a fire [44,45].
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Figure 6. Cone calorimeter test results of pure PLA and PLA composites: (a) heat release rates, (b) total
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Table 4. Combustion results of control PLA and its composites obtained from cone calorimeter tests.

Samples TTI (s) TPHRR (s) PHRR
(kW/m2)

THR
(MJ/m2)

Char Residue
(wt %)

PCO2P
(g/s)

PCOP
(ppm)

Pure PLA 63 158 394.3 56.4 0.1 0.465 174.9
g-C3N4-2% 69 162 364.8 55.4 3.9 0.434 504.7

Co/P-C3N4-2% 73 180 321.0 54.7 5.5 0.405 168.0
Co/P-C3N4-5% 78 176 311.9 53.8 7.1 0.394 154.3
Co/P-C3N4-10% 79 204 306.1 51.9 8.9 0.390 107.6

3.6. Analysis of Char Residues

Digital photos of char residues are repented in Figure 7. Almost no char residues can be observed
for control PLA, as shown in Figure 7a, indicating that pure PLA is completely burnt out. With the
addition of 2 wt % g-C3N4, the char residues exhibit many cracks and unintegrated structure (Figure 7b).
Meanwhile, the PLA composites containing Co/P-C3N4 (Figure 7c–e) have thick, integrated, and dense
carbonization zone. With increasing the Co/P-C3N4 content, the char layer becomes thicker which is
favorable for preventing heat conduction and gas diffusion to inhibit the combustion [46]. To observe
the micromorphology of the char residues, the SEM images are presented in Figure 8. Figure 8a shows
that the char residues of g-C3N4-2% exhibit a loose and porous structure with a large number of
honeycomb piles-like pores, which cannot hinder the burning efficiently. For Co/P-C3N4-2% (Figure 8b),
the compact and continuous char layer can be observed, suggesting that the char-forming process is
improved. The presence of Co and P elements in doped g-C3N4 contributes to the formation of intact
char residues to hinder heat transfer and slow down the diffusion of gas during combustion.
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The chemical composition of char residues was examined by XPS, and the relevant results are
shown in Figure 9 and Table S2. It is observed that the high solution C 1s spectrum of g-C3N4-2%
in Figure 9a can be deconvoluted into three peaks at 287.4, 284.8 and 283.9eV, corresponding to C=O,
C–C and graphitic C–C, respectively. As shown in Figure 9b, the deconvoluted peaks at 287.6, 284.4 and
283.8 eV for C 1s spectrum are assigned to C=O/C–P, C–C and graphitic C–C. As observed in Table S2,
the atomic percentage of graphitic C in the char residues of Co/P-C3N4-2% decreases from 17.8% to
7.1% for g-C3N4-2%. Meanwhile, the atomic ratio of C=O and/or C-P bonds increases from 70.4% to
79%. The N 1s spectra (Figure 9c,d) of the char residues for g-C3N4-2% and Co/P-C3N4-2% are fitted to
three similar peaks. The percentage of O–N=O bonds (397.9 eV) in the char residue of Co/P-C3N4-2%
is 65.7%, which is higher than that of g-C3N4-2% (53.2%). Moreover, the high-resolution spectrum of P
2p in Figure 9e indicates the coexistence of P–C (133.8 eV), O–P=O (132.8 eV) and P–O–P (132.1 eV).
Such char layer is believed to serve as a better physical barrier in protecting the underlying polymers
against a flame [47–49].

Based on the abovementioned analysis, the possible flame retardant mechanism is illustrated
in Figure 10. Pure PLA absorbs heat and releases volatile gaseous without any restriction upon exposure
to a fire. It will release a large amount of smoke and toxic gases (CO) due to continuous fuel supply,
which will increase the potential fire hazard of PLA. With the addition of g-C3N4, PLA composites can
form a loose and discontinuous char layer with many cracks. The heat and oxygen can penetrate into
this char layer easily, resulting in a low protection efficiency for underlying polymers [50]. Noticeably,
the CO production rate of PLA/g-C3N4 composite increases significantly as compared to that of
pure PLA. It is conjectured that the char layer isolates oxygen and fuel, resulting in the incomplete
combustion of PLA. As a comparison, the char residue of PLA composite containing Co/P-C3N4 shows
a compact and coherent structure. In addition, P/Co co-doped -C3N4 generates more active sites with
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high catalytic capability in addition to catalytic role of Coin char layer, which contributes to oxidation
of the toxic pyrolysis product, i.e., CO into CO2 [51].
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3.7. Mechanical Properties

The tensile stress-strain curves of PLA composites are shown in Figure 11a. It is observed that
both the tensile strength and elongation at the break of the PLA composites decrease continuously
as compared with those of pure PLA. The higher loading of the Co/P-C3N4 results in larger Young’s
modulus and smaller elongation at break. It can be explained that the Co/P-C3N4 serves as a rigid filler
to restrict the movement of PLA molecular chains and bear the force themselves [52,53]. However,
the poor interface adhesion between Co/P-C3N4 and PLA, as shown in Figure 3, will lead to a decrease
in tensile strength. Figure 11b presents the dependence of tensile strength and Young’s modulus of
PLA composites on Co/P-C3N4 content. It is found that pure PLA belongs to a brittle material with
a tensile strength of 58.05 MPa and a Young’s modulus of 1349 MPa. With the addition of 10 wt %
Co/P-C3N4, the tensile strength of PLA composites decreases to 50.21 MPa. Meanwhile, the Young’s
modulus of Co/P-C3N4-10% reaches 1496 MPa, a 10.9% improvement, compared with that of pure PLA.
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4. Conclusions 

In this work, we demonstrated a facile strategy to prepare Co/P-C3N4 by a simple and scalable 
thermal decomposition method, which was then utilized to prepare flame retardant PLA 
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