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Summary
From the pioneering moment in 1987 when the insulinotropic effect of glucagon-like peptide 1 (GLP-1) was first
demonstrated in humans, to today’s pharmaceutical gold rush for GLP-1-based treatments of obesity, the journey of
GLP-1 pharmacology has been nothing short of extraordinary. The sequential conceptual developments of long-acting
GLP-1 receptor (GLP-1R) mono-agonists, GLP-1R/glucose-dependent insulinotropic polypeptide receptor (GIPR)
dual-agonists, and GLP-1R/GIPR/glucagon receptor (GcgR) triple agonists, have led to profound body weight-
lowering capacities, with benefits that extend past obesity and towards obesity-associated diseases. The GLP-1R/
GIPR dual-agonist tirzepatide has demonstrated a remarkable 23% body weight reduction in individuals with
obesity over 72 weeks, eclipsing the average result achieved by certain types of bariatric surgery. Meanwhile, the GLP-
1R/GIPR/GcgR triple-agonist retatrutide achieves similar body weight loss (∼25%) in just two-thirds of the time,
potentially surpassing the efficacy of Roux-en-Y gastric bypass. These remarkable achievements rightfully raise the
question whether and why there is still need for novel anti-obesity medications (AOMs) in the future.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Should we step off the scale?
New versions and variations of dual- and triple agonists
are on the horizon, offering subtle alterations in chemical
structure or target that may further enhance body weight-
lowering capacity, tolerability, and convenience. Howev-
er, with each new peptide formulation comes a dimin-
ishing return on therapeutic improvement relative to the
conceptual approaches that already exist. Indeed, chemi-
cal novelty may gradually be replaced by the simple ne-
cessity of reliable efficacy over time.

However, as pharmacological technology continues
to develop and the interfaces of targetable disease net-
works continue to unveil themselves — it is perhaps
time to peer into the future of GLP-1-based therapeutics
to assess what can and needs to be improved, and to-
wards what capabilities are we moving now? These
fields are suggested to be at the frontier of anti-obesity
and anti-diabetes pharmacological development.

• AOM’s and gastrointestinal side effects: Generally
transient in nature but associated with a significant
degree of real-world treatment discontinuation — can
gastrointestinal adverse events be a thing of the past?

• AOM’s and excessive lean mass loss: While lean
mass loss associated with GLP-1-based therapies are
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generally not considered a significant health risk in
most treated populations, strategies that incorporate
supplemental pharmacology to prevent lean mass
loss — or even promote lean mass gain — could
further reduce residual risks, particularly in elderly
patients.

• AOM’s and weight regain after discontinuation:
With pharmacological strategies proving increasingly
effective for acute body weight loss, is there hope for
future AOM strategies to confer protection again
weight regain after treatment discontinuation?

• AOM’s as antibody-drug conjugates: Rather than
using hybridized unimolecular dual-agonists, GLP-1-
conjugated GIPR antibodies that function as both
agonists and antagonists for enhanced weight loss
are on the horizon. How close is this innovation to
clinical application?

• AOM’s as a trojan horse: By conjugating a range of
potent small molecules to GLP-1, researchers have
developed new synergistic strategies that improve
the therapeutic targeting of insulin sensitivity,
liver dysfunction, and other conditions. What po-
tential does this innovative combinatorial toolbox
hold for the future? Can such future AOMs spe-
cifically target obesity- and/or diabetes-linked
co-morbidities?

AOM’s and gastrointestinal side effects
Incretin-based AOMs are well-known to effectivity treat
type 2 diabetes (T2D) and obesity, but are associated
1
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with dose-dependent appearance of nausea, diarrhea,
and vomiting which may potentially limit therapeutic
adherence.1 Generally, these gastrointestinal (GI)
adverse events are transient in nature and occur pri-
marily during the initial dose-escalation phases of
treatment, and may be mitigated via gradual dose-titra-
tion.2 Phase 3 clinical trials of incretin-based AOMs
generally show that only a very small percentage of
treated individuals discontinue treatment due to GI
adverse effects, suggesting high-promise in treatment
adherence.3,4 However, a recent study analyzing real-
world, longitudinal, medical claims databases showed
that 39% of patients with obesity treated with GLP-1R
agonists discontinue therapy within the first 3
months.5 At 12 months, treatment discontinuation may
even increase up to 50%, suggesting an underappreci-
ated population unable to reach maximal clinically-
demonstrated therapeutic benefit. Multiple real-world
studies and clinical trials demonstrate that
reduced treatment tolerability is significantly associated
with treatment discontinuation and decreased likelihood
for treatment reinitiation.5–7 Therefore, a significant
discrepancy between discontinuation rates reported in
clinical trials and those observed in real-world settings
seems apparent. This difference may stem from the
regular lifestyle counseling offered in clinical trials to
support adherence, which is less accessible in real-world
scenarios. Furthermore, insurance-related higher out-of-
pocket costs, the absence of lifestyle counseling, and
onset of new GI adverse effects likely synergize to
contribute to higher discontinuation rates in everyday
practice.5 However, the recent SELECT trial demon-
strated that a slower, flexible, and patient-determined
titration schedule allowed more patients to tolerate the
GLP-1R agonist long-term while maintaining both
weight loss and cardiovascular benefits.8 This suggests
that dose-titration strategies could be further refined,
with patient-centered approaches potentially providing
greater adherence and thus therapeutic outcomes
compared to fixed dose-escalation methods.

Nonetheless, potential in reducing GI adverse effects
by further refinement of drug structure and poly-
pharmacological approach is on the rise. First, self-
reported data seems to indicate short-acting GLP-1
analogs to be more closely associated with GI adverse
events relative to their long-acting counterparts.9

Further, in gold-standard pre-clinical and clinical
models, agonism or co-agonism of GIPR strongly re-
duces the nausea and vomiting associated with chemo-
therapy and GLP-1R agonism, suggesting decisive
potential for polypharmacological approaches in
enhancing patient tolerability.10,11 Indeed, in retrospect,
anti-emetic influence potentially inherent within the
GLP-1R/GIPR dual-agonist tirzepatide (15 mg) may
underly its 6.25-fold maximal dosing strategy over
semaglutide (2.4 mg), while retaining essentially the
same adverse event profile.3,4 In line with this,
semaglutide (2.4 mg) in comparison to the lowest
dosing strategy of tirzepatide (5 mg), exhibits 19% and
13% greater occurrence of nausea and diarrhea, despite
both treatments strategies achieving approximately 15%
body weight reduction by end of treatment.3,4

Direct targeting of nausea with prophylactic anti-
emetic medication, typically used as an adjunct to
chemotherapy, has shown potential to mitigate the key
adverse events behind acute GLP-1R agonism.12 How-
ever, the safety profile for (sub)chronic adjunct use re-
mains uncertain.

On a cellular level, the neural subtypes that separate
GLP-1R-induced satiety from GI adverse effects have
remained elusive. Promisingly, a recent preclinical
study has identified two GLP-1R + neuron-containing
regions of the hindbrain, the nucleus of the solitary tract
(NTS) and the area postrema (AP), which appear to
functionally separate GLP-1-induced satiety from the
aversive state.13 It is not determined yet if or how it may
be possible to target NTS GLP-1R + subneuronal pop-
ulations, or their related downstream networks. None-
theless, this new finding will likely spur momentum
toward innovation.14

While phase 3 clinical trials have shown that GI side
effects of current incretin-based AOMs can be effec-
tively managed, maintaining patient adherence in real-
world settings is still a challenge. Future AOMs will
likely need to have adverse event profiles that promote
compliance, even in the absence of regular lifestyle
counseling. By minimizing or eliminating GI adverse
effects, especially during the initial treatment phase and
dose-titration, patients may be better positioned to focus
on strategies to overcome the financial aspects of treat-
ment, rather than contending with both financial and
gastrointestinal issues on a daily basis.
AOM’s and excessive lean mass loss
Lean mass loss resulting from significant body weight
reductions during incretin-based anti-obesity therapy is
often erroneously regarded as loss of muscle mass,
which might result in sarcopenia, a condition associated
with an increased risk of all-cause and cardiovascular
disease-related mortality.15,16 While the lean mass loss
observed with incretin-based AOMs does not appear to
be disproportionate relative to other weight loss in-
terventions, it may still present a significant risk for
certain subpopulations, such as older adults or those
with more severe diseases.17,18 Nevertheless, despite
potential reductions in lean mass during GLP-1R
agonist-induced weight loss in older patients, long-
term trials like STEP HFpEF and STEP HFpEF DM
have demonstrated functional improvements in muscle-
based activities, such as better 6-min walk test perfor-
mance.19,20 These improvements are likely in part
attributable to enhanced muscle quality, reflected in
both strength and function, potentially due to increased
www.thelancet.com Vol 47 December, 2024
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insulin sensitivity and reduced ectopic fat deposition.18

Notably, even bariatric surgery, which is also associ-
ated with lean mass loss, has not shown significant
correlation with reduction in hand grip strength.21

However, loss of lean mass may result in a predisposi-
tion towards a lower resting metabolic rate, which can
make it more difficult for individuals to sustain long-
term weight management. The use of high protein
supplementation to counteract treatment-induced lean
mass loss, however, may not be as effective as
required.18,22,23 Therefore, novel pharmacological strate-
gies to minimize both food intake and lean mass loss
are currently being developed.

Bimagrumab is a monoclonal antibody antagonist of
activin type II receptors that stimulates skeletal muscle
growth, and has been shown to safely and efficiently
decrease fat mass, increase lean mass, and improve
cardiometabolic parameters within patients with pre-
obesity or obesity and type 2 diabetes.24 While a phase
2 co-therapy study with semaglutide and bimagrumab in
individuals with pre-obesity or obesity is currently
ongoing (NCT05616013), preclinical studies in diet-
induced obese mice have shown co-therapy to achieve
equal body weight-lowering efficacy to semaglutide, but
with significantly greater fat mass loss, lean mass
preservation, and reductions in food intake.25 Further, in
obese male cynomolgus monkeys, semaglutide-based
tri-therapy with trevogrumab, a myostatin antibody in-
hibitor, and garetosmab, another activin A antibody in-
hibitor, doubled fat mass loss (50% vs. 25%) and
increased lean mass by 11.7% relative to semaglutide
treatment alone over 20 weeks.26 A phase 2 clinical trial
assessing the combinatorial efficacy and safety of sem-
aglutide, trevogrumab, and garetosmab in adult patients
with obesity is currently underway with an expected
completion date of June 2026 (NCT06299098).

By employing these strategies, or those like them, we
can potentially minimize the risks of lean mass loss in
vulnerable subpopulations during incretin-based anti-
obesity treatment. Moreover, these approaches may help
establish a body composition that better resists weight
regain once treatment is discontinued.
AOM’s and weight-regain after discontinuation
The body weight-lowering effects of incretin pharma-
cology are profound but intrinsically dependent on
continued dosing. Cessation of treatment often results
in weight regain and recurrence of obesity,27–29 which is
not conceptually unlike other chronic disease-specific
treatments.

In currently pre-published work, gradual dose-
tapering of the GLP-1R agonist semaglutide following
full-dosage cessation has been tentatively suggested to
help maintain reductions in body weight for at least 20
weeks.30 This finding is particularly relevant when
considering that weight loss from low-calorie diets often
www.thelancet.com Vol 47 December, 2024
triggers an increase in hunger hormones and a decrease
in satiety hormones — a shift that can persist for up to a
year after stopping the diet, thereby increasing risk of
weight regain.31 The apparent success of semaglutide
dose-tapering raises the possibility that gradual cessa-
tion of AOMs, or diets, could facilitate a more gradual
hormonal adjustment to fit a new body weight set point,
thereby reducing the risk of rapid weight regain
potentially inherent to abrupt discontinuation and sub-
sequent hormonal maladaptation. Alternatively, this
data may indicate that lower doses of AOMs are
required to maintain body weight once the desired goal
is met. This concept remains speculative and requires
further extensive clinical validation, but it may be of
value to monitor the potential of dose-tapering as a
strategy for long-term weight maintenance. However, as
anti-obesity medications are typically priced at a fixed
rate in most countries, financial incentives are unlikely
to encourage dose reduction. Gradual dose-tapering,
however, may be appropriate for certain patient
groups who continue to experience adverse effects after
achieving stable weight loss. In these cases, reducing
the dose could offer therapeutic benefits and improve
quality of life beyond what the current dosage provides.
A dose-tapering strategy should not be considered un-
usual for anti-obesogenic therapy, as such strategies
have been routinely implemented in other chronic dis-
eases such as asthma, diabetes, hypertension, and psy-
chiatric disorders, following sufficient control of the
condition.

Favorable changes in body composition during anti-
obesity pharmacology may also offer an avenue for po-
tential retention of body weight loss following treatment
discontinuation. A clinical cohort assessing the influ-
ence of supervised exercise combined with GLP-1R
agonist treatment showed greater retention of body
weight loss one year after treatment cessation compared
to GLP-1R agonist therapy alone.32 However, following
treatment cessation the rate of body weight and fat mass
regain between treatments were similar, suggesting that
the comparative superiority in body weight loss reten-
tion was not driven by exercise-induced body composi-
tional changes, but rather by a treatment-facilitated
lower body weight prior to cessation.33 Nonetheless, as
previously mentioned, combining GLP-1 therapy with
myostatin or activin type II receptor inhibition could
promote favorable body compositional changes, leading
to a predicted increase in resting energy expenditure,
and thus potentially an easier path toward weight and fat
mass loss maintenance.

At the frontier of science, futuristic gene therapies
promoting ectopic production of GLP-1 may provide a
cutting edge for dramatic weight reduction and subse-
quent long-term maintenance of body weight. In
another yet-to-be published work, diet-induced obese
mice given a one-time intraperitoneal injection of
adeno-associated virus gene therapy, GLP-1PGTx, which
3
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induces ectopic GLP-1 expression under the insulin
promoter, effectively sustains fat mass loss following
semaglutide discontinuation.34 This suggests that
inducible ectopic expression of GLP-1, even if it poten-
tially results in lower effective circulating levels
compared to pharmacological doses of semaglutide,
may be sufficient to maintain the new body weight set
point achieved following semaglutide intervention.

Weight regain following AOM discontinuation is an
inherent aspect of the pharmacological approach. The
future of anti-obesity drug development may potentially
focus on strategies to indirectly side-step this phenom-
enon, whether through modified dosing protocols,
strategic co-therapy for enhancements in lean mass, or
the use of gene therapy to ensure continuous treatment
benefits.

AOM’s as antibody-drug conjugates
Antibody-drug conjugates (ADCs) are a class of thera-
peutics that utilize antibody-facilitated delivery of small
molecules to antigen-expressing tissues. While this
concept is further explored in the context of GLP-1-
based targeting in the next section, ADC strategies
have been implemented to allow for unimolecular
parallel agonism and antagonism of select receptors for
enhanced body weight loss. AMG 133 (maridebart
cafraglutide) is an example of this, featuring an
antibody-based GIPR antagonist conjugated to two
GLP-1RA peptides at the Fc domain.35 Recent phase 1
clinical trial data shows that chronic administration of
AMG 133 can induce profound body weight loss of
14% within just 12–13 weeks, and can as well sustain a
10% decrease over the course of 150 days following a
single injection at the highest dose used (840 mg).35

Despite a paradoxical contrast in targeting relative to
GLP-1R/GIPR dual-agonists like tirzepatide, the body
weight-lowering synergy of combining GIPR antago-
nism with GLP-1R agonism has been demonstrated in
both murine and non-human primate models.35–38 The
mechanisms underlying the efficacy of this approach is
currently the subject of intense study, as researchers try
to understand why both GIPR agonism and antagonism
synergize with GLP-1R agonism.39 Additionally, while
AMG 133 shows significant potential for body weight
reduction, it is also associated with moderate, dose-
dependent increases in nausea and vomiting, similar
to the side effects seen with semaglutide and tirzepa-
tide.35 Although the phase 1 study involved a relatively
small population, additional promising results, as AMG
133 progresses through current and future clinical trials,
may validate this approach.

AOM’s as a trojan horse
Building on the success of clinically-trialed ADCs, re-
searchers have developed peptide-based small molecule
conjugates that specifically target tissues expressing
GLP-1R, GIPR, or GcgR.40 These peptide-conjugates
capitalize on GPCR-expressing tissue targeting, thus
integrating parallel GPCR signaling with the intracel-
lular delivery of small molecule therapeutics. This
approach has shown promise in producing synergistic
anti-obesity and anti-diabetic effects, without off-target
effects associated with loose small molecule
administration.

The first of these small molecule conjugation ap-
proaches were nuclear hormone-based, with GLP-1
conjugated to estrogen (GLP-1/E2),41 and glucagon
conjugated to triiodothyronine (Gcg/T3).42 Preclinical
targeting of E2 into GLP-1R-expressing tissues via GLP-
1/E2 peptide conjugation synergistically reduces body
weight by means of food intake reduction, and impor-
tantly, has shown potential to restore β-cell function in
chemically-induced type 1 diabetic mice.41,43 Targeting of
T3 into GcgR-expressing tissues via Gcg/T3 synergisti-
cally corrects for hyperlipidemia, steatohepatitis,
atherosclerosis, and metabolic syndrome.42 These suc-
cesses have raised the possibility that combining GPCR
agonism with nuclear receptor-acting small molecules
could greatly enhance body weight-lowering efficacy and
produce significantly better outcomes in comorbidities
addressed by small molecule therapy. As well, this
synergistic strategy could enable the use of lower doses
while still achieving the same metabolic benefits as
traditional AOM’s, potentially leading to treatments with
minimal side effects. As research has progressed, new
iterations of GLP-1/small molecule conjugates have
emerged. The latest involves conjugating the non-
nuclear-acting N-methyl-D-aspartate (NMDA) receptor
antagonist MK-801 with GLP-1, designed to modify the
food-seeking neural adaptations implicit within starva-
tion to enhance anti-obesogenic effects.44

Further, GLP-1R-conjugated delivery of antisense
oligonucleotides, and GLP-1-conjugated lysosome-
targeting chimeras (LYTAC), have suggested a prom-
ising therapeutic utility in the targeted silencing or
degradation of specific proteins within GLP-
1R+ tissues.45,46 However, despite these extremely
innovative approaches that suggest a plethora of case-
specific combinations for diverse therapeutic strate-
gies, the safety and feasibility of these approaches for
implementation into human trials has not yet arrived.
Scaling up progress
The introduction of long-acting GLP-1R mono-agonists,
GLP-1R/GIPR dual-agonists, and GLP-1R/GIPR/GcgR
tri-agonists has significantly advanced body weight-
lowering potential through mechanisms involving (1)
satiety, (2) synergized satiety with anti-emesis, and (3)
synergized satiety, anti-emesis, and increased energy
expenditure, respectively. Despite the effectiveness of
these therapies, further developmental iterations of
drugs within these frameworks have begun to yield
www.thelancet.com Vol 47 December, 2024

http://www.thelancet.com


Search strategy and selection criteria

References for this Viewpoint were identified through
searches of PubMed with the search terms “Diabetes”,
“obesity”, “GLP-1”, “GIP”, “anti-obesity medication”, “co-
agonist”, “MASH” and “dementia” from 1995 until August
2024. Articles were also identified through searches of the
authors’ own files. Only papers published in English were
reviewed. The final reference list was generated on the basis
of originality and relevance to the broad scope of this
Viewpoint.
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diminishing returns in terms of efficacy gains. These
initial successes in achieving transformative body
weight loss can be compared to the invention of the
wheel— a fundamental breakthrough that sets the stage
for future innovations.

Looking ahead, the next generation of anti-diabetic
and anti-obesity pharmacotherapies, supported by
emerging technologies, should aim to address the
negative side effects of current treatments, such as
gastrointestinal issues and lean mass loss. Moreover,
these advancements may also bring unprecedented im-
provements, including better long-term retention of
weight loss following discontinuation, implementation
of unimolecular ADC strategies for prolonged efficacy,
and novel pharmacological approaches that combine
peptide-based targeting with nuclear hormone dual-
pharmacology for synergistic effects. Ultimately, these
innovative, perhaps customizable strategies, seek to
ensure that maximal treatment benefits can be consis-
tently evoked among patients, leading to a higher pro-
portion reaching transformative therapeutic endpoints.
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