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Abstract

Background: Type 2 diabetes (T2D) is one of the most common chronic diseases. Studies on T2D are mainly built
upon bulk-cell data analysis, which measures the average gene expression levels for a population of cells and cannot
capture the inter-cell heterogeneity. The single-cell RNA-sequencing technology can provide additional information
about the molecular mechanisms of T2D at single-cell level.

Results: In this work, we analyze three datasets of single-cell transcriptomes to reveal β-cell dysfunction and deficit
mechanisms in T2D. Focused on the expression levels of key genes, we conduct discrimination of healthy and T2D
β-cells using five machine learning classifiers, and extracted major influential factors by calculating correlation
coefficients and mutual information. Our analysis shows that T2D β-cells are normal in insulin gene expression in the
scenario of low cellular stress (especially oxidative stress), but appear dysfunctional under the circumstances of high
cellular stress. Remarkably, oxidative stress plays an important role in affecting the expression of insulin gene. In
addition, by analyzing the genes related to apoptosis, we found that the TNFR1-, BAX-, CAPN1- and CAPN2-dependent
pathways may be crucial for β-cell apoptosis in T2D. Finally, personalized analysis indicates cell heterogeneity and
individual-specific insulin gene expression.

Conclusions: Oxidative stress is an important influential factor on insulin gene expression in T2D. Based on the
uncovered mechanism of β-cell dysfunction and deficit, targeting key genes in the apoptosis pathway along with
alleviating oxidative stress could be a potential treatment strategy for T2D.

Keywords: Single-cell, Hyperglycaemia, Type 2 diabetes, β-cell dysfunction, β-cell deficit, Insulin expression,
Apoptosis, Oxidative stress

Background
Type 2 diabetes (T2D) is one of the major causes of
death worldwide [1]. It is characterized by insulin resis-
tance and impaired insulin secretion [2, 3]. Insulin resis-
tance denotes declined insulin sensitivity in insulin tar-
geted cells or tissues, while insufficient insulin secretion
is related to pancreatic β-cell dysfunction and the loss
of β-cell mass [4, 5]. β-cells are located in the islets of
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Langerhans, i.e. endocrine regions of pancreas. The main
function of β-cells is to synthesize, store and secrete
insulin, which is a peptide hormone and takes effects in
decreasing the blood glucose level. It is reported that β-
cell function declines even before the diagnosis of T2D
[6]. In addition, β-cell deficit of about 20%∼65% was
demonstrated for T2D in several studies [7–9]. Kahn [10]
investigated the contribution of insulin resistance and β-
cell dysfunction to the pathophysiology of T2D. Yoon et al.
[11] measured β-cell mass in T2D. Although these works
intended to study the β-cell dysfunction and deficit
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mechanisms in T2D, they were mainly built upon bulk-
cell analysis which can only provide average information
about a population of cells.

Since the transcriptomes were firstly measured at
single-cell level by Tang et al. in 2009, the technique of
single-cell RNA sequencing (scRNA-seq) has experienced
an explosive development in the past 10 years [12–15].
Compared with bulk-based approaches, scRNA-seq can
provide crucial insights into cellular heterogeneity and
bring profound new discoveries in biology [16–21]. For
example, Deng et al. reported stochastic expression of
monoallelic genes in mammalian cells [22]; Buettner et
al. detected hidden subpopulations of cells by analyzing
scRNA-seq data [23]. The technique of scRNA-seq has
also been applied to transcriptome profiling of human
pancreatic cells for both healthy and T2D donors [24–27].
Xin et al. [28] and Segerstolpe et al. [29] showed the
expression heterogeneity of human islet cells (e.g. α-cells,
β-cells and δ-cells). They also analyzed the alterations of
gene expression patterns as well as the enriched signaling
pathways in T2D compared with healthy people.

In this study, we aim to unravel the β-cell dysfunc-
tion and deficit mechanisms in T2D by analyzing the
single-cell transcriptomic data of β-cells. Three single-cell
transcriptomic datasets were adopted because each of the
datasets contains more than 100 of β-cells (we have found
but not used a few other available datasets because they
only contain limited numbers of β-cells). We named the
three datasets as dataset 1, dataset 2 and dataset 3, respec-
tively. All the three datasets consist of β-cells obtained
from T2D donors and healthy donors. The analysis was
carried out from three aspects, i.e. β-cell dysfunction, β-
cell deficit and personalized analysis. Firstly, we focused
on the mechanisms of β-cell dysfunction in T2D. It is well
known that the major role of pancreatic β-cells is to pro-
duce insulin. Thus, we analyzed the expression levels of
INS (i.e. the gene that encodes the preproinsulin precur-
sor of active insulin) in β-cells belonging to healthy and
T2D donors of each dataset. Different patterns of INS
expression were detected in the three datasets. To explore
the reasons, we examined the cellular stress in β-cells of
the three datasets, and applied different machine learn-
ing algorithms to discriminate healthy and T2D β-cells
by using the stress related features. Modeling the vulner-
ability of T2D β-cells to cellular stress, we found that
oxidative stress could be a major influential factor on INS
expression. Secondly, to study the mechanisms of β-cell
deficit in T2D, we investigated the expression levels of the
genes in the apoptosis pathway, conducted principle com-
ponent analysis and carried out mutual information cal-
culation. As a result, genes and pathways that are crucial
for β-cell apoptosis in T2D were detected. In the last part,
we performed personalized analysis of INS expression and
the expression of death executioner caspases.

Based on the analysis of the three datasets of β-cell
transcriptomes, we obtained the following main results.
Some β-cells in T2D donors have comparable INS expres-
sion levels with those in healthy donors; β-cells in T2D
have normal INS expression under low cellular stress, but
they have dysfunction under high cellular stress; β-cells
in healthy people can deal with the cellular stress, main-
taining normal INS expression; oxidative stress could be a
major influential factor on INS expression; TNFR1-, BAX-,
CAPN1- and CAPN2-dependent pathways may be curial
for β-cell apoptosis in T2D; INS and death executioner
caspases are differentially expressed among donors. Note
that some of the above results could hardly be obtained
from bulk-cell analysis.

Results
Pancreatic β-cell dysfunction in T2D
Single-cell INS expression
In this work, we employed three datasets of β-cell tran-
scriptomes, which were obtained from the published
works of Xin et al. [28], Segerstolpe et al. [29] and Lawlor
et al. [27]. All the three datasets consist of β-cells obtained
from T2D donors and healthy donors. They were named
as dataset 1, dataset 2 and dataset 3, respectively. The
numbers of donors and β-cells of each dataset are shown
in Table 1. Overall, the three datasets comprise gene
expression levels of 1,006 β-cells from 36 donors. Among
the β-cells, 472, 270 and 264 belong to the first, sec-
ond, and third datasets, respectively. Figure 1 presents the
INS expression levels of healthy and T2D β-cells of the
three datasets. As shown in the figure, the single-cell data
can reveal cellular heterogeneity in the INS expression,
which cannot be obtained from bulk-cell analysis. For
both datasets 2 and 3, the median value of INS expression
in T2D β-cells is lower than that of the healthy β-cells,
although some T2D β-cells have comparable INS expres-
sion levels with the healthy ones. In dataset 1, however,
the median values of INS expression of healthy and T2D
β-cells are almost equal. It is well known that one charac-
teristic of T2D is a relative deficiency of insulin. However,
this characteristic is not shown in dataset 1. To uncover
the regulatory factors of the different INS expression pat-
terns, we investigated the cellular stress in β-cells of each

Table 1 The numbers of donors and β-cells of each dataset

Gene expression
dataset of β-cells

Dataset 1 Dataset 2 Dataset 3

Number of donors T2D 6 4 3

Healthy 12 6 5

Number of β-cells T2D 278 99 96

Healthy 194 171 168
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Fig. 1 INS expression in the three datasets. Histograms and violin plots are used to show the INS expression levels in β-cells of dataset 1 (a), dataset
2 (b) and dataset 3 (c). H stands for healthy. Healthy and T2D samples are colored in light yellow and pink, respectively. A dashed line in the violin
plots indicates the median value of each group. p-value was calculated by using Student’s t-test

dataset, as the increase of cellular stress was detected in
T2D by many studies.

Cellular stress
Plenty of evidence indicates that prolonged exposure of
β-cells to hyperglycemia and high free fatty acids (FFA)
causes deleterious effects of endoplasmic reticulum (ER)
stress, oxidative stress, and increase of β-cell apopto-
sis [6, 30–34]. ER stress is developed as the continuous
demand of insulin, leading to the increased burden of β-
cell and the accumulation of misfolded proteins in the ER
lumen. ER stress is mediated by IRE1, EIF2AK3 and ATF6
[35, 36]. Reactive oxygen species (ROS) are accumulated
to cytotoxic level during chronic glucose and fatty acids
metabolism [5, 37–39]. Besides, hyperglycemia may dis-
rupt the electron transport chain in mitochondria, which
is also a main source of free radicals [40, 41]. The oxida-
tive stress (cumulative ROS) promotes the activation of

ASK1, JNK and P38ALPHA. Hyperglycemia and high FFA
induce increased β-cell apoptosis by several mechanisms,
including promoting proapoptotic gene expression, and
increasing ER stress, oxidative stress as well as inflam-
mation stress. We use the expression levels of CASP3,
CASP6, and CASP7 (i.e. death executioner caspases) to
represent the rate of apoptosis.

Figure 2 shows the expression of aforementioned stress-
related genes, including ER stress, oxidative stress and
apoptosis-related genes. As shown in the figure, cellular
stress is at a low level for both healthy and T2D β-cells in
dataset 1 (Fig. 2a), while high stress exists in both groups
of cells in dataset 3 (Fig. 2c). In dataset 2, healthy β-cells
have weak stress whereas T2D β-cells experience strong
stress (Fig. 2b). By comparing the cellular stresses and the
INS expressions of the three datasets (Figs. 1 and 2), the
following hypotheses may be proposed: T2D β-cells per-
form similarly to the healthy ones in INS expression under
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Fig. 2 Cellular stress related genes. a, b and c are heatmaps plotting the expression levels of the stress related genes of datasets 1, 2 and 3,
respectively. H and T2D represent healthy and T2D β-cells. Each row in a heatmap corresponds to a gene and each column represents a cell. Colors
in the heatmap denote the log2 expression values

low cellular stress (dataset 1); T2D β-cells tend to be dys-
functional under the circumstances of high cellular stress
(dataset 2); healthy β-cells can partly deal with high cel-
lular stress, maintaining INS expression at normal level
(dataset 3, Fig. 1c). To further test these hypotheses, we
employed different classifiers to discriminate healthy and
T2D β-cells.

Discrimination of healthy and T2D β-cells
In order to test the above analysis results, we employed
different classifiers to discriminate healthy and T2D β-
cells for each dataset, using expression data of genes that

are related to ER stress, oxidative stress and apoptosis.
In addition, the INS expression related genes were also
included as features of the two groups of cells [42, 43].
Overall, 45 genes were selected (Additional file 1: Table
S1) [35–41]. Then, we chose genes that were expressed
in more than 35% of all the cells in each dataset (40% for
dataset 1, these values were derived according to the pro-
portion of healthy β-cells in all the cells of each dataset).
We conducted this step because a feature (gene) cannot
contribute to distinguishing healthy and T2D β-cells if it
is barely expressed in the cells. Here, expressed genes are
those with expression levels no less than 1. Then 17, 25
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and 31 genes met the conditions in datasets 1, 2 and 3,
respectively. For fair comparison, we also applied the 25
genes selected in dataset 2 to datasets 1 and 3.

Afterwards, five classifiers, i.e. Bayesian network, sup-
port vector machine (SVM), random forest, logistic
regression and neural network (NN), were used to pre-
dict the cellular conditions (i.e. healthy or T2D) of β-cells
in each dataset. The performance is shown in Fig. 3.
Besides prediction accuracy, we also adopted F-measure
to evaluate the prediction performance, as the numbers
of healthy and T2D cells are not balanced in each dataset.
As shown in Fig. 3, all the five classifiers could hardly dis-
tinguish healthy and T2D β-cells in dataset 1. It implies
that healthy and T2D β-cells behave similarly in the sce-
nario of low cellular stress. For dataset 2, the prediction
accuracy and F-measure are both high, indicating that β-
cells in T2D have dysfunction under the circumstances
of high cellular stress. For dataset 3, the prediction per-
formance is lower than that of dataset 2, probably due to
the heavy cellular stress in both of the groups of β-cells.
However, healthy β-cells maintain normal INS expression
under high stress (Fig. 1c), suggesting that the cells can
partly deal with the cellular stress.

Vulnerability of T2D β-cells
In dataset 3, both the healthy and T2D groups of β-cells
suffer from high cellular stress. However, INS is more
highly expressed in healthy β-cells than in the T2D ones
(Fig. 1c). This is likely due to the fact that pancreatic β-
cells in T2D are vulnerable to dysfunction as the toxic
effects of hyperglycaemia and high FFA (i.e. glucolipotox-
icity). In other words, healthy β-cells can deal with high
cellular stress but T2D β-cells cannot, and thereby INS
expression is lower in T2D β-cells than that in healthy
cells under similar cellular stress (Fig. 4). Dataset 1 is not
analyzed here, due to the low cellular stress and compara-
ble INS expression between the healthy and T2D groups

of β-cells. In Fig. 4, oxidative stress, ER stress and death
executioner caspases are represented by the expression
levels of JNK, ATF6 and CASP6, respectively. We used
the three genes as they expressed in more than 35% (the
method of deriving the value has been mentioned pre-
viously) of all the β-cells in each dataset. As shown in
Fig. 4a, INS expression in T2D β-cells is slightly lower
than that in healthy ones when oxidative stress is weak.
However, under medium or high oxidative stress, there is
a significant difference in INS expression between the two
groups. For ER stress and death executioner caspases, INS
expression is significantly different between the healthy
and T2D cells even when cellular stress is at a low level.
Figure 4b shows similar patterns as Fig. 4a, indicating the
vulnerability of T2D β-cells (as reflected by the reduced
INS expression) compared with the healthy β-cells under
similar cellular stress.

Major influential factors for INS expression
To further determine the major influential factors for
INS expression in T2D, we computed the correlation and
mutual information between INS expression and the three
aforementioned factors (ER stress, oxidative stress and
death executioner caspases) for T2D β-cells of datasets
2 and 3 (Fig. 5a). As shown in Fig. 5a, the correla-
tion between oxidative stress and INS expression is the
strongest, and the mutual information between them is
the largest among the three factors. Table 2 lists the
detailed values of entropy, joint entropy and mutual infor-
mation, where INS, ER, OXID and CASP denote INS
expression, ER stress, oxidative stress and death execu-
tioner caspases, respectively. Entropy and joint entropy
measure the average information content of one or a
set of variable(s), while mutual information measures the
information of one variable obtained through another.
Figure 5b shows INS expression in T2D β-cells under
low, medium and high levels of oxidative stress. For both
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Fig. 3 Prediction performance of the five classifiers in discriminating healthy and T2D β-cells of each dataset. D1, D2 and D3 represent datasets 1, 2
and 3, respectively. The numbers in the parentheses denote the numbers of genes used as features in the corresponding predictions
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Fig. 4 Vulnerability of T2D β-cells. a and b show the INS expression of datasets 2 and 3, under the circumstances of various stresses. Healthy and T2D
β-cells are colored green and magenta, respectively. The thresholds of 4 and 8 were used to determine different levels of oxidative stress, while the
thresholds of 2 and 4 were employed to partition ER stress and death executioner caspases. These thresholds were determined by the expression levels
of the genes. The bold dark lines indicate the median values. The extent and significance (* indicates p-value <0.05) of the difference between two groups
are also provided in the figure. The percentage of difference on the top of each plot was calculated by using the median values of the two groups

datasets 2 and 3, there is a significant difference of INS
expression between the β-cells under low and high lev-
els of oxidative stress. These results reveal that oxidative
stress could be a major factor that affects the INS expres-
sion.

β-cell apoptosis in T2D
Expression of death executioner caspases
In apoptosis, the caspase proteins of CASP3, CASP6 and
CASP7 act as death executioner enzymes. Thus, we used
the total expression levels of these genes encoding the
three caspases to measure the rate of β-cell apoptosis.
Figure 6 shows the distribution of the total expression of
the death executioner caspases (TEDECs) in each dataset.
Increased apoptosis in T2D is only observed in dataset 2.
In dataset 1, the median values of TEDECs of both groups
of cells (i.e. healthy and T2D) approach 0, while the values
of the two groups are both high in dataset 3. These pat-
terns are consistent with the cellular stress (i.e., ER stress
and oxidative stress) of datasets 1 and 3 (Fig. 2), where low

cellular stress is observed in dataset 1 and high stress in
dataset 3. Surprisingly, the median value of TEDECs of the
healthy β-cells is higher than that of the T2D β-cells in
dataset 3, despite the increased β-cell apoptosis and β-cell
deficit in T2D as reported in the literature. This pattern
needs further analysis and explanation in the future.

Pathway analysis of apoptosis in T2D
To further understand the regulation of abnormal β-cell
death in T2D, we conducted pathway analysis of apopto-
sis. Among the three datasets analysed here, the increased
level of β-cell apoptosis has been only observed in dataset
2 (Fig. 6), thus we focused on dataset 2 to detect the
major apoptosis pathway in T2D β-cells. According to
the apoptosis pathways in KEGG Pathway Database [44]
and GeneGO MetaCore [45], a total of 24 apoptosis-
related genes were involved in our study. They constitute
the death receptor-, mitochondria-, TP53- as well as the
ER stressed-mediated apoptosis pathways. The expres-
sion levels of these genes are presented in Fig. 7. The
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Fig. 5 Major influential factors for regulating INS expression. a Correlation and mutual information between INS expression and the three factors.
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genes encoding RIPK1, RAIDD, TNFR1, TRADD, BAX,
BCL2L1, CAPN1 and CAPN2 are more highly expressed
in T2D β-cells than the healthy ones.

We then computed the mutual information between
the TEDECs and the proteins in the apoptosis pathway
(Fig. 8a, Additional file 2: Table S2). In T2D, much infor-
mation about the TEDECs can be obtained through the
genes encoding TNFR1, DAXX, BAX, BCL2L1, DIABLO,
CAPN1 and CAPN2. Besides, we conducted principal
component analysis (PCA), and projected the cells (char-
acterized by the 24 apoptosis-related genes) to the first
two principal components (Fig. 8b). Although the healthy
and T2D groups of cells are not completely separated, they
have difference in the new projection. By checking the
first two principal components, we found that the values
associated with the genes encoding RAIDD, TNFR1, BAX,
BCL2L1, DIABLO, CAPN1 and CAPN2 are larger than
others (Additional file 3: Figure S1). It implies that these
genes contribute significantly to the new projection.

To summarize the above analyses, the death receptor
TNFR1-mediated pathway, mitochondrial BAX-related

Table 2 Entropy, joint entropy and mutual information

Dataset 2 3

Entropy INS 1.95 1.65

OXID 3.68 3.93

ER 2.44 3.23

CASP 2.41 2.85

Joint entropy INS and OXID 4.96 5.17

INS and ER 4.12 4.57

INS and CASP 4.06 4.21

Mutual information INS and OXID 0.66 0.41

INS and ER 0.27 0.31

INS and CASP 0.30 0.29

The unit is bit. The bold numbers are the highest values among those compared in
the same group (i.e. the same measure and the same dataset)

pathway, as well as the CAPN1- and CAPN2-dependent
pathway may be crucial in T2D.

We also analyzed the genes related to apoptosis in
dataset 3. Different from dataset 2, in dataset 3 TP53
is highly expressed. The results are provided in the
supplementary documents (Additional file 2: Table S3,
Additional file 3: Figures S2 and S3).

Personalized analysis of β-cells
In addition to comparing the gene expression in healthy
and T2D β-cells, we also conducted personalized analy-
sis. Figure 9 shows the INS expression of β-cells from each
donor. Healthy and T2D donors are arranged sequentially
in rows. Each vertical bar represents INS expression level
of a β-cell. The symbol of * indicates the position of the
median INS expression level of each donor. As shown in
the figure, INS expression is different among donors. In
datasets 2 and 3, most of the T2D patients have lower
median INS expression levels than the healthy donors.

We also analyzed the TEDECs of each donor (Addi-
tional file 3: Figure S4). Similar to the INS expression,
the TEDECs are also different among donors. Note that,

Dataset 1 Dataset 2 Dataset 3
0

5

10

15

20

D
ea

th
 e

xe
cu

ti
on

er
 c

as
pa

se
s H

T2D

Fig. 6 Distribution of the TEDECs (CASP3, CASP6 and CASP7) in each
dataset. H represents healthy



Ma and Zheng BMC Bioinformatics 2018, 19(Suppl 19):515 Page 44 of 188

Dataset 2

H     T2D

0 2 4 6 8

FAS
FADD
RIPK1
RAIDD 
TNFR1 
TNFR2 
DAXX 
TRADD 
TRAF2
BAK
BAX
BID
BCL2 
BCL2L1 
CYCS 
DIABLO 
APAF1
IP3R1
CAPN1
CAPN2 
TP53 
MDM2 
CASP8
CASP9

Fig. 7 The expression levels of apoptosis-related genes in dataset 2. In the heatmaps, the rows and columns correspond to the genes and cells,
respectively. H and T2D represents healthy and T2D β-cells. Colors in the heatmaps denote the log2 expression values

in dataset 2, the median values of the TEDECs of T2D
patients are all larger than those of the healthy donors.

Discussion
In this work, we conducted single-cell data analysis to
decipher pancreatic β-cell dysfunction and deficit mech-
anisms in T2D. Three single-cell transcriptomic datasets
were employed in our study. Different from bulk-cell data
analysis, single-cell data analysis allows us to capture

inter-cell heterogeneity and explore the data deeply to
unravel the mechanisms of diseases. It is well known that
a major function of pancreatic β-cells is to produce secre-
tory insulin. Thus, we firstly examined the INS expression
levels in the β-cells of each dataset. In datasets 2 and
3, INS expression in the T2D β-cells is generally lower
than that in the healthy cells, but the expression is simi-
lar in healthy and T2D β-cells of dataset 1. To explain the
observation of INS expression, we checked genes that are
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Fig. 9 INS expression levels of β-cells of each donor. a, b and c show the INS expression in donors of datasets 1, 2 and 3, respectively. Hi and T2Di
represent healthy and T2D donors, where i stands for the index number of a donor

related to cellular stress, and found that these genes were
lowly expressed in both the healthy and T2D groups of
β-cells of dataset 1. In dataset 2, T2D β-cells had high cel-
lular stress while healthy β-cells experienced low stress.
Moreover, in dataset 3, the cellular stress in both groups
of cells was high.

Considering the INS expression levels and cellular
stresses of the three datasets, we obtained the following
results. T2D β-cells perform normally in INS expression
under low cellular stress (dataset 1), but they behave dys-
functionally under high cellular stress (dataset 2); healthy
β-cells can deal with high cellular stress, maintaining INS
expression at normal levels despite the stress (dataset 3).
To further validate our analysis results, we employed five
classifiers to predict the cellular conditions (i.e. healthy or
T2D) of the β-cells, using the expression levels of stress-
and INS-related genes. We also proposed that β-cells
in T2D are vulnerable to stress-induced dysfunction. In
other words, under similar cellular stresses, T2D β-cells
have abnormal INS expression while healthy β-cells per-
form normally. This may be caused by the toxic effects
of hyperglycaemia and high FFA. Besides, our analysis
showed that oxidative stress could be an important influ-
ential factor on INS expression. This is consistent with
the experimental results in [46], which show that MAFA
and PDX1 are inactivated under oxidative stress, result-
ing in the decrease of insulin secretion of T2D β-cells.
Meanwhile, the impaired β-cell function can be repaired

by relieving oxidative stress. For instance, as reported in
[47, 48], insulin secretion can be improved in vitro upon
treatment with an antioxidant of bis (1-hydroxy-2,2,6,6-
tetramethyl-4-piperidinyl) decandioate di-hydrochloride
(IAC) in T2D.

T2D is also characterized by a relative deficit of pan-
creatic β-cells [9, 33]. It has long been demonstrated that
β-cell apoptosis would increase in T2D patients and T2D
mouse models [33, 34]. As the apoptosis measurements
are not available for the three single-cell datasets, we used
the TEDECs (i.e. CASP3, CASP6 and CASP7) to estimate
the rate of β-cell apoptosis. However, increased apoptosis
of T2D β-cells is only observed in dataset 2, whereas in
dataset 3 the median value of TEDECs of the healthy β-
cells is higher than that of the T2D β-cells. This striking
observation needs further clarification as a future work. In
addition, we conducted personalized analysis of INS and
TEDCEs, and showed that INS and TEDCEs are differ-
ent among donors, with T2D patients having lower INS
expression and higher apoptosis in β-cells than healthy
donors.

Conclusions
In this work, to uncover the mechanisms of β-cell dys-
function and deficit in T2D, we conducted single-cell
transcriptomic data analysis. By analyzing the INS expres-
sion levels and cellular stresses of three β-cell transcrip-
tomic datasets, we observed that the T2D β-cells perform
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normally in INS expression in the condition of low cel-
lular stress but behave dysfunctionally under high stress.
The healthy β-cells can deal with high cellular stress
and keep INS expression at normal levels. In addition,
analyses of correlation and mutual information showed
that oxidative stress could be a critical influential fac-
tor on INS expression in T2D. This is consistent with
some experimental results in the literature. Moreover, we
analysed genes related with β-cells death regulation and
observed increased apoptosis in T2D cells only in dataset
2, when adopting the TEDECs as an estimation of apop-
tosis rate. The TNFR1-mediated pathway, mitochondrial
BAX-related pathway, as well as the CAPN1- and CAPN2-
dependent pathway may play important roles in T2D.
Finally, personalized analysis showed some diversity of
INS expression among donors.

Materials and methods
Experimental data of single-cell transcriptomes
The data we analysed here were obtained from three pub-
lished works of Xin et al. [28], Segerstolpe et al. [29]
and Lawlor et al. [27]. The gene expression levels in [28]
and [29] were reported in reads per kilobase of transcript
per million mapped reads (RPKM), while the records in
[27] was quantified as transcripts per million (TPM). Due
to the different measurements, we only compared gene
expression of cells within the same dataset.

Classification of cells
In order to predict cellular states (i.e. healthy or T2D
β-cells), we employed five classifiers: Bayesian network,
support vector machine (SVM), random forest, logistic
regression and neural network (NN). Bayesian network is
a probabilistic graphical model represented by a directed
acyclic graph. It contains a set of variables as well as their
conditional probability distributions. SVM maps the fea-
tures into a high-dimensional space and conducts classi-
fication using hyperplane(s). Random forest is composed
of an ensemble of decision trees, and a voting strategy
is employed for the final prediction. In logistic regres-
sion, a logistic function is used to compute the probability
of the dependent variable and to determine the poten-
tial class of a sample. NN is constructed with a group of
interconnected neurons, which are organized as the input
layer, hidden layer and output layer. Detailed information
of these algorithms is provided in [49–54]. We employed
the algorithms in Weka 3.8.1 to conduct the classifica-
tion [55], and leave-one-out cross-validation was used for
model validation.

The performance of the algorithms is evaluated using
the measurements of accuracy and F-measure. Given the
number of instances of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN), the
accuracy is calculated as:

Accuracy = TP + TN
TP + TN + FP + FN

. (1)

To address the issue that positive and negative samples
are not balanced in this study, we also used F-measure
which is the harmonic mean of precision and recall. It is
calculated as:

F measure = 2 × presicion × recall
precision + recall

, (2)

where precision = TP/(TP + FP) and recall = TP/(TP +
FN).

Mutual information
Given two discrete random variables X and Y, the mutual
information provides a measure of the mutual dependence
between them [56]. In terms of information, it measures
the obtained information about X obtained through Y,
or the uncertainty about X reduced through Y, and vice
versa. The mutual information between X and Y is defined
as follows,

I(X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)
p(x)p(y)

, (3)

where p(x) and p(y) represent the marginal probability dis-
tributions, and p(x,y) denotes the joint probability distri-
bution. In this work, we calculated the mutual information
by using the entropy and joint entropy:

I(X; Y ) = H(X) + H(Y ) − H(X, Y ), (4)

where⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(X) = − ∑
x∈X

p(x) log p(x)

H(Y ) = − ∑
y∈Y

p(y) log p(y)

H(X, Y ) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y).
(5)

H(X) and H(Y) are the entropies of X and Y, while H(X,
Y) stands for the joint entropy of the two variables. The
derivation of Eq. (4) from Eq. (3) can be found in [56]. We
discretized the gene expression data by taking the floor
of the values, as we calculated the entropy in a discrete
way. In addition, base 2 was employed for the logarithms
to compute entropy, implying that the unit of bit was used
for measuring the mutual information.

Spearman’s rank correlation coefficient
To measure the monotonic relationship between cellular
stress and INS expression, we calculated the Spearman’s
rank correlation coefficient, following the steps given in [57].

Principal component analysis (PCA)
PCA was implemented based on an orthogonal linear
transformation, which decorrelates samples of possibly
correlated variables. After the transformation, the first
principle component has the largest variance, the second
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one holds the second largest variance, and so on. Thus,
the fundamental goal of PCA is the change of basis,
after which a small number of principal components can
be identified to provide a reasonable description of the
original data. The derivation and instructions for imple-
mentation of PCA are available in [58].

Comparison of INS expression
We compared the INS expression levels between two
groups of cells using Student’s t-test. The difference is
considered as statistically significant if the p-value is less
than 0.05.
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