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Abstract

Molecular profiling of tumor biopsies plays an increasingly important role not only in cancer research, but also in the clinical
management of cancer patients. Multi-omics approaches hold the promise of improving diagnostics, prognostics and personal-
ized treatment. To deliver on this promise of precision oncology, appropriate bioinformatics methods for managing, integrating
and analyzing large and complex data are necessary. Here, we discuss the specific requirements of bioinformatics methods
and software that arise in the setting of clinical oncology, owing to a stricter regulatory environment and the need for rapid,
highly reproducible and robust procedures. We describe the workflow of a molecular tumor board and the specific bioinfor-
matics support that it requires, from the primary analysis of raw molecular profiling data to the automatic generation of a clin-
ical report and its delivery to decision-making clinical oncologists. Such workflows have to various degrees been implemented
in many clinical trials, as well as in molecular tumor boards at specialized cancer centers and university hospitals worldwide.
We review these and more recent efforts to include other high-dimensional multi-omics patient profiles into the tumor board,
as well as the state of clinical decision support software to translate molecular findings into treatment recommendations.
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Introduction

The continuous improvement, greater availability and decreasing
cost of next-generation sequencing (NGS) have allowed major
cancer centers worldwide to offer NGS-based personalized

oncology for clinical practice. The goal is to profile the genetic
aberrations of tumors such as single-nucleotide variants (SNVs),
copy number variants (CNVs), insertions and deletions (indels),
structural variants (SVs) and gene fusions, and to suggest poten-
tial treatments based on the molecular lesions that are observed.
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These approaches can be organized either as a single institutional
molecular tumor board (MTB), where detected genetic aberrations
will be evaluated for any potential matching treatments, or as a
basket trial, in which predefined genetic alterations are assigned to
matching treatment arms (baskets). Both approaches typically
include patients who are progressive on all conventional treatment
options and those with rare cancers for which limited treatments
exist, such as many pediatric tumors [1].

MTBs are now widespread in the USA, Europe and Australia
with reported patient numbers to date ranging up to 2000
patients per cancer center [2]. Ideally, a biopsy is taken on
tumor progression from the last therapy to resemble the current
genetic state of the evolved tumor [3, 4]. However, some MTB
approaches also profile biopsies sampled at diagnosis, espe-
cially for high-risk tumors with few treatment options [5–7], or
biopsies of patients currently responding to therapy but without
further therapeutic options [8–10]. Typically, biopsies with a
tumor content of at least 20% are analyzed by cancer-specific
gene panels, such as FoundationOne [11], or whole-exome
sequencing (WES) [12] (Figure 1). Some centers include addi-
tional measurements, such as profiling of the transcriptome,
methylome or copy number alterations [5, 13, 14]. Whereas
profiling by WES usually includes a germ line control [5, 12], this
control is missing in most panel sequencing approaches [2, 11].
In an ideal setup, matched tumor–normal DNA and RNA
sequencing samples are processed in the same conditions,
including in the same lane of the sequencer. The resulting NGS
data are analyzed for genetic aberrations and potential drug
interactions. Specific treatment suggestions are, after careful
consideration of available preclinical and clinical evidence,
incorporated into a clinical report, which together with the
patient’s clinical data, such as treatment history, comorbidities
and radiology scans, forms the basis for therapeutic decision-
making in an interdisciplinary MTB. The molecular report may
suggest tumor genotype-matched clinical trials and targeted
therapies, such as kinase inhibitors, or recommend the avoid-
ance of drugs, for example, in cases where mutations that
potentially confer treatment resistance have been detected.

A number of challenges exist for current precision oncology
approaches during all the steps of the process, starting from
clinical sampling up to bioinformatics analysis, reporting and
patient treatment. In addition to difficulties in obtaining a
tumor biopsy and a sufficient quantity and quality of tumor
DNA and RNA for molecular profiling, Massard et al. [14]
reported that in less than half of 843 patients with advanced
solid tumors, an actionable mutation was found. In the largest
basket trial approach to date, the MATCH trial of the US
National Cancer Institute (NCI), the restricted number of drug
arms resulted in even fewer gene–drug matches. Only 9% of the
patients could be assigned to a genetics-based treatment [15].

The development of more selective drugs over time is expected
to increase these numbers. A further challenge is to translate a
MTB suggestion into patient treatment. Beltran et al. [12]
reported that although 94% of solid cancer patients in their MTB
had an actionable alteration, only 5% were treated based on
their genotype. The main reasons were rapid decline of condi-
tion and, more importantly, the lack of access to clinical trials
or off-label drugs. Finally, the costs of molecular profiling can
be challenging as well. Although it has been shown that panel
sequencing is financially feasible [16], the costs of more
comprehensive approaches such as WES, whole-genome
sequencing (WGS) and RNA sequencing can be prohibitive
for reimbursement. Nevertheless, it is to be expected
that comprehensive sequencing will become cheaper, and
therefore financially feasible.

The final outcome of cancer genotype-matched patient
treatment, namely, patient response to treatment, varies widely
in the published literature. Schwaederle et al. [11] report a
partial response in 36% of patients, whereas the MOSCATO trial
[14] reports objective responses in 11% of patients receiving
matched treatments. The currently ongoing basket trials such
as NCI MATCH, which aims to include 6000 patients, will pro-
vide more conclusive data, owing to larger cohort sizes and
well-defined genotype-matched treatment arms. Nonetheless,
a single-gene aberration is not always predictive of treatment
response as has been observed for the oncogenic BRAF
mutations, which predict BRAF inhibitor response in mela-
noma [17], but not necessarily in non-melanoma cancers [18].
Furthermore, molecular tumor approaches reported to date
are based on profiling of single biopsies. Large-scale sequenc-
ing studies have shown extensive intra-patient heterogeneity
between different metastases and even within individual
tumors [3, 4], indicating that this approach might not necessa-
rily identify ubiquitous and also miss relevant alterations.

In this review, we discuss bioinformatics approaches to
NGS-based precision oncology, including variant calling, anno-
tation, interpretation, drug matching and reporting in a MTB
setting. We have set up a bioinformatics analysis pipeline and
reporting workflow for WES and WGS at the MTB of the
University Hospital Zurich and will base this review on our
experiences with this ongoing effort. For guidelines on the anal-
ysis of NGS-based oncology panels, please refer to [19].

Requirements on bioinformatics solutions for
clinical oncology

High-throughput NGS allows for time- and cost-effective molec-
ular probing of tumors. However, the resulting sequencing data
is challenging to analyze because of its large size and various
confounding sources of variation, most notably amplification
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Figure 1. Schematic overview of the workflow of a MTB. Tumor biopsies are obtained from consenting patients, and DNA is extracted and sequenced. Variants are

called and then annotated and prioritized for potential functional or clinical relevance before being reported to a tumor board, where an interdisciplinary team decides

about treatment options.
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and sequencing errors. Careful analysis of NGS data is particu-
larly important in the context of MTBs, where treatment sug-
gestions based on mutation calls may have dramatic effects,
ranging from recovery to death of a patient. Therefore, strict
standards with respect to several aspects described below need
to be followed.

First and foremost, experimental noise needs to be distin-
guished from true biological signals. Treatment decisions have to
be based only on validated, real biological alterations and should
not be misled by technical artifacts. Toward this end, appropriate
computational data analysis pipelines have to be used that cover
the entire process from primary analysis of the read data to clini-
cal reporting. To understand the limitations of an implemented
pipeline, it needs to be evaluated under defined conditions
reflecting realistic use case conditions [20, 21]. Pipelines need to
be robust with respect to new sequencing data that may differ in
some aspects from previously analyzed samples. In addition,
mutation calls should be reported with a confidence estimate.
Although some mutation callers report, for example, P-values or
posterior probabilities, it remains a major challenge to provide a
meaningful notion of confidence for the results of an entire pipe-
line. This is particularly important, as the overlap of different
approaches is often limited, as mentioned in [22–25].

The results produced by a bioinformatics pipeline have to be
reproducible. This requirement entails several technical prereq-
uisites discussed below and includes controlling random seeds
for all steps that involve randomization. Another important
aspect of reproducibility is a rigorous documentation of each step
of the pipeline, including complete documentation of the used
tools, their version and parameter settings. This also holds for
databases and ensures complete transparency [20]. For instance,
in the past, most genomic studies have used as a reference
genome GRCh37 from the Genome Reference Consortium or its
equivalent from the University of California Santa Cruz, version
hg19. Even though there are only minor differences in their
genetic information, the naming scheme is different, which can
lead to confusion. Moreover, the new human genome assembly
GRCh38 not only updated the main chromosomes, and therefore
changed their coordinates, but also included new contigs to rep-
resent population haplotypes, further complicating reproducibil-
ity. Therefore, it is necessary that for each file used in the
pipeline, its generation and dependencies are clearly described.
Such a setup also guarantees the traceability of all results. For
example, it should be possible to trace back the call of a
treatment-critical mutation, to assess the call manually and to
validate it before recommending the treatment. In addition,
genomic alterations in the patient which are not directly linked
to cancer, known as incidental variants, may be discovered. As
these variants may be reported in various ways with potential
ethical implications, a clear strategy needs to be defined, for
example, reporting all relevant incidental findings [26].

In addition to these requirements on stability, robustness,
reproducibility and traceability of the computational pipeline,
the size, sensitivity and complexity of comprehensive clinical
data sets combined with the urgency caused by the often critical
state of the respective patient result in a set of challenging tech-
nical prerequisites for the computational infrastructure and the
implemented data analysis software of an MTB.

Technical prerequisites

Medical data require secure data storage and distributed com-
puting. Secure storage of sensitive data calls for restrictive
authorization and authentication schemes that limit data

access to those who hold valid credentials. These schemes have
to be implemented and reviewed on a regular basis, in particu-
lar in a clinical setting in which data might have to be stored for
many years. As data sets grow and the analysis becomes
increasingly complex, the computation time of even single data
sets outgrow the capacity of individual computers. Distributed
computing, such as high-performance clusters or cloud engines,
allows for efficient execution of data analysis workflows. The
drawback is that these instances do not natively comply with
the strict security requirements of medical data, as resources
are shared among users with and without sufficient
permissions.

To address the strong requirement for speed, accuracy and
reproducibility, the use of a workflow manager can help with
standardization and automation of the analysis. Multiple work-
flow managers are available such as Snakemake [27], Nextflow
[28], Toil [29], Bpipe [30] and to some extent also the Galaxy
framework [31]. Although they differ in features such as cluster
support and programming language, they have all been imple-
mented with the same rationale: the scientist defines the order,
the parameters and the input data for a chain of tools, and the
workflow manager takes care of the correct execution and docu-
mentation of the intermediate steps.

Primary analysis of DNA data

The primary analysis of genomic data sets typically starts with
the raw sequencing data and finishes with a list of mutations.
The different steps of this analysis are conducted in complex
pipelines that differ according to the sequencing method used.
Even for the same type of sequencing method, many pipelines
are available and it has been observed repeatedly that the results
can be different [24, 25, 32–35]. The primary analysis can be sub-
divided into (i) raw sequencing file processing, (ii) read mapping,
(iii) alignment post-processing and (iv) variant calling (Figure 2).
These steps are implemented to different extents in most pipe-
lines. In the following, we will describe each of them briefly.

Raw sequencing file processing

The genomic sequencing data are provided in the form of reads,
amplified DNA sequences of tens to hundreds of base pairs, in
so-called FASTQ files. In addition to the sequencing informa-
tion, for each nucleotide, the FASTQ file contains quality scores
provided by the sequencing machine. These quantities repre-
sent the probability of the reported nucleotide to be a sequenc-
ing error, as estimated by the sequencer. Quality scores can be
used to trim reads such that the FASTQ files only contain high-
confidence nucleotides, and the number of false positive calls
owing to sequencing errors is kept at a minimum [36]. Another
source of artifacts are sequencing adapters. Adapters are short
nucleotide sequences attached to the genomic DNA fragment
and used for amplification and sequencing. Sometimes these
adapters are contained within the nucleotide sequence of a
read and may lead to false-positive mutation calls. Therefore,
many pipelines include tools such as Cutadapt [37],
Trimmomatic [38], SeqPurge [39] or Flexbar [40] to remove low-
quality bases and artifacts in the raw sequencing data.

Read mapping

Owing to the sequencing protocols, the reads do not contain
any information about their origin in the genome. This informa-
tion is inferred by using read mappers, which align, or map, all
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reads to a given reference sequence. The importance of this
time-critical step has led to the development of >60 different
read mappers [41], with BWA [42] and Bowtie2 [43] being popu-
lar examples. They usually provide their results in Sequence
Alignment/Mapping format (SAM, binary version BAM) files,
which undergo different modifications during the alignment
post-processing step.

Alignment post-processing

This phase typically starts with sorting the SAM/BAM files
according to their genomic coordinates. Afterward polymerase
chain reaction (PCR) duplicates are often removed using, for
example, picard tools (http://broadinstitute.github.io/picard) or
SAM tools [44]. These duplicates are copies of the same genomic
fragment and indicate selective PCR amplification which can
bias the analysis. However, duplicated reads can also be biologi-
cal copies originating from the same genomic location of chro-
mosomes of different cells. The probability of a duplicate read
to be a biological copy increases with coverage [45], such that
this step is typically not performed for deep-coverage targeted
sequencing approaches.

Another post-processing step is the re-alignment of reads
around indels. As read mappers rely on heuristics to deal with
the large amount of data, the resulting alignments can be sub-
optimal. This is especially true for sites harboring indels
because here the difference between the reference genome and
the patient reads is more pronounced. To reduce this bias,
many pipelines perform re-alignments around these positions,
for example, using the Genome Analysis Toolkit (GATK) [46–48].
For Illumina data, GATK also provides a tool to correct for biases
in the sequencing process, which uses a machine learning
approach to re-compute the quality scores of the nucleotides.
The use of the re-alignment and quality score recalibration is
generally recommended [47, 49], but they are not always per-
formed in practice, as they are time-intensive and the impact is
sometimes not obvious [50, 51].

Variant calling

Variant calling in the context of oncology refers to the identifi-
cation of somatic variants in the cancer genome. These variants
have occurred during the development of the tumor and they
need to be separated from germ line variants of the patient.
Targeted cancer therapy aims to selectively inhibit cells with
specific somatic mutations, such as SNVs, indels and SVs. There
are two conceptually different approaches to identify somatic
variants, namely, (i) filtering for somatic variants using existing
variant databases and (ii) using a normal control sample to dis-
tinguish somatic from germ line variants.

The first approach identifies variants in the genome by ana-
lyzing only the tumor sample, using tools such as VarScan2 [52],
SiNVICT [53] or GATK HaplotypeCaller [46–48]. The identified
mutations are then compared with existing databases, such as
dbSNP [54, 55], ExAC [56], ClinVar [57] or COSMIC [58], to assess
whether a given variant has previously been reported as a germ
line variant or a cancer-associated change in the genome. The
major advantage of such approaches is independence from a
control tissue sample, while major drawbacks are dependence
on quality and completeness of the databases as well as limited
sensitivity because low-frequency variants are difficult to dis-
tinguish from sequencing noise.

The second approach uses an additional non-cancerous sam-
ple from the same individual as a germ line control. This approach
can further be subdivided into methods that (a) apply variant call-
ing to the tumor and control sample independently (using tools of
approach (i)) or (b) use the genomic information of the two sam-
ples jointly. Approaches in the first category subtract from the
tumor sample all mutations in the control sample, i.e. the germ
line variants. Methods of the second category directly call somatic
mutations by comparing variants between tumor and control
sample for each position, which increases the power for calling
true mutations at a given false-positive rate [59]. The idea is to
model the control and tumor sample jointly to transfer noise pat-
terns learned from the control sample to handle confounding fac-
tors appropriately. The results of approaches in (b) are usually
superior to results from approaches in category (a), especially with
regard to specificity [60]. Examples are MuTect [61], Strelka [62],
VarScan2 [52], JointSNVMix [60] and deepSNV [59, 63].

For the identification of SVs, there are four commonly used
techniques, namely, clustering, split-read mapping, contig
assembly and statistical testing, as described in more detail in [22].
SV detection can be divided into CNV detection and identification
of other SVs such as translocations and inversions. CNV calling is
performed not only on WGS, but also on WES and even amplicon
sequencing data. Numerous methods for CNV calling exist [64],
including EXCAVATOR [65], BIC-seq2 [66] and CopywriteR [67]. In
contrast, SVs like translocations and inversions are usually called
based on WGS to determine the actual breakpoints of the genomic
rearrangement. Popular methods include Pindel [68], SVDetect [69],
Delly [70] and Lumpy [71]. As mentioned in [22], sensitive and spe-
cific SV calling remains a challenge, and choosing the appropriate
approach greatly depends on the type of SV and NGS protocol fea-
tures, such as the library size. For a more comprehensive review of
CNV and SV calling, we refer to [22, 64, 72, 73].

Primary analysis of RNA data

While variant calling is typically based on DNA data, differential
expression analysis uses RNA sequencing data. Alignment and

Figure 2. Schematic overview of analysis steps for DNA variant calling (blue, top) and RNA expression analysis (red, bottom).
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read pre- and post-processing are generally similar for DNA and
RNA sequencing, with some key differences, for example, read
mappers have to perform a special gapped alignment, because
RNA reads sometimes do not continuously align to the refer-
ence sequence owing to splicing events, but map to different
exons with large gaps in between. Popular RNA aligners are
STAR [74] and TopHat [75].

In contrast to DNA alignments, the coverage of RNA align-
ments varies between regions in the genome owing to different
gene expression levels. Thus, the coverage of RNA alignments
can be used to infer gene expression levels after normalization
with respect to total read count, gene length and possibly other
confounding factors such as GC content. Here, commonly used
tools include HTSeq [76] and featureCounts [77].

If matching control tissue is available, differential gene
expression compared with normal can also be assessed, albeit
with reduced statistical power owing to the lack of replicates.
Typically, however, no adequate normal tissue is available.
Popular tools for differential gene expression analysis include
DESeq2 [78] and EdgeR [79, 80], which model read counts
directly, account for various sources of confounding and pro-
vide robust statistical procedures for parameter estimation.

An alternative, albeit imperfect, approach to detecting over-
or under-expressed genes is the comparison of tumor gene
expression levels to publicly available data sets of suitable
tumor or normal cohorts, such as TCGA (https://cancergenome.
nih.gov/) or GTEx [81]. For example, Oberg et al. used 124 tran-
scriptomes from various normal tissues as a reference data set
in a pediatric hematology-oncology setting [5]. Batch effects
have to be taken into account, when comparing separately gen-
erated RNA sequencing data sets. Multiple tools for batch effect
removal are available, e.g. the R package SVA [82].

However, it remains a challenge to integrate transcriptome
data in a clinical tumor board setting, where the task typically is
to compare an individual tumor sample with a separate healthy
reference or tumor cohort. Eventually, the goal is to use the RNA
sequencing data in at least three ways: (1) to validate the
expression of SNVs, CNVs or SVs, (2) to identify misregulated
pathways that could potentially be targetable and (3) to deter-
mine the proportion of immune cell infiltration based on
immune signatures. For each of these aims, different references
might be necessary. As healthy tissue from individual cancer
patients is not always available, public transcriptome databases
may be used as a comparison. However, the transcriptional
changes between healthy controls and cancer cells may be
less revealing than a comparison with similar cohorts of
cancer biopsies. For instance, different subtypes of melanoma
(i.e. mucosal versus uveal or cutaneous) have some similarities,
but differences might reveal informative vulnerabilities that
could be targeted in a MTB setting. Lastly, the ability to infer
tumor infiltration of immune cells based on RNA expression
could be a powerful means to complement traditional immuno-
histochemistry approaches that are still relevant for predicting
response to immunotherapies.

Variant annotation

The process of variant annotation aims at assembling as much
relevant information as necessary to select or discard a given
variant while at the same time keeping the amount of informa-
tion that needs to be parsed manually as small as possible.
Possible annotations range from basic attributes like affected
gene, coding or noncoding, synonymous or nonsynonymous to
complex classifications like clinical significance.

Clinical significance is the most relevant piece of informa-
tion for a clinician about any variant. Typically, variants are
categorized as pathogenic, likely pathogenic, of unknown sig-
nificance, likely benign, or benign. However, the classification
of specific variants is not consistent across available databases
such as ClinVar [57], CIViC [83], COSMIC [58] and dbSNP [54, 55].
For instance, algorithms such as SnpEff [84] categorize variants
based on the predicted impact on protein function, whereas
ClinVar [57] links particular variants to known functional or
clinical features.

Additionally, the vast majority of detected variants have not
yet been assigned a level of functional relevance or clinical sig-
nificance. Thus, focussing only on variants annotated as (likely)
pathogenic will often result in no variants at all being reported.
This is unsatisfactory and potentially misleading. Annotation
tools such as SnpEff [84] and ANNOVAR [85] can be applied to
help extract interesting variants for the clinical report.
Furthermore, a useful database for the identification of poten-
tially deleterious SNVs is dbNSFP [86]. It contains predictions
from a large set of functional prediction tools for all possible
nonsynonymous SNVs and splice variants in the human
genome. Among others, annotations include deleteriousness
and affected protein domains. Both can be very useful for var-
iant prioritization. For example, a deleterious variant ranks
higher than a non-deleterious variant and a nonsynonymous
coding variant within a protein domain ranks higher than a
non-protein-truncating variant outside of a protein domain. For
functional effect prediction of indels, PROVEAN [87] can be
used. It predicts the functional effects of single and also multi-
ple amino acid substitutions, in-frame insertions and deletions.

Another helpful annotation when it comes to variant priori-
tization is whether a variant affects a potential cancer driver
gene. Information on genes that have been reported as driver
genes can be obtained from the literature [88, 89] and databases
such as UniProt [90], IntOGen [91, 92] and COSMIC [58].

With the goal of recommending drugs, it is useful to anno-
tate genes with drugs that target them. Popular online resources
to query drug–gene interactions are DGIdb [93, 94], OncoKB [95]
or CIViC [83]. It would be desirable to also annotate genes with
indirectly interacting drugs, i.e. drugs that target proteins up- or
downstream of the gene within the relevant pathway. Such
annotation methods are currently being developed, e.g. [96], but
no easy-to-use tool or API has yet been established.

Interpretation of molecular profiles and
clinical reporting

Interpreting the clinical significance of genomic variants and
transcriptional changes, i.e. the synthesis of all available infor-
mation about an event and its relevance to clinical action [97] is
a daunting and laborious task. It constitutes the bottleneck of
the whole process from biopsy collection to reporting to the
MTB [97] because it cannot be fully automated in a reliable way.
Nevertheless, a properly curated list of evidence-based therapy
recommendations forms the basis for the MTB to decide on the
treatment of a patient. Thus, the ultimate goal of clinical report-
ing is to apply clinical interpretation to select relevant variants
and to recommend targeted, personalized therapies [98].

The best case scenario for reporting is a single pathogenic
mutation with an associated, clearly defined and clinically veri-
fied therapy, such as BRAFV600E and vemurafenib [17]. However,
more often, several damaging mutations of unknown signifi-
cance are identified and it is unclear which, if any, have
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functional or clinical relevance. This is especially true in the
case of comprehensive sequencing. Consequently, the poten-
tially long list of mutations and their associated drugs needs to
be filtered automatically to obtain a relevant but manageable
selection of drug–gene interactions that can then be further
curated manually. Examples of such filters are exclusion of
non-cancer drugs or of drugs with a nonsensical mode of action
for their associated mutation, such as an inhibitor for a deleted
gene.

For the report, each listed drug–gene association has to be
assigned a level of confidence. In 2017, the Association for
Molecular Pathology, the American College of Medical Genetics
and Genomics, the American Society of Clinical Oncology and
the College of American Pathologists have established four evi-
dence levels based on professional guidelines as well as size
and number of studies supporting a mutation and its associated
drug [99]. While these categories may or may not fit to the local
or national situation of a reporting facility, the adherence to a
joint consensus is favorable, as it facilitates the comparison
with other resources, like OncoKB [95] and PharmGKB [100], and
also the longitudinal use of findings in the clinic.

As mentioned above, it is not unusual for variants to be
assigned contradicting levels of clinical significance across and
even within individual databases. Therefore, preparation of a
meaningful tumor board report often needs to include a manual
investigation of the associated literature to properly annotate
and clinically interpret the identified variant. To determine the
clinical actionability of a variant, one can consider, for example,
the cell type content of the biopsy, the tissue-specificity of gene
expression alterations and, when not using germ line controls,
potential germ line variants. Alternatively, all findings, even
contradictory ones, can be reported, thereby leaving the entire
interpretation up to the MTB. However, it is questionable
whether the latter approach is a practical solution given the
often very short time frame that is available in the MTB to dis-
cuss particular cases. This trade-off between comprehensive-
ness and conciseness is a common theme in clinical reporting.

Molecular Tumor Board Zurich

In early 2015, we started the Molecular Tumor Board Zurich
(MTBZ) to comprehensively profile and report on end-of-
treatment line melanoma patients [101]. An important prereq-
uisite for the success of this endeavor was to bridge the gap
between the medical and technical disciplines and establish a
common language to better understand the needs for efficient
and effective reporting to the tumor board.

The goal of this project was to overcome certain shortcom-
ings in the standard of care. We address these issues by (i) com-
prehensive sequencing, (ii) automated and comprehensive
annotation, (iii) investigation beyond disease-specific therapies
and (iv) identification of therapies with lacking or reduced effi-
cacy. For patients without any traditional treatment options
remaining, comprehensive profiling of the tumor might offer
new treatment options. Therefore, we established a protocol
based on WES and WGS of tumor and matched normal samples,
specifically WES for SNV and small indel calling and low-pass
WGS for CNV calling. In addition to the identification of somatic
variants, WES allows us to provide more information potentially
relevant to the clinician, namely, mutational burden and the
patient’s HLA type. We report the mutational burden of a tumor,
which is especially useful for the decision on using immuno-
therapies, for instance, in the case of CTLA-4 blockade in mela-
noma [102]. Further, we put it into context by comparing it with

the distribution of mutational load within publicly available
samples from the same and other cancer types [103]. The HLA-I
type of a patient, which can be inferred from WES data using,
for example, OptiType [104], provides information on eligibility
for certain cancer vaccination trials [105]. Another important
difference to standard procedures is the implementation of an
automated and comprehensive annotation pipeline querying
multiple databases for clinical significance, finding clinical trial
opportunities worldwide and putting observed variants into the
context of large studies like TCGA using the cBio Cancer
Genomics Portal [106]. The use of the latter is twofold: We can
assess (i) whether a variant is typical for the cancer type which
improves confidence, and (ii) whether a variant uncommon in
the given type of cancer is commonly observed in another type
of cancer and could explain why previous standard treatments
had not been successful.

We group therapies associated with detected somatic muta-
tions into (i) cancer-type-specific therapies, (ii) non-cancer-
type-specific therapies, (iii) investigational therapies and (iv)
therapies potentially lacking benefit (Figure 3). The first cate-
gory represents all suggested therapies which have been
approved for the given cancer type by the local regulatory body,
i.e. Swissmedic. The second group consists of therapies that are
approved but not for the cancer type under consideration. This
group is especially relevant owing to the increasing understand-
ing that the genomic profile of a tumor is a better predictor for
response than the tissue of origin alone [107]. By limiting this
group to approved drugs only, it constitutes a source of avail-
able options to clinicians in Switzerland, where health insuran-
ces often approve the use of off-label treatments. The third
group contains therapies which are not approved, but have
been shown to be effective in preclinical studies and are cur-
rently in clinical trials, either open or ongoing. Although this
group is usually based on low or insufficient levels of evidence,
owing to singleton studies or only pre-clinical evidence, it fre-
quently contains references to open clinical trials that the
patient might be eligible for.

The final group includes therapies for which the genetic pro-
file might cause reduced efficacy. In the fast-moving process of
understanding the efficacy of novel therapeutics and their
range of effects on different targets, a single trial showing
lack of efficacy may be sufficient to exclude a therapy.
For example, in a patient with neuroendocrine carcinoma,
paclitaxel was a candidate drug for non-cancer-type-specific
therapies. However, a clinical phase II study [108] showed that
high-dose paclitaxel lacked antitumor activity and displayed
significant hematologic toxicity in patients with advanced neu-
roendocrine tumors. Therefore, paclitaxel was listed as poten-
tially lacking benefit.

In a first pilot study, we analyzed tumor biopsies and
matched germ line samples from five metastatic melanoma
patients with progressive disease on standard treatment and
produced reports within a clinically relevant time period of 4-
12 weeks from tumor biopsy.

Briefly, we performed WES and WGS on tumor biopsy sam-
ples together with a blood sample as matched normal control.
Based on the pipeline framework described in [109], we use
Trimmomatic [38] to remove adapters and quality trim the raw
read sequences. We apply BWA [42] for read mapping and sub-
sequently remove PCR duplicates using picard tools (http://
broadinstitute.github.io/picard). Following the GATK best prac-
tices [46–48], we perform indel realignment and base recalibra-
tion previous to the variant calling. SNVs are called based on a
combination of Mutect [61], Strelka [62] and VarScan2 [52] and
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further annotated based on various databases including dbSNP
[54, 55], COSMIC [58] and ClinVar [57], and functional annotation
based on dbNSFP [86, 110]. CNVs are called based on WGS,

using BIC-seq2 [66]. All variants are compared against DGidb
[93] to select the first set of candidates for possible targeted
treatments based on reported drug–gene interactions. Candidate

Figure 3. Example of concise report summary from an MTBZ report, including mutational burden, HLA-I type of the patient, mutational state of cancer-type-specific

set of important genes, grouped according to level of approval.
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treatments are further prioritized, for instance based on the
Swissmedic approval of the therapy, availability of clinical trials
and treatment success in existing clinical studies. Finally,
selected variants and respective treatment options are reported
in the clinical report and discussed with the treating clinician.

In the five melanoma patients, we detected between 3 and
11 actionable aberrations per patient, most commonly in genes
of the PI3K, cell cycle checkpoint and MAPK pathways. In two
cases, the MTB recommended therapy based on our results: in
one case, immunotherapy based on high mutational load, and
in the other a chemotherapeutic drug based on a loss of a recep-
tor activating the detoxification pathway of the drug. We
observed a near-complete durable response in the first patient
and a progression of disease in the second. The reasons for not
following the report recommendations for the other patients
were rapid decline of one patient’s condition and treatment
with a newly approved immunotherapy regimen in two others.

Together with our clinical collaborators, we were able to
draft a set of best practices on what to include in the report.
These best practices are also viable for other disciplines outside
of oncology. First of all, the report should begin with a concise
summary of the most important findings. In our report, we
focus on mutational load, the state of genes commonly mutated
in the specific cancer type, a therapy summary and HLA-I type
(Figure 3). Starting on page 2, the report should increase in
depth such that the reader who would like to know more details
can simply read on. Given the limited time to discuss a case in
the MTB meeting, it is key that the most important facts can be
grasped quickly from scanning the first page. Nevertheless,
ideally, the report provides all information obtained from proc-
essing of the patient samples.

A selected list of clinical trial opportunities based on the
molecular profile of the tumor are an important part of our report.
Here, we refer to trials which are currently recruiting, thus offering
a chance for the patient to get access to a potentially beneficial
therapy, which might otherwise not be available. To allow the
clinician to quickly assess the suitability of the trial, our report
includes drug name, trial phase and title, as well as trial locations.

Given the rapid developments in molecular profiling tech-
nologies as well as in variant calling and annotation algorithms
and databases, naturally, the MTBZ workflow is constant work
in progress. In our most recent reports, for example, we started
to incorporate transcriptomics data allowing us to detect up-
and downregulation of genes and transcripts, gene fusions,
alternative splicing events, as well as expression status of
somatic mutations.

Future directions

Bioinformatics workflows for the analysis and clinical interpreta-
tion of tumor molecular profiles have to various degrees been
implemented in clinical trials and MTBs at specialized cancer cen-
ters and university hospitals worldwide. The initial results of these
efforts are promising, but it has also become clear that exploiting
the full potential of precision oncology faces many challenges.

One current bottleneck is efficient and precise annotation of
variants. This step requires databases containing well-curated
variants as well as their interactions with potential drugs. Text
mining is a promising approach to accelerate and improve the
process of not only curating variants across the globe, but also
finding evidence in literature for interaction between drugs and
genes as well as the effect of drug combinations [111]. Stronger
proof for annotation in the form of globally curated variants
and better literature evidence will ultimately speed up the

process of interpreting results from molecular diagnostic test-
ing, and thus overcome the bottleneck of precision oncology.

The rapid development of molecular profiling techniques
will continue to provide new opportunities for precision oncol-
ogy. For example, single-cell sequencing [112, 113], which allows
for processing the DNA of hundreds and the gene expression
levels of thousands of cells independently at the same time,
will lead to increasing sensitivity levels with respect to muta-
tion identification and the detection to tumor subclones, both
of which are likely to affect treatment outcome. Further, multi-
omics approaches will provide more insight into dysregulated
pathways and increase the level of confidence in reporting an
actionable variant when it can be confirmed by RNA, protein or
epigenetic profiling. At the same time, multi-omics data will
pose new bioinformatics challenges to integrate multiple data
types and identify potentially efficacious treatments.

Moreover, powerful predictions of patient response to a
personalized treatment strategy will come from functionally
testing the suggested therapies on ex vivo tumor slices [114], in
2D or 3D cultures of the patient’s tumor or in patient-derived
xenograft models [115]. This approach, although still in its
infancy, will provide another level of therapeutic decision sup-
port for the MTB by allowing for the exclusion or confirmation
of therapeutic efficacy and choice of the most efficacious drug
combinations.

Key Points

• Robust, reproducible, transparent and comprehensive
bioinformatics pipelines are required for precision
oncology, including molecular tumor boards and cancer
basket trials.

• Variant calling, interpretation and annotation are at the
core of improving cancer treatment by providing timely
and reliable therapy recommendations.

• Clinical reporting of molecular findings is an important
step that requires close interactions between bioinfor-
maticians and clinicians.
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