metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -methacrylato- κ^4 O:O'-bis[aquabis(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)] dinitrate dihydrate

M. T. H. Tarafder,^a* M. Y. Reza,^a K. A. Crouse,^b Suchada Chantrapromma^c‡ and Hoong-Kun Fun^d§

^aDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, ^bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia, ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: ttofazzal@yahoo.com

Received 24 May 2008; accepted 28 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.114; data-to-parameter ratio = 20.5.

The title complex, $[Cu_2(C_4H_5O_2)_2(C_{12}H_8N_2)_2(H_2O)_2](NO_3)_2$. 2H₂O, contains a dimeric [Cu₂(C₄H₅O₂)₂(C₁₂H₈N₂)₂- $(H_2O)_2$ ²⁺ dication with two five-coordinated Cu^{II} ions linked by two methacrylate ions in a syn-syn bridging arrangement. The dication possesses pseudo-twofold rotational symmetry. The pentacoordination of each Cu^{II} ion has a distorted squarepyramidal geometry, with two N donors from a phenanthroline ligand and two carboxylate O atoms occupying basal sites and the apical position being occupied by a water molecule. In the crystal packing, molecules are linked to form a threedimensional framework by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and $\pi - \pi$ interactions [centroid–centroid distances of 3.6039 (15), 3.5301 (15), 3.6015 (15). 3.6496 (15) and 3.6858 (15) Å].

Related literature

For bond-length data, see: Allen *et al.* (1987). For structures of related copper(II) complexes, see: Chen *et al.* (2008); Perlepes *et al.* (1995). For related literature, see: Besecke *et al.* (1989); Blackburn *et al.* (1995); Chen *et al.* (2007); Dang (1994); Houser *et al.* (1996); Matsushima *et al.* (1995); Reza *et al.* (1998, 1999, 2003); Tokii *et al.* (1989, 1990, 1992, 1995); Schubert (1996); Schubert *et al.* (1992, 1995).

 $\beta = 102.1306 \ (8)^{\circ}$

Mo Ka radiation

 $\mu = 1.31 \text{ mm}^{-3}$

 $R_{\rm int} = 0.069$

489 parameters

 $\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.78 \text{ e } \text{\AA}^{-3}$

T = 100.0 (1) K $0.27 \times 0.24 \times 0.16$ mm

43546 measured reflections

10036 independent reflections

6885 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Z = 4

V = 3443.94 (8) Å³

Experimental

Crystal data

$[Cu_2(C_4H_5O_2)_2(C_{12}H_8N_2)_2(H_2O)_2]$ -
$(NO_3)_2 \cdot 2H_2O$
$M_r = 853.75$
Monoclinic, $P2_1/c$
a = 13.6146 (2) Å
b = 15.7322 (2) Å
c = 16.4463 (2) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)

 $T_{\min} = 0.716, \ T_{\max} = 0.822$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.113$ S = 1.0410036 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W1\cdots O6^{i}$	0.85	2.42	3.115 (3)	140
$O1W - H1W1 \cdots O8^{i}$	0.85	2.32	2.882 (3)	124
$O2W - H1W2 \cdots O5^{ii}$	0.85	2.03	2.761 (3)	144
$O3W - H1W3 \cdots O5$	0.86	1.97	2.811 (3)	163
$O4W - H1W4 \cdots O10^{iii}$	0.93	2.02	2.807 (3)	142
$O1W - H2W1 \cdots O3W^{i}$	0.85	2.19	2.791 (3)	127
O3W−H2W3···O9 ⁱⁱⁱ	0.91	2.00	2.862 (3)	157
$O4W - H2W4 \cdots O7^{iii}$	0.84	2.29	2.860 (3)	125
$C1-H1A\cdots O4$	0.93	2.56	3.035 (3)	112
$C1-H1A\cdots O10^{iv}$	0.93	2.53	3.247 (3)	134
$C3-H3A\cdots O9^{v}$	0.93	2.37	3.186 (4)	146
$C14-H14A\cdots O4W^{vi}$	0.93	2.52	3.364 (4)	151
$C15-H15A\cdots O2W^{ii}$	0.93	2.49	3.357 (3)	155
$C21-H21A\cdots O3^{v}$	0.93	2.39	3.318 (4)	179
C28−H28 <i>B</i> ···O3	0.93	2.42	2.747 (4)	100
C32−H32 <i>B</i> ···O1	0.93	2.42	2.737 (4)	100
$C32-H32B\cdots O8^{i}$	0.93	2.43	3.345 (3)	168

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x, y + 1, z; (v) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

MTHT and MYR thank Rajshahi University for the provision of laboratory facilities. KAC thanks the Universiti Putra Malaysia for financial assistance. SC thanks Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for University Golden Goose Grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2604).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Besecke, S., Schröder, G. & Gänzler, W. (1989). Ger. Patent DE 3137840. Blackburn, N. J., Buse, G., Soulimane, T., Steffens, G. C. M. & Nolting, H.-F. (1995). Angew. Chem. Int. Ed. Engl. 34, 1488–1495.
- Bruker (2005). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X.-B., Chen, B., Li, Y.-Z. & You, X.-Z. (2007). Appl. Organomet. Chem. 21, 777–781.
- Chen, F., Lu, W.-M. & Zhu, Y. (2008). Acta Cryst. C64, m167-m169.

Dang, Y. (1994). Coord. Chem. Rev. 135/136, 93-128.

- Houser, R. P., Young, V. G. & Tolman, W. B. (1996). J. Am. Chem. Soc. 118, 101–107.
- Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1995). *Chem. Lett.* 24, 869–870.
- Perlepes, S. P., Huffman, J. C. & Christou, G. (1995). Polyhedron, 14, 1073– 1081.
- Reza, M. Y., Belayet, H. M. & Islam, M. (2003). *Pak. J. Biol. Sci.* 6, 1494–1496.
 Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998).
 Bull. Chem. Soc. Jpn, 71, 155–160.
- Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787–792.
- Schubert, U. (1996). J. Chem. Soc. Dalton Trans. pp. 3343-3348.
- Schubert, U., Arpac, E., Glaubitt, W., Helmerich, A. & Chau, C. (1992). Chem. Mater. 4, 291–295.
- Schubert, U., Huesing, N. & Lorenz, A. (1995). Chem. Mater. 7, 2010-2027.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tokii, T., Nagamatsu, M., Hamada, H. & Nakashima, M. (1992). *Chem. Lett.* **21**, 1091–1094.
- Tokii, T., Nakahara, S., Hoshimoto, N., Koikawa, M., Nakashima, M. & Matsushima, H. (1995). Bull. Chem. Soc. Jpn, 68, 2533–2542.
- Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1989). *Chem. Lett.* **18**, 1671–1674.
- Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.

Acta Cryst. (2008). E64, m872-m873 [doi:10.1107/S1600536808016218]

Di- μ -methacrylato- $\kappa^4 O:O'$ -bis[aquabis(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)] dinitrate dihydrate

M. T. H. Tarafder, M. Y. Reza, K. A. Crouse, S. Chantrapromma and H.-K. Fun

Comment

There is considerable interest in bioinorganic chemistry of metal carboxylates as these are formally analogous to organic esters (Dang, 1994; Reza et al., 2003). In this type of complex, the reactivity of the carboxylates towards the nucleophiles is enhanced (Houser et al., 1996; Blackburn et al., 1995; Reza et al., 1998; 1999; Tokii et al., 1989). Since transition metal complexes of methacrylic acid are also polymeric (Schubert, 1996; Schubert et al., 1992, 1995), chemists are attracted to study the application of these types of materials, particularly as catalysts. The Cu^{II} ions coordinate with a variety of carboxylates (Besecke et al., 1989; Matsushima et al., 1995). Such related coordinations have appeared in a series of binuclear Cu^{II} complexes with 1,3-bis(hydroxyphenyl)-2-imidazolidinethione, $[Cu(RCOO)(HL^1)]_2$ ($R = CH_3$, C₆H₅), (HL¹= 1hydroxymethyl-3-methyl-2-imidazolidinethione), $[Cu(RCOO)(L^2)]_2$ ($R = CH_3$, 2-CH₃C₆H₄, and 4-CH₃C₆H₄) (imidazolidinethione being the second substituent of the arylring) (Tokii *et al.*, 1995), $bis(\mu$ -carboxylato-O,O')-diaquobis (1,10-pherathroline) dicopper(II) dinitrate tetrahydrates [Cu(RCOO)(phen)(H₂O)]₂(NO₃)₂. 4H₂O [R = H, CH₃ and (CH₃)₃C] (Tokii et al., 1990; 1992). Matsushima et al. (1995) have reported some triply bridged dinuclear carboxylato copper (II) complexes, $[Cu_2(Ph_2CHCOO)_3(L)_2]BF4$ [L = 2.2'-bipyridine and 1,10-phenanthroline]. From these related coordinations (Perlepes et al., 1995), we found there is no report on conjugated double-bond systems containing a monobasic acid (e.g. methacrylic acid) with syn-syn bridging modes of binuclear Cu(II) and this has prompted us to attempt to prepare a binuclear Cu(II) complex with phenanthroline (phen) and methacrylic acid. Methacrylic acid and phenanthroline were used to gain some insight into the flexiblity of these complexes and also the effect of these auxiliary ligands on stacking. We report herein the first example of a binuclear Cu^{II} complex of this type, [Cu(C₃H₅COO)(phen)(H₂O)]₂(NO₃)₂.2H₂O, along with its crystal structure.

The asymmetric unit of the title compound consists of a dinuclear $[Cu(C_3H_5COO)(phen)(H_2O)]_2^{2+}$ cation, two NO₃⁻ anions and two H₂O molecules (Fig. 1). The coordination environment of each Cu^{II} ion is CuN₂O₃ in which the basal positions are formed by two N atoms from a bidentate phenanthroline ligand [Cu1-N1 = 2.014 (2) Å, Cu1-N2 = 2.018 (2) Å and Cu2-N3 = 2.008 (2) Å, Cu2-N4 = 2.019 (2) Å] and two O atoms of two bridging methacrylato ligands <math>[Cu1-O1 = 1.9641 (19) Å, Cu1-O4 = 1.9446 (18) Å and Cu2-O2 = 1.9440 (19) Å, Cu2-O3 = 1.956 (2) Å]. The two carboxylate groups are in the bidentate*syn-syn*bridging mode. The apical position of each Cu^{II} is occupied by an O atom of a water molecule <math>[Cu1-O1W = 2.1525 (19) Å and Cu2-O2W = 2.1538 (18) Å]. These axial bonds are longer than the bond lengths in the basal positons. Coordination of the N₂ chelate phenanthroline ligand to the Cu^{II} ion results in the formation of two planar five-membered rings Cu1/N1/N2/C11/C12 (with a maximum deviation of -0.019 (1) Å for atom Cu1) and Cu2/N3/N4/C23/C24 (with a maximum deviation of 0.014 (3) Å for atom C23). The dihedral angle between these two five-membered rings is 5.48 (10)°. The Cu1···Cu2 distance is 3.106 (1) Å. The orientation of the two bridging methacrylato ligands can be indicated by the dihedral angle between the mean planes through Cu1/O3/O4/C25 and Cu2/O1/O2/C29 of

71.74 (13)°. The electron delocalizations in the two carboxylate fragments are complete as can be indicated by the almost equal C—O bond lengths [C25—O3 = 1.263 (3) Å, C25—O4 = 1.261 (3) Å and C29—O1 = 1.259 (3) Å, C29—O2 = 1.266 (3) Å]. All bond lengths are in agreement with other related structures (Chen *et al.*, 2008; Perlepes *et al.*, 1995) and are in normal ranges (Allen *et al.*, 1987).

The two phen ligands of the dinuclear complex are stacked with their centroids separated by 3.625 (1) Å indicating significant π - π interactions. The various centroid-centroid separations involving the two phen ligands are: Cg1···Cg3 = 3.6039 (15)Å, Cg1···Cg6 = 3.5301 (15)Å, Cg2···Cg4 = 3.6015 (15)Å, Cg4···Cg5 = 3.6496 (15)Å and Cg5···Cg6 = 3.6858 (15)Å (Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1-C4/C12, N2/C7-C11, N3/C13-C16/C24, N4/C19-C23, C4-C7/C11/C12 and C16-C19/C23/C24 rings, respectively).

O—H···O hydrogen bonds between water molecules and the nitrate ions play an important role in stabilizing the crystal structure (Table 1). These hydrogen bonds link the complex molecules, water molecules and nitrate groups into a two-dimensional network parallel to the (010) plane. The two-dimensional network is further strengthened by π - π interactions between two symmetry related C4–C7/C11/C12 rings at (x, y, z) and (1-x, 2-y, 1-z), with their centroids separated by 3.5381 (15) Å. The adjacent two-dimensional network are cross-linked along the *b* axis via weak C—H···O interactions.

Experimental

The title compound was synthesized by adding a mixture of methacrylic acid (10 mmol) and 1,10-phenanthroline (10 mmol) in water (60 ml) with triethylamine (10 mmol) to aqueous $Cu(NO_3)_2$ (2.42 g, 10 mmol) in water (20 ml) while stirring. The stirring was continued for another half an hour. Precipitates initially formed were filtered and the filtrate was concentrated to one-third of its original volume (25 ml). Deep blue single crystals of the title compound which appeared after a week were collected, washed with water and dried in air at room temperature (m.p. 494 K).

Refinement

H atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(O)$. C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with $U_{iso} = 1.2-1.5U_{eq}(C)$. A rotating group model was used for the methyl groups.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The O—H…O hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.

$Di-\mu$ -methacrylato- $\kappa^4 O:O'$ -bis[aquabis(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)] dinitrate dihydrate

Crystal data

$[Cu_2(C_4H_5O_2)_2(C_{12}H_8N_2)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$	$F_{000} = 1752$
$M_r = 853.75$	$D_{\rm x} = 1.647 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 494 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 13.6146 (2) Å	Cell parameters from 10036 reflections
b = 15.7322 (2) Å	$\theta = 1.5 - 30.0^{\circ}$
c = 16.4463 (2) Å	$\mu = 1.32 \text{ mm}^{-1}$
$\beta = 102.1306 \ (8)^{\circ}$	T = 100.0 (1) K
$V = 3443.94 (8) \text{ Å}^3$	Block, blue
Z = 4	$0.27 \times 0.24 \times 0.16 \text{ mm}$

Data collection

umactometer	
Radiation source: fine-focus sealed tube 6	6885 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.069$
Detector resolution: 8.33 pixels mm ⁻¹ θ	$\theta_{\rm max} = 30.0^{\circ}$
T = 100.0(1) K 0	$\theta_{\min} = 1.5^{\circ}$
ω scans h	$h = -19 \rightarrow 19$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -21 \rightarrow 22$
$T_{\min} = 0.716, T_{\max} = 0.822$ l	! = −23→22
43546 measured reflections	

Refinement

Refinement on F^2	Secondary atom site loca
Least-squares matrix: full	Hydrogen site location: i sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters const
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.045)]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} = 0.001$
10036 reflections	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
489 parameters	$\Delta \rho_{min} = -0.78 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: no

methods

econdary atom site location: difference Fourier map lydrogen site location: inferred from neighbouring ites I-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 1.7397P]$ where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{max} = 0.001$ $\rho_{max} = 0.68 \text{ e } \text{Å}^{-3}$ $\rho_{min} = -0.78 \text{ e } \text{Å}^{-3}$

Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.38427 (2)	0.86242 (2)	0.280115 (19)	0.01328 (8)
Cu2	0.15436 (2)	0.83947 (2)	0.21652 (2)	0.01440 (9)
01	0.36221 (13)	0.74006 (12)	0.26072 (11)	0.0175 (4)
02	0.19581 (14)	0.72098 (12)	0.22433 (12)	0.0210 (4)
O3	0.19962 (13)	0.86057 (13)	0.11307 (12)	0.0195 (4)
O4	0.36133 (13)	0.89340 (12)	0.16317 (11)	0.0163 (4)
O1W	0.54224 (14)	0.84782 (13)	0.28332 (12)	0.0206 (4)
H1W1	0.5927	0.8148	0.2920	0.031*
H2W1	0.5466	0.8796	0.2424	0.031*
O2W	0.00149 (13)	0.80624 (12)	0.16106 (12)	0.0189 (4)
H1W2	-0.0256	0.8171	0.2020	0.023*
H2W2	0.0072	0.7524	0.1618	0.023*
N1	0.35977 (15)	0.98300 (14)	0.31179 (13)	0.0136 (4)
N2	0.40285 (15)	0.84520 (14)	0.40400 (13)	0.0133 (4)
N3	0.11389 (15)	0.96185 (14)	0.22068 (13)	0.0148 (5)
N4	0.15054 (15)	0.84559 (14)	0.33844 (14)	0.0147 (5)
C1	0.33896 (18)	1.05166 (17)	0.26328 (16)	0.0148 (5)
H1A	0.3400	1.0470	0.2071	0.018*
C2	0.31551 (19)	1.13053 (18)	0.29446 (17)	0.0174 (6)
H2A	0.3001	1.1768	0.2589	0.021*
C3	0.31543 (19)	1.13909 (18)	0.37706 (17)	0.0177 (6)
H3A	0.2990	1.1909	0.3979	0.021*
C4	0.34054 (18)	1.06858 (17)	0.43076 (16)	0.0156 (5)
C5	0.34706 (19)	1.07128 (18)	0.51869 (17)	0.0176 (6)
H5A	0.3327	1.1217	0.5433	0.021*
C6	0.37387 (19)	1.00148 (18)	0.56700 (17)	0.0170 (6)
H6A	0.3791	1.0052	0.6242	0.020*
C7	0.39418 (18)	0.92214 (17)	0.53086 (16)	0.0149 (5)
C8	0.42171 (19)	0.84690 (18)	0.57659 (17)	0.0175 (6)
H8A	0.4275	0.8463	0.6340	0.021*
С9	0.43985 (19)	0.77448 (18)	0.53534 (16)	0.0171 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9A	0.4590	0.7247	0.5649	0.021*
C10	0.42949 (19)	0.77571 (18)	0.44871 (17)	0.0173 (6)
H10A	0.4417	0.7261	0.4217	0.021*
C11	0.38645 (18)	0.91764 (17)	0.44477 (16)	0.0133 (5)
C12	0.36170 (18)	0.99215 (17)	0.39418 (16)	0.0137 (5)
C13	0.0902 (2)	1.01713 (18)	0.15840 (17)	0.0185 (6)
H13A	0.0966	1.0007	0.1054	0.022*
C14	0.0561 (2)	1.09905 (18)	0.16996 (18)	0.0217 (6)
H14A	0.0388	1.1358	0.1249	0.026*
C15	0.0481 (2)	1.12505 (18)	0.24745 (19)	0.0212 (6)
H15A	0.0258	1.1796	0.2556	0.025*
C16	0.07407 (19)	1.06854 (17)	0.31525 (17)	0.0169 (6)
C17	0.0720 (2)	1.08926 (19)	0.39989 (18)	0.0223 (6)
H17A	0.0540	1.1438	0.4128	0.027*
C18	0.0960 (2)	1.03040 (19)	0.46151 (18)	0.0220 (6)
H18A	0.0961	1.0459	0.5161	0.026*
C19	0.12109 (19)	0.94527 (19)	0.44389 (16)	0.0173 (6)
C20	0.1392 (2)	0.8790 (2)	0.50233 (18)	0.0215 (6)
H20A	0.1367	0.8894	0.5575	0.026*
C21	0.1606 (2)	0.7989 (2)	0.47812 (18)	0.0218 (6)
H21A	0.1711	0.7547	0.5165	0.026*
C22	0.16637 (19)	0.78423 (18)	0.39568 (17)	0.0191 (6)
H22A	0.1818	0.7298	0.3801	0.023*
C23	0.12645 (18)	0.92432 (17)	0.36181 (17)	0.0145 (5)
C24	0.10448 (18)	0.98683 (17)	0.29791 (16)	0.0153 (5)
C25	0.28327 (19)	0.89118 (17)	0.10616 (16)	0.0149 (5)
C26	0.2907 (2)	0.92989 (18)	0.02407 (17)	0.0205 (6)
C27	0.3878 (2)	0.9638 (2)	0.01568 (19)	0.0278 (7)
H27A	0.3827	0.9857	-0.0395	0.042*
H27B	0.4372	0.9193	0.0257	0.042*
H27C	0.4075	1.0086	0.0554	0.042*
C28	0.2060 (2)	0.9363 (2)	-0.03626 (18)	0.0335 (8)
H28A	0.2080	0.9634	-0.0861	0.040*
H28B	0.1459	0.9136	-0.0277	0.040*
C29	0.28507 (19)	0.69382 (17)	0.24574 (16)	0.0154 (5)
C30	0.2994 (2)	0.59990 (17)	0.25582 (16)	0.0164 (5)
C31	0.2129 (2)	0.54491 (19)	0.23257 (18)	0.0246 (7)
H31A	0.2294	0.4892	0.2550	0.037*
H31B	0.1938	0.5415	0.1730	0.037*
H31C	0.1581	0.5675	0.2542	0.037*
C32	0.3946 (2)	0.56991 (19)	0.28914 (17)	0.0225 (6)
H32A	0.4054	0.5119	0.2975	0.027*
H32B	0.4480	0.6077	0.3032	0.027*
N5	0.15097 (17)	0.32307 (16)	0.18469 (15)	0.0220 (5)
O5	0.15892 (15)	0.33112 (15)	0.26311 (13)	0.0296 (5)
06	0.22735 (16)	0.32020 (17)	0.15650 (14)	0.0374 (6)
07	0.06546 (15)	0.31781 (15)	0.13950 (14)	0.0326 (5)
N6	0.33329 (18)	0.17479 (15)	0.07401 (15)	0.0201 (5)
08	0.40081 (14)	0.18673 (13)	0.13715 (12)	0.0237 (5)

O9	0.34045 (18)	0.20737 (15)	0.00610 (13)	0.0348 (6)
O10	0.25858 (15)	0.13046 (14)	0.07883 (13)	0.0280 (5)
O3W	0.35788 (15)	0.35991 (13)	0.34804 (13)	0.0242 (5)
H1W3	0.2960	0.3622	0.3220	0.036*
H2W3	0.3448	0.3527	0.3996	0.036*
O4W	0.07983 (16)	0.28832 (15)	0.50131 (13)	0.0319 (5)
H1W4	0.1462	0.3043	0.5052	0.048*
H2W4	0.0414	0.2807	0.5347	0.048*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01626 (15)	0.01130 (17)	0.01213 (16)	0.00004 (12)	0.00262 (12)	-0.00018 (12)
Cu2	0.01577 (15)	0.01211 (17)	0.01579 (17)	0.00068 (12)	0.00441 (12)	-0.00054 (13)
01	0.0210 (9)	0.0106 (10)	0.0202 (10)	-0.0009 (7)	0.0028 (8)	-0.0017 (8)
02	0.0203 (9)	0.0144 (10)	0.0288 (11)	0.0017 (8)	0.0057 (8)	-0.0023 (8)
03	0.0176 (9)	0.0250 (11)	0.0166 (10)	-0.0012 (8)	0.0055 (7)	-0.0027 (8)
04	0.0201 (9)	0.0144 (10)	0.0144 (9)	-0.0011 (7)	0.0038 (7)	-0.0001 (7)
O1W	0.0172 (9)	0.0251 (12)	0.0193 (10)	0.0037 (8)	0.0035 (8)	0.0022 (8)
O2W	0.0204 (9)	0.0161 (10)	0.0215 (10)	-0.0014 (8)	0.0070 (8)	-0.0008 (8)
N1	0.0142 (10)	0.0125 (11)	0.0148 (11)	0.0001 (8)	0.0047 (8)	0.0001 (9)
N2	0.0132 (10)	0.0118 (11)	0.0151 (11)	0.0000 (8)	0.0032 (8)	0.0010 (9)
N3	0.0140 (10)	0.0137 (12)	0.0173 (11)	0.0002 (9)	0.0048 (8)	0.0025 (9)
N4	0.0141 (10)	0.0141 (12)	0.0160 (11)	0.0011 (8)	0.0030 (8)	0.0015 (9)
C1	0.0175 (12)	0.0135 (13)	0.0144 (12)	-0.0004 (10)	0.0053 (10)	0.0009 (10)
C2	0.0181 (12)	0.0145 (14)	0.0201 (14)	0.0003 (10)	0.0053 (10)	0.0030 (11)
C3	0.0185 (12)	0.0136 (14)	0.0215 (14)	-0.0009 (10)	0.0051 (10)	-0.0018 (11)
C4	0.0145 (12)	0.0148 (14)	0.0177 (13)	-0.0020 (10)	0.0041 (10)	-0.0015 (10)
C5	0.0195 (12)	0.0156 (14)	0.0186 (14)	-0.0021 (11)	0.0063 (10)	-0.0052 (11)
C6	0.0188 (13)	0.0201 (15)	0.0132 (12)	-0.0036 (11)	0.0057 (10)	-0.0029 (11)
C7	0.0114 (11)	0.0175 (14)	0.0161 (13)	-0.0023 (10)	0.0037 (10)	0.0012 (10)
C8	0.0179 (12)	0.0231 (16)	0.0124 (12)	-0.0011 (11)	0.0050 (10)	0.0001 (11)
C9	0.0186 (12)	0.0168 (14)	0.0169 (13)	0.0029 (11)	0.0061 (10)	0.0049 (11)
C10	0.0178 (12)	0.0156 (14)	0.0192 (14)	0.0003 (10)	0.0051 (10)	0.0016 (11)
C11	0.0117 (11)	0.0158 (14)	0.0129 (12)	-0.0002 (10)	0.0036 (9)	0.0003 (10)
C12	0.0106 (11)	0.0158 (14)	0.0146 (12)	-0.0014 (10)	0.0029 (9)	-0.0004 (10)
C13	0.0217 (13)	0.0172 (14)	0.0169 (13)	-0.0012 (11)	0.0049 (11)	0.0023 (11)
C14	0.0204 (13)	0.0166 (15)	0.0273 (15)	0.0001 (11)	0.0035 (11)	0.0076 (12)
C15	0.0200 (13)	0.0126 (14)	0.0323 (16)	0.0011 (11)	0.0082 (12)	0.0014 (12)
C16	0.0150 (12)	0.0134 (14)	0.0230 (14)	-0.0016 (10)	0.0055 (10)	-0.0028 (11)
C17	0.0231 (14)	0.0183 (15)	0.0278 (16)	-0.0015 (11)	0.0105 (12)	-0.0087 (12)
C18	0.0211 (13)	0.0265 (17)	0.0200 (14)	-0.0023 (12)	0.0076 (11)	-0.0068 (12)
C19	0.0139 (12)	0.0244 (16)	0.0154 (13)	-0.0031 (11)	0.0070 (10)	-0.0032 (11)
C20	0.0167 (12)	0.0327 (18)	0.0158 (13)	-0.0016 (12)	0.0047 (10)	0.0007 (12)
C21	0.0174 (13)	0.0283 (17)	0.0198 (14)	0.0002 (12)	0.0037 (11)	0.0096 (12)
C22	0.0151 (12)	0.0168 (14)	0.0249 (15)	0.0011 (10)	0.0032 (11)	0.0037 (11)
C23	0.0095 (11)	0.0140 (13)	0.0207 (14)	-0.0018 (10)	0.0050 (10)	0.0001 (11)
C24	0.0126 (11)	0.0153 (14)	0.0185 (13)	-0.0011 (10)	0.0046 (10)	-0.0013 (11)

C25	0.0203 (13)	0.0126 (13)	0.0126 (12)	0.0040 (10)	0.0057 (10)	-0.0022 (10)
C26	0.0320 (15)	0.0161 (15)	0.0144 (13)	0.0025 (12)	0.0074 (11)	-0.0004 (11)
C27	0.0360 (17)	0.0264 (18)	0.0236 (16)	-0.0043 (14)	0.0123 (13)	0.0038 (13)
C28	0.0358 (17)	0.049 (2)	0.0148 (15)	-0.0023 (16)	0.0033 (13)	0.0019 (14)
C29	0.0221 (13)	0.0141 (14)	0.0112 (12)	-0.0001 (10)	0.0064 (10)	-0.0007 (10)
C30	0.0257 (13)	0.0118 (14)	0.0131 (12)	0.0001 (11)	0.0070 (10)	-0.0012 (10)
C31	0.0300 (15)	0.0200 (16)	0.0223 (15)	0.0028 (12)	0.0021 (12)	0.0014 (12)
C32	0.0322 (15)	0.0127 (14)	0.0220 (15)	0.0021 (12)	0.0042 (12)	0.0008 (11)
N5	0.0199 (12)	0.0205 (13)	0.0249 (13)	-0.0021 (10)	0.0027 (10)	0.0013 (10)
05	0.0235 (10)	0.0409 (14)	0.0254 (12)	-0.0094 (10)	0.0079 (9)	-0.0029 (10)
O6	0.0219 (11)	0.0613 (18)	0.0318 (13)	-0.0054 (11)	0.0121 (10)	-0.0084 (12)
O7	0.0180 (10)	0.0423 (15)	0.0346 (13)	0.0063 (10)	-0.0014 (9)	-0.0056 (11)
N6	0.0287 (13)	0.0129 (12)	0.0192 (12)	0.0035 (10)	0.0059 (10)	0.0011 (10)
08	0.0217 (10)	0.0276 (12)	0.0204 (10)	-0.0028 (9)	0.0013 (8)	0.0010 (9)
09	0.0585 (15)	0.0297 (13)	0.0170 (11)	0.0008 (11)	0.0099 (10)	0.0075 (9)
O10	0.0257 (10)	0.0229 (12)	0.0325 (12)	-0.0071 (9)	-0.0003 (9)	0.0062 (9)
O3W	0.0227 (10)	0.0271 (12)	0.0234 (11)	-0.0011 (9)	0.0065 (8)	0.0033 (9)
O4W	0.0298 (11)	0.0450 (15)	0.0206 (11)	-0.0054 (10)	0.0050 (9)	-0.0043 (10)

Geometric parameters (Å, °)

Cu1—O4	1.9446 (18)	C13—C14	1.396 (4)
Cu1—O1	1.9641 (19)	C13—H13A	0.93
Cu1—N1	2.014 (2)	C14—C15	1.364 (4)
Cu1—N2	2.018 (2)	C14—H14A	0.93
Cu1—O1W	2.1525 (19)	C15—C16	1.412 (4)
Cu2—O2	1.9440 (19)	C15—H15A	0.93
Cu2—O3	1.956 (2)	C16—C24	1.398 (4)
Cu2—N3	2.008 (2)	C16—C17	1.436 (4)
Cu2—N4	2.019 (2)	C17—C18	1.361 (4)
Cu2—O2W	2.1538 (18)	C17—H17A	0.93
O1—C29	1.259 (3)	C18—C19	1.427 (4)
O2—C29	1.266 (3)	C18—H18A	0.93
O3—C25	1.263 (3)	C19—C20	1.404 (4)
O4—C25	1.261 (3)	C19—C23	1.406 (4)
O1W—H1W1	0.85	C20—C21	1.371 (4)
O1W—H2W1	0.85	C20—H20A	0.93
O2W—H1W2	0.85	C21—C22	1.394 (4)
O2W—H2W2	0.85	C21—H21A	0.93
N1-C1	1.337 (3)	C22—H22A	0.93
N1-C12	1.357 (3)	C23—C24	1.424 (4)
N2-C10	1.325 (3)	C25—C26	1.504 (4)
N2—C11	1.364 (3)	C26—C28	1.358 (4)
N3—C13	1.331 (3)	C26—C27	1.459 (4)
N3—C24	1.361 (3)	C27—H27A	0.96
N4—C22	1.334 (3)	С27—Н27В	0.96
N4—C23	1.357 (3)	C27—H27C	0.96
C1—C2	1.405 (4)	C28—H28A	0.93
C1—H1A	0.93	C28—H28B	0.93

C2 C2	1 2(5 (4)	C20 C20	1 405 (4)
$C_2 = C_3$	1.505 (4)	$C_{29} = C_{30}$	1.495 (4)
$C_2 = C_4$	0.95	$C_{30} = C_{32}$	1.381 (4)
C_{3}	1.414 (4)	C_{30}	1.446 (4)
C3—H3A	0.93	C31—H31A	0.96
C4—C12	1.401 (4)	C31—H31B	0.96
	1.451 (4)		0.96
C5—C6	1.359 (4)	C32—H32A	0.93
CS—HSA	0.93	C32—H32B	0.93
C6	1.434 (4)	N5	1.225 (3)
С6—Н6А	0.93	N5-07	1.245 (3)
	1.399 (4)	N5	1.278 (3)
C/C8	1.410 (4)	N6	1.248 (3)
C8—C9	1.375 (4)	N6—O10	1.249 (3)
C8—H8A	0.93	N6—O9	1.251 (3)
C9—C10	1.402 (4)	O3W—H1W3	0.86
С9—Н9А	0.93	O3W—H2W3	0.91
C10—H10A	0.93	O4W—H1W4	0.93
C11—C12	1.436 (4)	O4W—H2W4	0.84
O4—Cu1—O1	95.60 (8)	N1-C12-C11	116.4 (2)
O4—Cu1—N1	91.08 (8)	C4—C12—C11	119.7 (2)
O1—Cu1—N1	159.63 (8)	N3—C13—C14	122.1 (3)
O4—Cu1—N2	172.86 (8)	N3—C13—H13A	118.9
O1—Cu1—N2	90.85 (8)	С14—С13—Н13А	118.9
N1—Cu1—N2	81.82 (9)	C15—C14—C13	119.9 (3)
O4—Cu1—O1W	90.17 (7)	C15—C14—H14A	120.1
O1—Cu1—O1W	90.99 (8)	C13—C14—H14A	120.1
N1—Cu1—O1W	108.26 (8)	C14—C15—C16	119.6 (3)
N2—Cu1—O1W	92.77 (8)	C14—C15—H15A	120.2
O2—Cu2—O3	94.59 (8)	С16—С15—Н15А	120.2
O2—Cu2—N3	174.38 (9)	C24—C16—C15	117.0 (3)
O3—Cu2—N3	90.33 (9)	C24—C16—C17	118.3 (3)
O2—Cu2—N4	92.74 (9)	C15—C16—C17	124.8 (3)
O3—Cu2—N4	159.13 (8)	C18—C17—C16	121.1 (3)
N3—Cu2—N4	81.71 (9)	C18—C17—H17A	119.4
O2—Cu2—O2W	92.09 (8)	С16—С17—Н17А	119.4
O3—Cu2—O2W	97.23 (7)	C17—C18—C19	121.2 (3)
N3—Cu2—O2W	89.97 (8)	C17—C18—H18A	119.4
N4—Cu2—O2W	102.00 (8)	C19—C18—H18A	119.4
C29—O1—Cu1	133.72 (18)	C20—C19—C23	116.5 (3)
C29—O2—Cu2	126.17 (18)	C20—C19—C18	125.0 (3)
C25—O3—Cu2	126.70 (17)	C23—C19—C18	118.5 (3)
C25—O4—Cu1	131.56 (18)	C21—C20—C19	120.1 (3)
Cu1—O1W—H1W1	147.0	C21—C20—H20A	120.0
Cu1—O1W—H2W1	98.9	C19—C20—H20A	120.0
H1W1—O1W—H2W1	107.6	C20—C21—C22	119.6 (3)
Cu2—O2W—H1W2	99.0	C20—C21—H21A	120.2
Cu2—O2W—H2W2	99.1	С22—С21—Н21А	120.2
H1W2—O2W—H2W2	104.0	N4—C22—C21	122.2 (3)
C1—N1—C12	117.8 (2)	N4—C22—H22A	118.9
	× /		

C1—N1—Cu1	129.24 (19)	C21—C22—H22A	118.9
C12—N1—Cu1	112.87 (17)	N4—C23—C19	123.4 (2)
C10—N2—C11	118.1 (2)	N4—C23—C24	116.5 (2)
C10—N2—Cu1	129.25 (19)	C19—C23—C24	120.1 (2)
C11—N2—Cu1	112.66 (17)	N3—C24—C16	123.1 (2)
C13—N3—C24	118.3 (2)	N3—C24—C23	116.3 (2)
C13—N3—Cu2	128.63 (19)	C16—C24—C23	120.6 (2)
C24—N3—Cu2	112.89 (17)	O4—C25—O3	125.3 (2)
C22—N4—C23	118.2 (2)	O4—C25—C26	116.8 (2)
C22—N4—Cu2	129.2 (2)	O3—C25—C26	117.8 (2)
C23—N4—Cu2	112.52 (17)	C28—C26—C27	123.4 (3)
N1—C1—C2	122.1 (2)	C28—C26—C25	118.6 (3)
N1—C1—H1A	118.9	C27—C26—C25	117.8 (2)
C2—C1—H1A	118.9	С26—С27—Н27А	109.5
C3—C2—C1	119.9 (3)	С26—С27—Н27В	109.5
С3—С2—Н2А	120.1	H27A—C27—H27B	109.5
C1—C2—H2A	120.1	С26—С27—Н27С	109.5
C2—C3—C4	119.6 (3)	H27A—C27—H27C	109.5
С2—С3—НЗА	120.2	H27B—C27—H27C	109.5
C4—C3—H3A	120.2	C26—C28—H28A	120.0
C12—C4—C3	116.7 (2)	C26—C28—H28B	120.0
C12—C4—C5	119.0 (2)	H28A—C28—H28B	120.0
C3—C4—C5	124.3 (3)	O1—C29—O2	124.9 (3)
C6—C5—C4	121.2 (3)	O1—C29—C30	117.8 (2)
C6—C5—H5A	119.4	O2—C29—C30	117.3 (2)
C4—C5—H5A	119.4	C32—C30—C31	123.0 (3)
C5—C6—C7	120.8 (3)	C32—C30—C29	118.1 (2)
С5—С6—Н6А	119.6	C31—C30—C29	118.8 (2)
С7—С6—Н6А	119.6	C30—C31—H31A	109.5
C11—C7—C8	116.9 (2)	C30—C31—H31B	109.5
C11—C7—C6	118.9 (2)	H31A—C31—H31B	109.5
C8—C7—C6	124.2 (2)	C30—C31—H31C	109.5
C9—C8—C7	119.2 (3)	H31A—C31—H31C	109.5
С9—С8—Н8А	120.4	H31B—C31—H31C	109.5
С7—С8—Н8А	120.4	C30—C32—H32A	120.0
C8—C9—C10	120.0 (3)	С30—С32—Н32В	120.0
С8—С9—Н9А	120.0	H32A—C32—H32B	120.0
С10—С9—Н9А	120.0	O6—N5—O7	122.2 (3)
N2—C10—C9	122.2 (3)	O6—N5—O5	119.1 (2)
N2	118.9	O7—N5—O5	118.6 (2)
С9—С10—Н10А	118.9	O8—N6—O10	119.9 (2)
N2—C11—C7	123.7 (2)	08—N6—09	119.9 (2)
N2—C11—C12	116.1 (2)	010—N6—09	120.2 (2)
C/C11C12	120.2 (2)	H1W3—O3W—H2W3	96.1
N1—C12—C4	123.8 (2)	H1W4—O4W—H2W4	136.4
O4—Cu1—O1—C29	-84.4 (2)	C6—C7—C11—C12	2.0 (4)
N1—Cu1—O1—C29	24.2 (4)	C1—N1—C12—C4	1.8 (4)
N2—Cu1—O1—C29	92.6 (2)	Cu1—N1—C12—C4	-175.84 (19)
O1W—Cu1—O1—C29	-174.7 (2)	C1—N1—C12—C11	-178.7 (2)

O3—Cu2—O2—C29	75.1 (2)	Cu1—N1—C12—C11	3.7 (3)
N4—Cu2—O2—C29	-85.4 (2)	C3—C4—C12—N1	0.4 (4)
O2W—Cu2—O2—C29	172.5 (2)	C5-C4-C12-N1	-178.6 (2)
O2—Cu2—O3—C25	-95.0 (2)	C3—C4—C12—C11	-179.2 (2)
N3—Cu2—O3—C25	82.3 (2)	C5-C4-C12-C11	1.9 (4)
N4—Cu2—O3—C25	15.3 (4)	N2-C11-C12-N1	-1.6 (3)
O2W—Cu2—O3—C25	172.3 (2)	C7—C11—C12—N1	177.4 (2)
O1—Cu1—O4—C25	67.2 (2)	N2-C11-C12-C4	178.0 (2)
N1—Cu1—O4—C25	-93.5 (2)	C7—C11—C12—C4	-3.1 (4)
O1W—Cu1—O4—C25	158.2 (2)	C24—N3—C13—C14	-0.2 (4)
O4—Cu1—N1—C1	-1.5 (2)	Cu2—N3—C13—C14	175.11 (19)
O1—Cu1—N1—C1	-110.8 (3)	N3-C13-C14-C15	1.4 (4)
N2—Cu1—N1—C1	179.3 (2)	C13-C14-C15-C16	-0.3 (4)
O1W—Cu1—N1—C1	89.1 (2)	C14—C15—C16—C24	-1.7 (4)
O4—Cu1—N1—C12	175.83 (17)	C14—C15—C16—C17	177.9 (3)
O1—Cu1—N1—C12	66.5 (3)	C24—C16—C17—C18	-2.0 (4)
N2—Cu1—N1—C12	-3.41 (16)	C15-C16-C17-C18	178.5 (3)
O1W—Cu1—N1—C12	-93.64 (17)	C16-C17-C18-C19	-2.0 (4)
O1—Cu1—N2—C10	22.9 (2)	C17—C18—C19—C20	-174.9 (3)
N1—Cu1—N2—C10	-176.2 (2)	C17—C18—C19—C23	3.8 (4)
O1W—Cu1—N2—C10	-68.1 (2)	C23—C19—C20—C21	-0.1 (4)
O1—Cu1—N2—C11	-158.36 (17)	C18—C19—C20—C21	178.5 (3)
N1—Cu1—N2—C11	2.55 (17)	C19—C20—C21—C22	1.4 (4)
O1W—Cu1—N2—C11	110.60 (17)	C23—N4—C22—C21	-1.1 (4)
O3—Cu2—N3—C13	23.8 (2)	Cu2—N4—C22—C21	-179.80 (19)
N4—Cu2—N3—C13	-175.5 (2)	C20-C21-C22-N4	-0.8 (4)
O2W—Cu2—N3—C13	-73.4 (2)	C22—N4—C23—C19	2.5 (4)
O3—Cu2—N3—C24	-160.65 (17)	Cu2—N4—C23—C19	-178.57 (19)
N4—Cu2—N3—C24	-0.01 (17)	C22—N4—C23—C24	-176.5 (2)
O2W—Cu2—N3—C24	102.12 (17)	Cu2—N4—C23—C24	2.4 (3)
O2—Cu2—N4—C22	-3.5 (2)	C20-C19-C23-N4	-1.9 (4)
O3—Cu2—N4—C22	-114.0 (3)	C18—C19—C23—N4	179.4 (2)
N3—Cu2—N4—C22	177.5 (2)	C20-C19-C23-C24	177.1 (2)
O2W—Cu2—N4—C22	89.3 (2)	C18—C19—C23—C24	-1.7 (4)
O2—Cu2—N4—C23	177.76 (17)	C13—N3—C24—C16	-2.0 (4)
O3—Cu2—N4—C23	67.2 (3)	Cu2—N3—C24—C16	-178.02 (19)
N3—Cu2—N4—C23	-1.32 (17)	C13—N3—C24—C23	177.4 (2)
O2W—Cu2—N4—C23	-89.52 (17)	Cu2—N3—C24—C23	1.3 (3)
C12—N1—C1—C2	-2.6 (4)	C15-C16-C24-N3	2.9 (4)
Cu1—N1—C1—C2	174.57 (18)	C17—C16—C24—N3	-176.7 (2)
N1—C1—C2—C3	1.3 (4)	C15—C16—C24—C23	-176.4 (2)
C1—C2—C3—C4	1.0 (4)	C17—C16—C24—C23	4.0 (4)
C2—C3—C4—C12	-1.7 (4)	N4—C23—C24—N3	-2.5 (3)
C2—C3—C4—C5	177.2 (2)	C19—C23—C24—N3	178.4 (2)
C12—C4—C5—C6	0.4 (4)	N4—C23—C24—C16	176.8 (2)
C3—C4—C5—C6	-178.5 (3)	C19—C23—C24—C16	-2.2 (4)
C4—C5—C6—C7	-1.5 (4)	Cu1—O4—C25—O3	-5.5 (4)
C5—C6—C7—C11	0.3 (4)	Cu1—O4—C25—C26	173.17 (18)
C5—C6—C7—C8	-179.6 (2)	Cu2—O3—C25—O4	19.3 (4)
	· /		

C11—C7—C8—C9	0.4 (4)	Cu2—O3—C25—C26	-159.39 (18)
C6—C7—C8—C9	-179.7 (2)	O4—C25—C26—C28	-173.6 (3)
C7—C8—C9—C10	-0.9 (4)	O3—C25—C26—C28	5.2 (4)
C11—N2—C10—C9	0.8 (4)	O4—C25—C26—C27	2.3 (4)
Cu1—N2—C10—C9	179.52 (18)	O3—C25—C26—C27	-178.9 (3)
C8—C9—C10—N2	0.3 (4)	Cu1—O1—C29—O2	13.8 (4)
C10—N2—C11—C7	-1.4 (4)	Cu1—O1—C29—C30	-164.71 (18)
Cu1—N2—C11—C7	179.72 (19)	Cu2—O2—C29—O1	-4.5 (4)
C10—N2—C11—C12	177.6 (2)	Cu2—O2—C29—C30	174.01 (17)
Cu1—N2—C11—C12	-1.3 (3)	O1—C29—C30—C32	6.6 (4)
C8—C7—C11—N2	0.8 (4)	O2—C29—C30—C32	-172.0 (3)
C6—C7—C11—N2	-179.1 (2)	O1—C29—C30—C31	-175.0 (2)
C8—C7—C11—C12	-178.1 (2)	O2—C29—C30—C31	6.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1W1···O6 ⁱ	0.85	2.42	3.115 (3)	140
O1W—H1W1···O8 ⁱ	0.85	2.32	2.882 (3)	124
O2W—H1W2···O5 ⁱⁱ	0.85	2.03	2.761 (3)	144
O3W—H1W3…O5	0.86	1.97	2.811 (3)	163
O4W—H1W4···O10 ⁱⁱⁱ	0.93	2.02	2.807 (3)	142
O1W—H2W1···O3W ⁱ	0.85	2.19	2.791 (3)	127
O3W—H2W3···O9 ⁱⁱⁱ	0.91	2.00	2.862 (3)	157
O4W—H2W4···O7 ⁱⁱⁱ	0.84	2.29	2.860 (3)	125
C1—H1A···O4	0.93	2.56	3.035 (3)	112
C1—H1A···O10 ^{iv}	0.93	2.53	3.247 (3)	134
C3—H3A…O9 ^v	0.93	2.37	3.186 (4)	146
C14—H14A···O4W ^{vi}	0.93	2.52	3.364 (4)	151
C15—H15A···O2W ⁱⁱ	0.93	2.49	3.357 (3)	155
C21—H21A···O3 ^{v}	0.93	2.39	3.318 (4)	179
С28—Н28В…О3	0.93	2.42	2.747 (4)	100
С32—Н32В…О1	0.93	2.42	2.737 (4)	100
C32—H32B···O8 ⁱ	0.93	2.43	3.345 (3)	168

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) *x*, -*y*+1/2, *z*+1/2; (iv) *x*, *y*+1, *z*; (v) *x*, -*y*+3/2, *z*+1/2; (vi) *x*, -*y*+3/2, *z*+1/2; (vi)

Fig. 2